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Prof. Richard Pink

Solutions 3
Lattices and Minkowski Theory

*1. Show Minkowski’s second theorem about successive minima: Let Γ be a complete
lattice in a euclidean vector space (V, ⟨ , ⟩) of finite dimension n. The successive
minima λ1, . . . , λn of Γ are defined iteratively by choosing for any 1 ⩽ i ⩽ n an
element γi ∈ Γ∖

⊕i−1
j=1Rγj of minimal length λi := ∥γ∥. Then

2n

n!
vol(Rn/Γ) ⩽ λ1 · · ·λn · vol(B) ⩽ 2n vol(Rn/Γ),

where B is the closed ball of radius 1.
Solution: See Theorem 6.3.3 in
https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.

2. Show Lagrange’s four square theorem: Every nonnegative integer n can be written
as the sum of four squares.

(a) Show that if m and n are sums of four squares, then so is mn.
Hint: Use the reduced norm on the ring of quaternions Z⊕ Zi⊕ Zj ⊕ Zk.

(b) Reduce the theorem to the case that n is a prime number p.
(c) Find integers α, β such that α2 + β2 ≡ −1mod p.

Hint: Consider the intersection of the sets

S :=
{
α2mod p

∣∣∣ 0 ⩽ α <
p

2

}
and S ′ :=

{
−1− β2mod p

∣∣∣ 0 ⩽ β <
p

2

}
.

(d) For any such α, β show that

Γ :=
{
a = (a1, . . . , a4) ∈ Z4

∣∣ a1 ≡ αa3+βa4mod(p) and a2 ≡ βa3−αa4mod(p)
}

contains a nonzero point a in the open ball of radius
√
2p in R4.

(e) Show that ∥a∥2 = p and conclude.

Solution: See
https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/.

3. (a) Show that the number fields Q(
√
11) and Q(

√
−11) have class number 1.

(b) Show that the class group of Q(
√
−14)) is cyclic of order 4.
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(c) Show that f := X3 +X + 1 ∈ Q[X] is irreducible and that the cubic number field
Q(θ) with f(θ) = 0 has class number 1.

Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.

(a) Case K := Q(
√
11): Since 11 ≡ 3mod 4, we have OK = Z[

√
11] ∼= Z[X]/(X2−11)

and disc(OK) = 4 · 11 = 44. Since 11 > 0, the field is real quadratic with r = 2
and s = 0. By a proposition from the lecture, every ideal class in Cl(OK) contains
an ideal a ⊆ OK with

Nm(a) ⩽
(
2

π

)s√
| disc(OK)| =

√
44 = 6.6332...

Therefore, it suffices to show that all ideals a of OK of norm ⩽ 6 are principal.
Recall that for any non-zero ideal a ⊂ OK we have Nm(a) = [OK : a]. In particular
Nm(a) = 1 if and only if a = (1), which is principal. Moreover, any prime divisor
p|a satisfies Nm(p)|Nm(a). As any non-zero ideal is a product of prime ideals, it
thus suffices to show that every prime ideal p of OK of norm ⩽ 6 is principal. For
any such p, the norm is the order of the residue field and therefore a prime power.
If Nm(p) = 2, then (2) ⊆ p, and p/(2) is an ideal of index 2 of the factor ring
OK/(2) ∼= F2[X]/(X2 + 1) = F2[X]/(1 + X)2. Thus p/(2) corresponds to the
unique maximal ideal (1 +X), and so p = (2, 1 +

√
11). It remains to show that

p = (α) for some α = a + b
√
11 ∈ OK . Any such α must satisfy |a2 − 11b2| =

|NmK/Q(α)| = Nm((α)) = 2. A little experimentation shows that the equality
|a2 − 11b2| = 2 holds for α := 3+

√
11. For this we then in fact have Nm((α)) = 2

and hence (α) = p. Thus the only ideal of OK of norm 2 is principal.
If Nm(p) = 3, then likewise p/(3) is an ideal of index 3 of OK/(3) ∼= F3[X]/(X2+1).
But since X2 + 1 is irreducible in F3[X], this factor ring is a field of order 9 and
does not possess an ideal of index 3. Thus there exists no ideal of OK of norm 3.
If Nm(p) = 4, then (4) ⊆ p. For p prime this implies that (2) ⊂ p, which by
comparing indices implies that (2) = p. But we have seen above that OK/(2) is
not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of norm 4.
If Nm(p) = 5, then likewise p/(5) is an ideal of index 5 of OK/(5) ∼= F5[X]/(X2 − 1)
= F5[X]/((1 +X)(1−X)). Thus p/(5) corresponds to the maximal ideal (1±X)
and so p = (5, 1±

√
11) for some choice of sign. It remains to show that p = (α) for

some α = a+ b
√
11 ∈ OK . Any such α must satisfy |a2 − 11b2| = |NmK/Q(α)| =

Nm((α)) = 5. A little experimentation shows that the equality |a2 − 11b2| = 2
holds for α := 4∓

√
11 = 5− (1±

√
11) ∈ p. For this we then have Nm((α)) = 5,

and comparing indices shows that (α) = p. Thus every ideal of OK of norm 5 is
principal.
Finally, there is no prime ideal with Nm(p) = 6, because 6 is not a prime power.
Case K := Q(

√
−11): Since −11 ≡ 1mod 4, we have OK = Z[1+

√
−11
2 ] ∼=

Z[X]/(X2 − X + 3) and disc(OK) = −11. Since Q(
√
−11) does not have any

embeddings into R, we have r = 0 and s = 1. By a proposition from the lecture,
every ideal class in Cl(OK) contains an ideal a ⊆ OK with

Nm(a) ⩽
(
2

π

)s√
| disc(OK)| =

2

π
·
√
11 = 2.1114...
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Therefore, it suffices to show that all ideals a of OK of norm ⩽ 2 are principal.
Again Nm(a) = [OK : a] = 1 if and only if a = (1), which is principal.
If Nm(a) = 2, then (2) ⊆ a, and a/(2) is an ideal of index 2 of the factor ring
OK/(2) ∼= F2[X]/(X2 − X + 3). Since X2 − X + 3 = X2 + X + 1 in F2[X] is
irreducible, this factor ring is a field of order 4 and does not possess an ideal of
index 2. Thus there exists no ideal of OK of norm 2, and we are done.

(b) See Example 12.6.4 in [1]. To factor (2) and (3), instead of using the Legen-
dre symbol, one can do the following: We have OK/(2) ∼= F2[X]/(X2) with (X)
the only prime ideal and hence (2) = (2,

√
−14)2. Similarly, we have OK/(3) ∼=

F3[X]/(X2 + 2) which has the prime ideals (1 − X) and (1 + X). Hence (3) =
(3, 1 +

√
−14) · (3, 1−

√
−14).

(c) See Example 12.6.8 in [1]. To factor (3), instead of using the theorem from the
reference, we calculate it manually: We have OK/(3) ∼= F3[X]/(X3+X+1), where
(X − 1)(X2 + X − 1) ≡ X3 + X + 1mod 3 is the factorization in F3[X]. Then
p̄1 := (X − 1) and p̄2 := (X2 + X − 1) are prime and their product is 0. Hence
(3) = (3, θ − 1) · (3, θ2 + θ − 1) is the prime factorization.

4. (a) Let K be a number field. Let a be a fractional ideal of OK and m ⩾ 1 an integer
such that am = (α). Let L/K be a finite extension containing an element m

√
α such

that m
√
αm = α. Show that aOL = m

√
αOL.

(b) Show that there is a finite field extension L/K such that for every fractional ideal
a of OK the ideal aOL is principal.

Solution:

(a) Since am = αOK , it follows that (aOL)
m = amOL = αOL = m

√
αmOL = (m

√
αOL)

m.
Unique factorization of fractional ideals in L now implies that aOL = m

√
αOL.

(b) Let h be the class number of K and let a1, . . . , ah denote a system of representatives
of the elements of the class group. For each i choose αi ∈ K× such that ahi = (αi)
and an element h

√
αi

h ∈ K̄ such that h
√
αi

h = αi. Set L := K(h
√
α1 , . . . , h

√
αh ) ⊂ K̄.

Then for any fractional ideal a of OK we have a = αaj for some α ∈ K× and some j;
hence by (a) we have aOL = αajOL = αh

√
αiOL, which is a principal ideal.

5. Let p be a prime with p ≡ 3mod 4. It is known that the class number of K := Q(
√
p)

is odd. Use this fact to prove that there exist a, b ∈ Z such that

|a2 − pb2| = 2.

Hint: Show that (2, 1 +
√
p) = (2, 1 +

√
p)|Cl(OK)| · a for a principal ideal a.

Solution: See
http://people.math.carleton.ca/~williams/ant/ch12-solns/ch12-qu28.pdf.
For the fact that the class number of K is odd, see Brown [2].
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