D-MATH
Prof. Richard Pink

Solutions 3

Lattices and Minkowski Theory

*1. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space $(V,\langle\rangle$,$) of finite dimension n$. The successive minima $\lambda_{1}, \ldots, \lambda_{n}$ of Γ are defined iteratively by choosing for any $1 \leqslant i \leqslant n$ an element $\gamma_{i} \in \Gamma \backslash \bigoplus_{j=1}^{i-1} \mathbb{R} \gamma_{j}$ of minimal length $\lambda_{i}:=\|\gamma\|$. Then

$$
\frac{2^{n}}{n!} \operatorname{vol}\left(\mathbb{R}^{n} / \Gamma\right) \leqslant \lambda_{1} \cdots \lambda_{n} \cdot \operatorname{vol}(B) \leqslant 2^{n} \operatorname{vol}\left(\mathbb{R}^{n} / \Gamma\right)
$$

where B is the closed ball of radius 1 .
Solution: See Theorem 6.3.3 in https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.
2. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
(a) Show that if m and n are sums of four squares, then so is $m n$.

Hint: Use the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z} i \oplus \mathbb{Z} j \oplus \mathbb{Z} k$.
(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers α, β such that $\alpha^{2}+\beta^{2} \equiv-1 \bmod p$.

Hint: Consider the intersection of the sets

$$
S:=\left\{\alpha^{2} \bmod p \left\lvert\, 0 \leqslant \alpha<\frac{p}{2}\right.\right\} \quad \text { and } \quad S^{\prime}:=\left\{-1-\beta^{2} \bmod p \left\lvert\, 0 \leqslant \beta<\frac{p}{2}\right.\right\} .
$$

(d) For any such α, β show that
$\Gamma:=\left\{a=\left(a_{1}, \ldots, a_{4}\right) \in \mathbb{Z}^{4} \mid a_{1} \equiv \alpha a_{3}+\beta a_{4} \bmod (p)\right.$ and $\left.a_{2} \equiv \beta a_{3}-\alpha a_{4} \bmod (p)\right\}$
contains a nonzero point a in the open ball of radius $\sqrt{2 p}$ in \mathbb{R}^{4}.
(e) Show that $\|a\|^{2}=p$ and conclude.

Solution: See
https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/.
3. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1.
(b) Show that the class group of $\mathbb{Q}(\sqrt{-14}))$ is cyclic of order 4 .
(c) Show that $f:=X^{3}+X+1 \in \mathbb{Q}[X]$ is irreducible and that the cubic number field $\mathbb{Q}(\theta)$ with $f(\theta)=0$ has class number 1.
Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.
(a) Case $K:=\mathbb{Q}(\sqrt{11}):$ Since $11 \equiv 3 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{11}] \cong \mathbb{Z}[X] /\left(X^{2}-11\right)$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=4 \cdot 11=44$. Since $11>0$, the field is real quadratic with $r=2$ and $s=0$. By a proposition from the lecture, every ideal class in $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ with

$$
\operatorname{Nm}(\mathfrak{a}) \leqslant\left(\frac{2}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|}=\sqrt{44}=6.6332 \ldots
$$

Therefore, it suffices to show that all ideals \mathfrak{a} of \mathcal{O}_{K} of norm $\leqslant 6$ are principal.
Recall that for any non-zero ideal $\mathfrak{a} \subset \mathcal{O}_{K}$ we have $\operatorname{Nm}(\mathfrak{a})=\left[\mathcal{O}_{K}: \mathfrak{a}\right]$. In particular $\operatorname{Nm}(\mathfrak{a})=1$ if and only if $\mathfrak{a}=(1)$, which is principal. Moreover, any prime divisor $\mathfrak{p} \mid \mathfrak{a}$ satisfies $\operatorname{Nm}(\mathfrak{p}) \mid \operatorname{Nm}(\mathfrak{a})$. As any non-zero ideal is a product of prime ideals, it thus suffices to show that every prime ideal \mathfrak{p} of \mathcal{O}_{K} of norm $\leqslant 6$ is principal. For any such \mathfrak{p}, the norm is the order of the residue field and therefore a prime power. If $\operatorname{Nm}(\mathfrak{p})=2$, then $(2) \subseteq \mathfrak{p}$, and $\mathfrak{p} /(2)$ is an ideal of index 2 of the factor ring $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}+1\right)=\mathbb{F}_{2}[X] /(1+X)^{2}$. Thus $\mathfrak{p} /(2)$ corresponds to the unique maximal ideal $(1+X)$, and so $\mathfrak{p}=(2,1+\sqrt{11})$. It remains to show that $\mathfrak{p}=(\alpha)$ for some $\alpha=a+b \sqrt{11} \in \mathcal{O}_{K}$. Any such α must satisfy $\left|a^{2}-11 b^{2}\right|=$ $\left|\operatorname{Nm}_{K / \mathbb{Q}}(\alpha)\right|=\operatorname{Nm}((\alpha))=2$. A little experimentation shows that the equality $\left|a^{2}-11 b^{2}\right|=2$ holds for $\alpha:=3+\sqrt{11}$. For this we then in fact have $\operatorname{Nm}((\alpha))=2$ and hence $(\alpha)=\mathfrak{p}$. Thus the only ideal of \mathcal{O}_{K} of norm 2 is principal.
If $\operatorname{Nm}(\mathfrak{p})=3$, then likewise $\mathfrak{p} /(3)$ is an ideal of index 3 of $\mathcal{O}_{K} /(3) \cong \mathbb{F}_{3}[X] /\left(X^{2}+1\right)$. But since $X^{2}+1$ is irreducible in $\mathbb{F}_{3}[X]$, this factor ring is a field of order 9 and does not possess an ideal of index 3 . Thus there exists no ideal of \mathcal{O}_{K} of norm 3 . If $\operatorname{Nm}(\mathfrak{p})=4$, then $(4) \subseteq \mathfrak{p}$. For \mathfrak{p} prime this implies that $(2) \subset \mathfrak{p}$, which by comparing indices implies that $(2)=\mathfrak{p}$. But we have seen above that $\mathcal{O}_{K} /(2)$ is not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of norm 4. If $\operatorname{Nm}(\mathfrak{p})=5$, then likewise $\mathfrak{p} /(5)$ is an ideal of index 5 of $\mathcal{O}_{K} /(5) \cong \mathbb{F}_{5}[X] /\left(X^{2}-1\right)$ $=\mathbb{F}_{5}[X] /((1+X)(1-X))$. Thus $\mathfrak{p} /(5)$ corresponds to the maximal ideal $(1 \pm X)$ and so $\mathfrak{p}=(5,1 \pm \sqrt{11})$ for some choice of sign. It remains to show that $\mathfrak{p}=(\alpha)$ for some $\alpha=a+b \sqrt{11} \in \mathcal{O}_{K}$. Any such α must satisfy $\left|a^{2}-11 b^{2}\right|=\left|\operatorname{Nm}_{K / \mathbb{Q}}(\alpha)\right|=$ $\operatorname{Nm}((\alpha))=5$. A little experimentation shows that the equality $\left|a^{2}-11 b^{2}\right|=2$ holds for $\alpha:=4 \mp \sqrt{11}=5-(1 \pm \sqrt{11}) \in \mathfrak{p}$. For this we then have $\operatorname{Nm}((\alpha))=5$, and comparing indices shows that $(\alpha)=\mathfrak{p}$. Thus every ideal of \mathcal{O}_{K} of norm 5 is principal.
Finally, there is no prime ideal with $\operatorname{Nm}(\mathfrak{p})=6$, because 6 is not a prime power.
Case $K:=\mathbb{Q}(\sqrt{-11})$: Since $-11 \equiv 1 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{-11}}{2}\right] \cong$ $\mathbb{Z}[X] /\left(X^{2}-X+3\right)$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-11$. Since $\mathbb{Q}(\sqrt{-11})$ does not have any embeddings into \mathbb{R}, we have $r=0$ and $s=1$. By a proposition from the lecture, every ideal class in $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ with

$$
\operatorname{Nm}(\mathfrak{a}) \leqslant\left(\frac{2}{\pi}\right)^{s} \sqrt{\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|}=\frac{2}{\pi} \cdot \sqrt{11}=2.1114 \ldots
$$

Therefore, it suffices to show that all ideals \mathfrak{a} of \mathcal{O}_{K} of norm $\leqslant 2$ are principal. Again $\operatorname{Nm}(\mathfrak{a})=\left[\mathcal{O}_{K}: \mathfrak{a}\right]=1$ if and only if $\mathfrak{a}=(1)$, which is principal.
If $\operatorname{Nm}(\mathfrak{a})=2$, then $(2) \subseteq \mathfrak{a}$, and $\mathfrak{a} /(2)$ is an ideal of index 2 of the factor ring $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}-X+3\right)$. Since $X^{2}-X+3=X^{2}+X+1$ in $\mathbb{F}_{2}[X]$ is irreducible, this factor ring is a field of order 4 and does not possess an ideal of index 2 . Thus there exists no ideal of \mathcal{O}_{K} of norm 2 , and we are done.
(b) See Example 12.6.4 in [1]. To factor (2) and (3), instead of using the Legendre symbol, one can do the following: We have $\mathcal{O}_{K} /(2) \cong \mathbb{F}_{2}[X] /\left(X^{2}\right)$ with (X) the only prime ideal and hence $(2)=(2, \sqrt{-14})^{2}$. Similarly, we have $\mathcal{O}_{K} /(3) \cong$ $\mathbb{F}_{3}[X] /\left(X^{2}+2\right)$ which has the prime ideals $(1-X)$ and $(1+X)$. Hence $(3)=$ $(3,1+\sqrt{-14}) \cdot(3,1-\sqrt{-14})$.
(c) See Example 12.6 .8 in [1]. To factor (3), instead of using the theorem from the reference, we calculate it manually: We have $\mathcal{O}_{K} /(3) \cong \mathbb{F}_{3}[X] /\left(X^{3}+X+1\right)$, where $(X-1)\left(X^{2}+X-1\right) \equiv X^{3}+X+1 \bmod 3$ is the factorization in $\mathbb{F}_{3}[X]$. Then $\overline{\mathfrak{p}}_{1}:=(X-1)$ and $\overline{\mathfrak{p}}_{2}:=\left(X^{2}+X-1\right)$ are prime and their product is 0 . Hence $(3)=(3, \theta-1) \cdot\left(3, \theta^{2}+\theta-1\right)$ is the prime factorization.
4. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_{K} and $m \geqslant 1$ an integer such that $\mathfrak{a}^{m}=(\alpha)$. Let L / K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}{ }^{m}=\alpha$. Show that $\mathfrak{a} \mathcal{O}_{L}=\sqrt[m]{\alpha} \mathcal{O}_{L}$.
(b) Show that there is a finite field extension L / K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_{K} the ideal $\mathfrak{a} \mathcal{O}_{L}$ is principal.

Solution:

(a) Since $\mathfrak{a}^{m}=\alpha \mathcal{O}_{K}$, it follows that $\left(\mathfrak{a} \mathcal{O}_{L}\right)^{m}=\mathfrak{a}^{m} \mathcal{O}_{L}=\alpha \mathcal{O}_{L}=\sqrt[m]{\alpha}{ }^{m} \mathcal{O}_{L}=\left(\sqrt[m]{\alpha} \mathcal{O}_{L}\right)^{m}$. Unique factorization of fractional ideals in L now implies that $\mathfrak{a} \mathcal{O}_{L}=\sqrt[m]{\alpha} \mathcal{O}_{L}$.
(b) Let h be the class number of K and let $\mathfrak{a}_{1}, \ldots, \mathfrak{a}_{h}$ denote a system of representatives of the elements of the class group. For each i choose $\alpha_{i} \in K^{\times}$such that $\mathfrak{a}_{i}^{h}=\left(\alpha_{i}\right)$ and an element $\sqrt[h]{\alpha_{i}}{ }^{h} \in \bar{K}$ such that $\sqrt[h]{\alpha_{i}}{ }^{h}=\alpha_{i}$. Set $L:=K\left(\sqrt[h]{\alpha_{1}}, \ldots, \sqrt[h]{\alpha_{h}}\right) \subset \bar{K}$. Then for any fractional ideal \mathfrak{a} of \mathcal{O}_{K} we have $\mathfrak{a}=\alpha \mathfrak{a}_{j}$ for some $\alpha \in K^{\times}$and some j; hence by (a) we have $\mathfrak{a} \mathcal{O}_{L}=\alpha \mathfrak{a}_{j} \mathcal{O}_{L}=\alpha \sqrt[h]{\alpha_{i}} \mathcal{O}_{L}$, which is a principal ideal.
5. Let p be a prime with $p \equiv 3 \bmod 4$. It is known that the class number of $K:=\mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$
\left|a^{2}-p b^{2}\right|=2
$$

Hint: Show that $(2,1+\sqrt{p})=(2,1+\sqrt{p})^{\left|\mathrm{Cl}\left(\mathcal{O}_{K}\right)\right|} \cdot \mathfrak{a}$ for a principal ideal \mathfrak{a}.
Solution: See http://people.math.carleton.ca/~williams/ant/ch12-solns/ch12-qu28.pdf.
For the fact that the class number of K is odd, see Brown [2].

References

[1] S. Alaca, K. S. Williams, Introductory to Algebraic Number Theory. Cambridge University Press. 2004.
[2] E. Brown. Class numbers of real quadratic number fields. Trans. Amer. Math. Soc., 190:99-107, 1974.

