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Solutions 4

LaTTICES, UNITS

1. Suppose that the equation y? = 2° — 2 has a solution with =,y € Z.

(
(b) Show that y is odd and that the two ideals (y & +/—2) of Ok are coprime.
(c) Prove that y + +/—2 is a 5-th power in Ok.

(d) Deduce a contradiction, proving that the equation has no integer solution.

a) Write down the ring of integers and the class number of K := Q(v/—2).
c

Solution: (a) Since —2 # 1mod 4, we have Ox = Z[v/—2] and disc(Og) = —8.
Furthermore, we have r = 0 and s = 1. To compute the class number of K, we
use Minkowski’s bound: Every ideal class in Cl(Og) contains an ideal a C Ok
with 5

Nm(a) < ;\/g =18...<2.

Since the only ideal in Ok with norm 1 is the unit ideal, it follows that the class
group is trivial and the class number is 1.

(b) Assume, for contradiction, that y is even. Then z° — 2 = y?> = 0mod 4. By
checking all cases in Z/4Z, the equation z° — 2 = 0 mod 4 has no solutions. We
obtain a contradiction and hence y is odd.

Next the ideal (y ++/—2) + (y — v/—2) contains the element 2,/—2 and hence its
square —8. But it also contains the integer (y +v/—2)(y — v/—2) = ¢* + 2, which
is odd, because y is odd. Thus it contains 1, and so the ideals (y + v/—2) and
(y — v/—2) are coprime.

(c) Since the class number is 1, the ring Ok is a unique factorization domain.
Since 2° = (y + v/—2)(y — v/—2), where the factors are coprime, it follows that
Y +v—2 = uca® for some a € Ok and some unit u € O). But here 0% = {£1}

has order 2, so we have u = v’ and hence y + /=2 = v’a® = (ua)?.

(d) By (c), we can write y +v/—2 = (a + by/—2)? for some a,b € Z. The binomial
expansion yields

y+vV=2=(a+b/=2)" = (0’ = 20a°0* + 20ab") + (5a'b — 20a°b° + 40°) V2.

Comparing coefficients shows that b(5a* — 20a*b* + 4b*) = 1. This implies that
b= 41 and hence 5a* — 20a® + 4 = b.



If b = 1, we have 5a* — 20a®? + 3 = 0. Thus a? is a rational root of the quadratic
polynomial 5X?2—20X +3. But this polynomial has discriminant (—20)%>—4-5-3 =
20 - 17, which is not a square in @, hence it does not possess any rational root.

If b = —1, we have 5a* — 20a? + 5 = 0. Dividing by 5, we obtain a* —4a? +1 = 0.
Thus a? is a rational root of the quadratic polynomial X? — 4X + 1. But this
polynomial has discriminant 12, which is not a square in @, hence it does not
possess any rational root.

In either case we have obtained a contradiction, proving that y? = ° — 2 has no
solutions in Z.

P.S.: Is there a direct proof that does not use algebraic number theory?

(a) A conein a real vector space is a subset that is invariant under multiplication
by R>?. Let C be a non-empty open convex cone in a finite dimensional real
vector space V. Prove that for any complete lattice I' C V' there exists a
point in I' N C'.

(b) Let K be a totally real number field, i.e., one with ¥ := Hom(K,C) =
Hom(K,R). Let T be any nonempty proper subset of ¥. Show that there
exists a unit € € Oy such that o(e) > 1 forall 0 € T and 0 < o(g) < 1 for
allo e ¥\ T.

Solution: (a) The definition of convexity implies that a subset C'is a convex cone
if and only if any linear combination of vectors in C' with coefficients in R*? and
not all zero again lies in C'.

As the given subset C' is open and non-empty, its measure is positive. Since any
proper linear subspace of V' has measure 0, we deduce that span(C') = V. Choose
a basis vq,...,v, € C of V. Choose a bounded subset ® C V with V =1+ &.
Choose ¢ > 0 such that ® C {>°"  xwv; | Vi« |2 < ¢} Write Y0 cv; =y + v
with vy € T'and v = Y | z;v; € . By the above characterization of convex cones

we deduce that .

Y= Z(C_Iz’)vi e C,

i=1
because ¢ — z; > 0 for all 2. Thus v € I'N C, as desired.

(b) By §5, Theorem 10 of the lecture, the subgroup I' := [ o j(Oj) is a complete

lattice in the vector space H := ker(Tr : (R*¥)* — R). Here (R*)" = R*, because
K is totally real. Consider the subset

C = {(a:U)UGZEH!VJET:xU>OandVU¢T:xU<O}.

As this is defined by homogeneous linear strict inequalities, it is an open cone
in H. It also contains the element (a,), with

_[IENT| foeT,
@ ST ifoéT.
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*3.

Thus C' is a non-empty open convex cone. By part (a) it follows that I' N C
contains the point (log(|o(g)|))sex for some € € Of. The choice of C' means that
lo(e)] > 1 for all 0 € T and 0 < |o(e)] < 1 for all ¢ € ¥\ T. The unit €2 then
satisfies the required condition.

(a) Let M be a bounded subset of a finite dimensional real vector space V.
Construct another bounded subset N C V' such that for any complete lattice
' CcV with V =T+ M, the subset ' " N generates I'.

(b) Deduce that, in principle, for every number field K one can effectively find
generators of Oj.

Solution: See for example [Borewicz-Shafarevic: Zahlentheorie (1966) Kapitel 11
§5.3]. Alternatively, here is an ad hoc solution for (a):

After replacing M by the convex closure of M + (—M) we may assume that
M is convex and centrally symmetric. Let n := dimg(V). We claim that then
N :=max{n, 2} M does the job.

First let I'" be the subgroup generated by I'N2M. For any v € I' write 3 =0 +m
withd € 'and m € M. Then 2m = y—26 € I'N2M C I"; hence v € 2I'+I". Since
~ was arbitrary, it follows that the composite homomorphism IV < I' — I'/2T"
is surjective. But I' is a lattice of rank n, and so I is a sublattice of some rank
n' < n. We thus have a surjective homomorphism Z" = I — I'/2T' = (Z/2Z)",
which implies that n’ = n.

We can therefore choose R-linearly independent elements ~q,...,v, € I' N 2M.
With I := @, Zv; we then have V = @ Ry, = I + ® for the subset
® := " [-3,3]%. Here the fact that o; € 2M and the assumption that M
is convex and centrally symmetric implies that [—%, %]% C M. Again by the
convexity of M we therefore have & C nM C N, and so V' =T + N. Finally
this implies that I' = I' + (I' N N). Since I'” is already generated by a subset of

I'n2M c ' N, it follows that I' is generated by I' N IV, as desired.

(a) For any number field K, any subring O C Ok of finite index is called an
order in Ok. For any such order prove that O is a subgroup of finite index
in O.
(b) Consider a squarefree integer d > 1 with d = 1 mod (4), so that K := Q(+/d)
1+x/3]
2

has the ring of integers Ok = Z| . Explain the precise relation between

Z[Vd]* and OF.

Solution: (a) Any ring homomorphism induces a homomorphism for the groups
of units. Thus the embedding O — Ok induces an embedding O* — O as
a subgroup. Next abbreviate m := [Ok : O]. Then mOk C O, so we have an
embedding O/mOk — Ok /mOk and hence a homomorphism of abelian groups
(O/mOk)* — (O /mOk)*. From this we deduce that O* is the kernel of the



composite homomorphism
Ox — (O /mOk)* — (O /mOk)™ /(O/mOk)™.

Since the target is a finite group, it follows that [O : O*] is finite.

1+Vd

(b) Here we have m = 2, and the minimal polynomial of w := “5*¢ over Z is

P(X) = (X — /)X - 15/d)) = X2 X 4 14,

Hence Ok = Z[X]/(P(X)).

Assume first that d = 1 mod (8). Then P(X) = X (X — 1) mod (2) and hence
construction in (a) implies that O* = Oy.

In the other case we have d = 5 mod (8). Then P(X) = X?+ X + 1 mod (2),
which is irreducible in Fy[X]. Thus O /20 = Fyo[X]/(X? + X + 1) is a field of
order 4, and so (Ok /20k)* is a cyclic group of order 3. From the construction in
(a) it follows that Z[v/d]* is a subgroup of O} of index dividing 3.

In either case this shows that Z[v/d]* is a subgroup of O} of index 1 or 3. The
case d = 1 mod (8) shows that the index 1 actually occurs, and the example of
d = 13 explained in the lecture course shows that the index 3 also occurs.

. Show that the equation a® — b?’d = —1 has infinitely many solutions (a, b) € Z?* for
d = 2, but none for d = 3. Explain the answer with algebraic number theory.

Solution: FElementary solution using renaissance arithmetic only: For d = 2
we find the solution (a,b) = (1,1) by trial and error. Given a solution (a, b) with
a,b > 0, a direct computation shows that (a®+ 6ab*, 3a*b+2b?) is another solution
with strictly larger coefficients. Thus there exist infinitely many solutions. For
d = 3 the equation implies that a? = 2 mod (3), which is not solvable in Z/3Z.

Explanation: Let K := Q(v/d) C R. In both cases d # 1mod4, hence we have
Ok = Z[Vd]. The norm of a general element is Nmy/g(a + bv/d) = a® — b?d.
Hence, we want to find all elements of norm —1. Any such element is a unit
in 0. By §5 Cor. 14 of the lecture, we have O = {£1} x £” for a fundamental
unit € > 1. Since Nmg g is multiplicative and Nmg,g(—1) = 1, we deduce that

2 327 _ {:i:gm | m & Z Odd} lf NmK/Q(E) = —1’
{a+bVd € Ok | ®~bd= -1} = { ' e =

Moreover, by §5 Prop. 15 we have ¢ = a + bv/d for a,b € Z>° with a? — b?d = +1
and @ minimal, which we can find by trial and error.

For d = 2 the element 1 + /2 is a fundamental unit with Nmg/g(1 + \/5) =
12 —1%2.2 = —1; hence we are in the first case.



For d = 3 the element 2 + /3 is a unit with Nmg (2 + V3) =22 -12.3=1.
On the other hand Ok has discriminant 4d = 12; hence by §5 Prop.17 of the

lecture the fundamental unit € > 1 satisfies € > \/EJFT VI2ZZ4 — /3 + /2. Since

(V3 ++v2)? > 2413 > 1, we cannot have 2 + /3 = £ with an integer k > 1, so
2++v3=cis already a fundamental unit. Therefore we are in the second case.



