Solutions 3

LATTICES AND MINKOWSKI THEORY

*1. Show Minkowski's second theorem about successive minima: Let Γ be a complete lattice in a euclidean vector space (V, \langle , \rangle) of finite dimension n. The successive minima $\lambda_1, \ldots, \lambda_n$ of Γ are defined iteratively by choosing for any $1 \leq i \leq n$ an element $\gamma_i \in \Gamma \setminus \bigoplus_{j=1}^{i-1} \mathbb{R}\gamma_j$ of minimal length $\lambda_i := \|\gamma\|$. Then

$$\frac{2^n}{n!}\operatorname{vol}(\mathbb{R}^n/\Gamma) \leqslant \lambda_1 \cdots \lambda_n \cdot \operatorname{vol}(B) \leqslant 2^n \operatorname{vol}(\mathbb{R}^n/\Gamma),$$

where B is the closed ball of radius 1.

```
Solution: See Theorem 6.3.3 in https://www.math.leidenuniv.nl/~evertse/Minkowski.pdf.
```

- 2. Show Lagrange's four square theorem: Every nonnegative integer n can be written as the sum of four squares.
 - (a) Show that if m and n are sums of four squares, then so is mn. Hint: Use the reduced norm on the ring of quaternions $\mathbb{Z} \oplus \mathbb{Z}i \oplus \mathbb{Z}j \oplus \mathbb{Z}k$.
 - (b) Reduce the theorem to the case that n is a prime number p.

(c) Find integers α , β such that $\alpha^2 + \beta^2 \equiv -1 \mod p$. *Hint:* Consider the intersection of the sets

$$S := \left\{ \alpha^2 \mod p \mid 0 \leqslant \alpha < \frac{p}{2} \right\} \quad \text{and} \quad S' := \left\{ -1 - \beta^2 \mod p \mid 0 \leqslant \beta < \frac{p}{2} \right\}.$$

(d) For any such α , β show that

$$\Gamma := \left\{ a = (a_1, \dots, a_4) \in \mathbb{Z}^4 \mid a_1 \equiv \alpha a_3 + \beta a_4 \operatorname{mod}(p) \text{ and } a_2 \equiv \beta a_3 - \alpha a_4 \operatorname{mod}(p) \right\}$$

contains a nonzero point a in the open ball of radius $\sqrt{2p}$ in \mathbb{R}^4 .

(e) Show that $||a||^2 = p$ and conclude.

Solution: See

https://concretenonsense.wordpress.com/2009/02/10/lagranges-four-square-theorem/.

- 3. (a) Show that the number fields $\mathbb{Q}(\sqrt{11})$ and $\mathbb{Q}(\sqrt{-11})$ have class number 1.
 - (b) Show that the class group of $\mathbb{Q}(\sqrt{-14})$ is cyclic of order 4.

(c) Show that $f := X^3 + X + 1 \in \mathbb{Q}[X]$ is irreducible and that the cubic number field $\mathbb{Q}(\theta)$ with $f(\theta) = 0$ has class number 1.

Solution: See also Chapter 12.6 in Alaca, Williams [1] to compute the class group.

(a) Case $K := \mathbb{Q}(\sqrt{11})$: Since $11 \equiv 3 \mod 4$, we have $\mathcal{O}_K = \mathbb{Z}[\sqrt{11}] \cong \mathbb{Z}[X]/(X^2 - 11)$ and disc $(\mathcal{O}_K) = 4 \cdot 11 = 44$. Since 11 > 0, the field is real quadratic with r = 2and s = 0. By a proposition from the lecture, every ideal class in $\operatorname{Cl}(\mathcal{O}_K)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ with

$$\operatorname{Nm}(\mathfrak{a}) \leqslant \left(\frac{2}{\pi}\right)^s \sqrt{|\operatorname{disc}(\mathcal{O}_K)|} = \sqrt{44} = 6.6332...$$

Therefore, it suffices to show that all ideals \mathfrak{a} of \mathcal{O}_K of norm ≤ 6 are principal. Recall that for any non-zero ideal $\mathfrak{a} \subset \mathcal{O}_K$ we have $\operatorname{Nm}(\mathfrak{a}) = [\mathcal{O}_K : \mathfrak{a}]$. In particular $Nm(\mathfrak{a}) = 1$ if and only if $\mathfrak{a} = (1)$, which is principal. Moreover, any prime divisor $\mathfrak{p}|\mathfrak{a}$ satisfies $\operatorname{Nm}(\mathfrak{p})|\operatorname{Nm}(\mathfrak{a})$. As any non-zero ideal is a product of prime ideals, it thus suffices to show that every prime ideal \mathfrak{p} of \mathcal{O}_K of norm ≤ 6 is principal. For any such \mathfrak{p} , the norm is the order of the residue field and therefore a prime power. If $Nm(\mathfrak{p}) = 2$, then $(2) \subseteq \mathfrak{p}$, and $\mathfrak{p}/(2)$ is an ideal of index 2 of the factor ring $\mathcal{O}_K/(2) \cong \mathbb{F}_2[X]/(X^2+1) = \mathbb{F}_2[X]/(1+X)^2$. Thus $\mathfrak{p}/(2)$ corresponds to the unique maximal ideal (1 + X), and so $\mathfrak{p} = (2, 1 + \sqrt{11})$. It remains to show that $\mathfrak{p} = (\alpha)$ for some $\alpha = a + b\sqrt{11} \in \mathcal{O}_K$. Any such α must satisfy $|a^2 - 11b^2| = b^2$ $|\operatorname{Nm}_{K/\mathbb{Q}}(\alpha)| = \operatorname{Nm}(\alpha) = 2$. A little experimentation shows that the equality $|a^2 - 11b^2| = 2$ holds for $\alpha := 3 + \sqrt{11}$. For this we then in fact have Nm $((\alpha)) = 2$ and hence $(\alpha) = \mathfrak{p}$. Thus the only ideal of \mathcal{O}_K of norm 2 is principal. If $\operatorname{Nm}(\mathfrak{p}) = 3$, then likewise $\mathfrak{p}/(3)$ is an ideal of index 3 of $\mathcal{O}_K/(3) \cong \mathbb{F}_3[X]/(X^2+1)$. But since $X^2 + 1$ is irreducible in $\mathbb{F}_3[X]$, this factor ring is a field of order 9 and does not possess an ideal of index 3. Thus there exists no ideal of \mathcal{O}_K of norm 3. If $Nm(\mathfrak{p}) = 4$, then $(4) \subseteq \mathfrak{p}$. For \mathfrak{p} prime this implies that $(2) \subset \mathfrak{p}$, which by comparing indices implies that $(2) = \mathfrak{p}$. But we have seen above that $\mathcal{O}_K/(2)$ is not a field; hence (2) is not a prime ideal. Thus there is no prime ideal of norm 4. If $\operatorname{Nm}(\mathfrak{p}) = 5$, then likewise $\mathfrak{p}/(5)$ is an ideal of index 5 of $\mathcal{O}_K/(5) \cong \mathbb{F}_5[X]/(X^2-1)$ $=\mathbb{F}_{5}[X]/((1+X)(1-X))$. Thus $\mathfrak{p}/(5)$ corresponds to the maximal ideal $(1\pm X)$ and so $\mathfrak{p} = (5, 1 \pm \sqrt{11})$ for some choice of sign. It remains to show that $\mathfrak{p} = (\alpha)$ for some $\alpha = a + b\sqrt{11} \in \mathcal{O}_K$. Any such α must satisfy $|a^2 - 11b^2| = |\operatorname{Nm}_{K/\mathbb{Q}}(\alpha)| =$

 $\operatorname{Nm}((\alpha)) = 5$. A little experimentation shows that the equality $|a^2 - 11b^2| = 2$ holds for $\alpha := 4 \mp \sqrt{11} = 5 - (1 \pm \sqrt{11}) \in \mathfrak{p}$. For this we then have $\operatorname{Nm}((\alpha)) = 5$, and comparing indices shows that $(\alpha) = \mathfrak{p}$. Thus every ideal of \mathcal{O}_K of norm 5 is principal.

Finally, there is no prime ideal with Nm(p) = 6, because 6 is not a prime power.

Case $K := \mathbb{Q}(\sqrt{-11})$: Since $-11 \equiv 1 \mod 4$, we have $\mathcal{O}_K = \mathbb{Z}[\frac{1+\sqrt{-11}}{2}] \cong \mathbb{Z}[X]/(X^2 - X + 3)$ and disc $(\mathcal{O}_K) = -11$. Since $\mathbb{Q}(\sqrt{-11})$ does not have any embeddings into \mathbb{R} , we have r = 0 and s = 1. By a proposition from the lecture, every ideal class in $\operatorname{Cl}(\mathcal{O}_K)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_K$ with

$$\operatorname{Nm}(\mathfrak{a}) \leqslant \left(\frac{2}{\pi}\right)^s \sqrt{|\operatorname{disc}(\mathcal{O}_K)|} = \frac{2}{\pi} \cdot \sqrt{11} = 2.1114...$$

Therefore, it suffices to show that all ideals \mathfrak{a} of \mathcal{O}_K of norm ≤ 2 are principal. Again $\operatorname{Nm}(\mathfrak{a}) = [\mathcal{O}_K : \mathfrak{a}] = 1$ if and only if $\mathfrak{a} = (1)$, which is principal.

If $\operatorname{Nm}(\mathfrak{a}) = 2$, then $(2) \subseteq \mathfrak{a}$, and $\mathfrak{a}/(2)$ is an ideal of index 2 of the factor ring $\mathcal{O}_K/(2) \cong \mathbb{F}_2[X]/(X^2 - X + 3)$. Since $X^2 - X + 3 = X^2 + X + 1$ in $\mathbb{F}_2[X]$ is irreducible, this factor ring is a field of order 4 and does not possess an ideal of index 2. Thus there exists no ideal of \mathcal{O}_K of norm 2, and we are done.

- (b) See Example 12.6.4 in [1]. To factor (2) and (3), instead of using the Legendre symbol, one can do the following: We have $\mathcal{O}_K/(2) \cong \mathbb{F}_2[X]/(X^2)$ with (X) the only prime ideal and hence $(2) = (2, \sqrt{-14})^2$. Similarly, we have $\mathcal{O}_K/(3) \cong \mathbb{F}_3[X]/(X^2+2)$ which has the prime ideals (1-X) and (1+X). Hence $(3) = (3, 1+\sqrt{-14}) \cdot (3, 1-\sqrt{-14})$.
- (c) See Example 12.6.8 in [1]. To factor (3), instead of using the theorem from the reference, we calculate it manually: We have $\mathcal{O}_K/(3) \cong \mathbb{F}_3[X]/(X^3 + X + 1)$, where $(X 1)(X^2 + X 1) \equiv X^3 + X + 1 \mod 3$ is the factorization in $\mathbb{F}_3[X]$. Then $\bar{\mathfrak{p}}_1 := (X 1)$ and $\bar{\mathfrak{p}}_2 := (X^2 + X 1)$ are prime and their product is 0. Hence $(3) = (3, \theta 1) \cdot (3, \theta^2 + \theta 1)$ is the prime factorization.
- 4. (a) Let K be a number field. Let \mathfrak{a} be a fractional ideal of \mathcal{O}_K and $m \ge 1$ an integer such that $\mathfrak{a}^m = (\alpha)$. Let L/K be a finite extension containing an element $\sqrt[m]{\alpha}$ such that $\sqrt[m]{\alpha}^m = \alpha$. Show that $\mathfrak{a}\mathcal{O}_L = \sqrt[m]{\alpha}\mathcal{O}_L$.
 - (b) Show that there is a finite field extension L/K such that for every fractional ideal \mathfrak{a} of \mathcal{O}_K the ideal $\mathfrak{a}\mathcal{O}_L$ is principal.

Solution:

- (a) Since $\mathfrak{a}^m = \alpha \mathcal{O}_K$, it follows that $(\mathfrak{a}\mathcal{O}_L)^m = \mathfrak{a}^m \mathcal{O}_L = \alpha \mathcal{O}_L = \sqrt[m]{\alpha}^m \mathcal{O}_L = (\sqrt[m]{\alpha} \mathcal{O}_L)^m$. Unique factorization of fractional ideals in L now implies that $\mathfrak{a}\mathcal{O}_L = \sqrt[m]{\alpha} \mathcal{O}_L$.
- (b) Let *h* be the class number of *K* and let $\mathfrak{a}_1, \ldots, \mathfrak{a}_h$ denote a system of representatives of the elements of the class group. For each *i* choose $\alpha_i \in K^{\times}$ such that $\mathfrak{a}_i^h = (\alpha_i)$ and an element $\sqrt[h]{\alpha_i}^h \in \overline{K}$ such that $\sqrt[h]{\alpha_i}^h = \alpha_i$. Set $L := K(\sqrt[h]{\alpha_1}, \ldots, \sqrt[h]{\alpha_h}) \subset \overline{K}$. Then for any fractional ideal \mathfrak{a} of \mathcal{O}_K we have $\mathfrak{a} = \alpha \mathfrak{a}_j$ for some $\alpha \in K^{\times}$ and some *j*; hence by (a) we have $\mathfrak{a}\mathcal{O}_L = \alpha \mathfrak{a}_j\mathcal{O}_L = \alpha \sqrt[h]{\alpha_i}\mathcal{O}_L$, which is a principal ideal.
- 5. Let p be a prime with $p \equiv 3 \mod 4$. It is known that the class number of $K := \mathbb{Q}(\sqrt{p})$ is odd. Use this fact to prove that there exist $a, b \in \mathbb{Z}$ such that

$$|a^2 - pb^2| = 2.$$

Hint: Show that $(2, 1 + \sqrt{p}) = (2, 1 + \sqrt{p})^{|\operatorname{Cl}(\mathcal{O}_K)|} \cdot \mathfrak{a}$ for a principal ideal \mathfrak{a} .

Solution: See

http://people.math.carleton.ca/~williams/ant/ch12-solns/ch12-qu28.pdf.

For the fact that the class number of K is odd, see Brown [2].

References

- [1] S. ALACA, K. S. WILLIAMS, *Introductory to Algebraic Number Theory*. Cambridge University Press. 2004.
- [2] E. BROWN. Class numbers of real quadratic number fields. Trans. Amer. Math. Soc., 190:99–107, 1974.