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Solutions 3

LATTICES AND MINKOWSKI THEORY

*1. Show Minkowski’s second theorem about successive minima: Let I' be a complete
lattice in a euclidean vector space (V,( , )) of finite dimension n. The successive
minima A1, ..., A\, of I' are defined iteratively by choosing for any 1 < ¢ < n an
element v; € I' \ @3;11 R~; of minimal length A; := ||7||. Then

27’L
— vol(R"/T) < Ay--- A, -vol(B) < 2"vol(R"/T),
n!

where B is the closed ball of radius 1.

Solution: See Theorem 6.3.3 in
https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.

2. Show Lagrange’s four square theorem: Every nonnegative integer n can be written
as the sum of four squares.

(a) Show that if m and n are sums of four squares, then so is mn.
Hint: Use the reduced norm on the ring of quaternions Z & Zi & Zj & Zk.

(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers a, § such that o? + 3% = —1mod p.

Hint: Consider the intersection of the sets

S::{a2modp’0<a<§} and S'::{—l—BQmodp‘O<6<g}.

(d) For any such «, 8 show that
I''={a=(a,...,a4) € Z"| a1 = aas+Basmod(p) and az = Baz—aas mod(p)}
contains a nonzero point @ in the open ball of radius /2p in R*.

(e) Show that ||al|> = p and conclude.

Solution: See
https://concretenonsense.wordpress.com/2009/02/10/1lagranges-four-square-theorem/.

3. (a) Show that the number fields Q(v/11) and Q(v/—11) have class number 1.
(b) Show that the class group of Q(v/—14)) is cyclic of order 4.


https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf
https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/

(c) Show that f:= X3+ X + 1 € Q[X] is irreducible and that the cubic number field
Q(#) with f(#) = 0 has class number 1.

Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.

(a) Case K := Q(+/11): Since 11 = 3mod 4, we have O = Z[V11] = Z[X]/(X?—11)
and disc(Og) = 4 - 11 = 44. Since 11 > 0, the field is real quadratic with r = 2
and s = 0. By a proposition from the lecture, every ideal class in C1(O) contains
an ideal a C Ok with

Nm(a) < (i)s\/|disc(01{)| = V44 = 6.6332...

Therefore, it suffices to show that all ideals a of O of norm < 6 are principal.
Recall that for any non-zero ideal a C Ox we have Nm(a) = [Ok : a]. In particular
Nm(a) = 1 if and only if a = (1), which is principal. Moreover, any prime divisor
pla satisfies Nm(p)| Nm(a). As any non-zero ideal is a product of prime ideals, it
thus suffices to show that every prime ideal p of Ok of norm < 6 is principal. For
any such p, the norm is the order of the residue field and therefore a prime power.
If Nm(p) = 2, then (2) C p, and p/(2) is an ideal of index 2 of the factor ring
Ok /(2) = Fy[X]/(X? +1) = F5[X]/(1 + X)2. Thus p/(2) corresponds to the
unique maximal ideal (1 + X), and so p = (2,1 + +/11). It remains to show that
p = (a) for some a = a + by/11 € Ok. Any such a must satisfy |a? — 11%| =
| Nmg/g(a)] = Nm((a)) = 2. A little experimentation shows that the equality
la® — 11b%| = 2 holds for o := 3 ++/11. For this we then in fact have Nm((«)) = 2
and hence (o) = p. Thus the only ideal of O of norm 2 is principal.

If Nm(p) = 3, then likewise p/(3) is an ideal of index 3 of Ok /(3) = F3[X]/(X2+1).
But since X2 + 1 is irreducible in F3[X], this factor ring is a field of order 9 and
does not possess an ideal of index 3. Thus there exists no ideal of Ok of norm 3.
If Nm(p) = 4, then (4) C p. For p prime this implies that (2) C p, which by
comparing indices implies that (2) = p. But we have seen above that Og/(2) is
not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of norm 4.
If Nm(p) = 5, then likewise p/(5) is an ideal of index 5 of Ok /(5) = F5[X]/(X? — 1)
=F5[X]/((1 +X)(1 — X)). Thus p/(5) corresponds to the maximal ideal (1 £ X)
and so p = (5,1£+/11) for some choice of sign. It remains to show that p = («) for
some a = a + byv/11 € Ok. Any such o must satisfy |a? — 116?| = | Nmp/g(a)| =
Nm((a)) = 5. A little experimentation shows that the equality |a? — 11%| = 2
holds for v := 4 ¥ /11 =5 — (1 £ V/11) € p. For this we then have Nm((a)) = 5,
and comparing indices shows that (a) = p. Thus every ideal of Ok of norm 5 is
principal.

Finally, there is no prime ideal with Nm(p) = 6, because 6 is not a prime power.

Case K := Q(v/—11): Since —11 = 1mod4, we have O = Z[HT‘/_TI] =
Z[X]/(X? — X + 3) and disc(Og) = —11. Since Q(v/—11) does not have any
embeddings into R, we have r = 0 and s = 1. By a proposition from the lecture,
every ideal class in Cl(Of) contains an ideal a C O with

Nm(a) < <2) |disc(Ok)| = z\/ﬁ = 2.1114...
m e
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Therefore, it suffices to show that all ideals a of Ok of norm < 2 are principal.
Again Nm(a) = [Ok : a] = 1 if and only if a = (1), which is principal.

If Nm(a) =2, then (2) C a, and a/(2) is an ideal of index 2 of the factor ring
Ok/(2) = Fa[X]/(X? - X +3). Since X? — X +3 = X2+ X + 1 in Fy[X] is
irreducible, this factor ring is a field of order 4 and does not possess an ideal of
index 2. Thus there exists no ideal of Ok of norm 2, and we are done.

(b) See Example 12.6.4 in [l]. To factor (2) and (3), instead of using the Legen-
dre symbol, one can do the following: We have O /(2) = F5[X]/(X?) with (X)
the only prime ideal and hence (2) = (2,v/—14)2. Similarly, we have Ok /(3) =
F3[X]/(X? + 2) which has the prime ideals (1 — X) and (1 + X). Hence (3) =
(3,14 /—14) - (3,1 — /—14).

(c) See Example 12.6.8 in [I]. To factor (3), instead of using the theorem from the
reference, we calculate it manually: We have O /(3) = F3[X]/(X3+ X +1), where
(X —1)(X?2+ X —1) = X3+ X + 1mod3 is the factorization in F3[X]. Then
p1:= (X —1) and pp := (X? + X — 1) are prime and their product is 0. Hence
(3)=(3,0—1)-(3,0%+60 —1) is the prime factorization.

4. (a) Let K be a number field. Let a be a fractional ideal of Ok and m > 1 an integer
such that a™ = («). Let L/K be a finite extension containing an element %/« such
that /a™ = «. Show that aOp = Va Op.

(b) Show that there is a finite field extension L/K such that for every fractional ideal
a of O the ideal aQy, is principal.

Solution:
(a) Since a™ = aQOk, it follows that (aOp)™ = a™ O, = a0, = Ya™ O = (VaOr)™.
Unique factorization of fractional ideals in L now implies that aOp = /a Oy,

(b) Let h be the class number of K and let ay, ..., a; denote a system of representatives
of the elements of the class group. For each i choose a; € K* such that a? = ()
and an element /a; * € K such that #/a; " = a. Set L := KQ/oq,...,%ay) C K.
Then for any fractional ideal a of Ok we have a = aa; for some o € K* and some j;
hence by (a) we have aOr, = aa;Or, = a{/a; Or, which is a principal ideal.

5. Let p be a prime with p = 3mod4. It is known that the class number of K := Q(/p)
is odd. Use this fact to prove that there exist a,b € Z such that

la? — pb?| = 2.

Hint: Show that (2,1 + /p) = (2,1 + /p) NPl . q for a principal ideal a.

Solution: See
http://people.math.carleton.ca/~williams/ant/ch12-solns/ch12-qu28.pdf.

For the fact that the class number of K is odd, see Brown [2].


http://people.math.carleton.ca/~williams/ant/ch12-solns/ch12-qu28.pdf
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