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Prof. Richard Pink

Solutions 4
Lattices, Units

1. Suppose that the equation y2 = x5 − 2 has a solution with x, y ∈ Z.

(a) Write down the ring of integers and the class number of K := Q(
√
−2).

(b) Show that y is odd and that the two ideals (y ±
√
−2) of OK are coprime.

(c) Prove that y +
√
−2 is a 5-th power in OK .

(d) Deduce a contradiction, proving that the equation has no integer solution.

Solution: (a) Since −2 ̸≡ 1mod 4, we have OK = Z[
√
−2] and disc(OK) = −8.

Furthermore, we have r = 0 and s = 1. To compute the class number of K, we
use Minkowski’s bound: Every ideal class in Cl(OK) contains an ideal a ⊆ OK

with
Nm(a) ⩽ 2

π

√
8 = 1.8 . . . < 2.

Since the only ideal in OK with norm 1 is the unit ideal, it follows that the class
group is trivial and the class number is 1.
(b) Assume, for contradiction, that y is even. Then x5 − 2 = y2 ≡ 0mod 4. By
checking all cases in Z/4Z, the equation x5 − 2 ≡ 0mod 4 has no solutions. We
obtain a contradiction and hence y is odd.
Next the ideal (y +

√
−2) + (y −

√
−2) contains the element 2

√
−2 and hence its

square −8. But it also contains the integer (y +
√
−2)(y −

√
−2) = y2 + 2, which

is odd, because y is odd. Thus it contains 1, and so the ideals (y +
√
−2) and

(y −
√
−2) are coprime.

(c) Since the class number is 1, the ring OK is a unique factorization domain.
Since x5 = (y +

√
−2)(y −

√
−2), where the factors are coprime, it follows that

y +
√
−2 = uα5 for some α ∈ OK and some unit u ∈ O×

K . But here O×
K = {±1}

has order 2, so we have u = u5 and hence y +
√
−2 = u5α5 = (uα)5.

(d) By (c), we can write y+
√
−2 = (a+ b

√
−2)5 for some a, b ∈ Z. The binomial

expansion yields

y +
√
−2 = (a+ b

√
−2)5 =

(
a5 − 20a3b2 + 20ab4

)
+
(
5a4b− 20a2b3 + 4b5

)√
−2.

Comparing coefficients shows that b(5a4 − 20a2b2 + 4b4) = 1. This implies that
b = ±1 and hence 5a4 − 20a2 + 4 = b.
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If b = 1, we have 5a4 − 20a2 + 3 = 0. Thus a2 is a rational root of the quadratic
polynomial 5X2−20X+3. But this polynomial has discriminant (−20)2−4·5·3 =
20 · 17, which is not a square in Q, hence it does not possess any rational root.
If b = −1, we have 5a4 − 20a2 +5 = 0. Dividing by 5, we obtain a4 − 4a2 +1 = 0.
Thus a2 is a rational root of the quadratic polynomial X2 − 4X + 1. But this
polynomial has discriminant 12, which is not a square in Q, hence it does not
possess any rational root.
In either case we have obtained a contradiction, proving that y2 = x5 − 2 has no
solutions in Z.
P.S.: Is there a direct proof that does not use algebraic number theory?

2. (a) A cone in a real vector space is a subset that is invariant under multiplication
by R>0. Let C be a non-empty open convex cone in a finite dimensional real
vector space V . Prove that for any complete lattice Γ ⊂ V there exists a
point in Γ ∩ C.

(b) Let K be a totally real number field, i.e., one with Σ := Hom(K,C) =
Hom(K,R). Let T be any nonempty proper subset of Σ. Show that there
exists a unit ε ∈ O×

K such that σ(ε) > 1 for all σ ∈ T and 0 < σ(ε) < 1 for
all σ ∈ Σ∖ T .

Solution: (a) The definition of convexity implies that a subset C is a convex cone
if and only if any linear combination of vectors in C with coefficients in R⩾0 and
not all zero again lies in C.
As the given subset C is open and non-empty, its measure is positive. Since any
proper linear subspace of V has measure 0, we deduce that span(C) = V . Choose
a basis v1, . . . , vn ∈ C of V . Choose a bounded subset Φ ⊂ V with V = Γ + Φ.
Choose c > 0 such that Φ ⊂ {

∑n
i=1 xivi | ∀i : |xi| < c}. Write

∑n
i=1 cvi = γ + v

with γ ∈ Γ and v =
∑n

i=1 xivi ∈ Φ. By the above characterization of convex cones
we deduce that

γ =
n∑

i=1

(c− xi)vi ∈ C,

because c− xi > 0 for all i. Thus γ ∈ Γ ∩ C, as desired.
(b) By §5, Theorem 10 of the lecture, the subgroup Γ := l ◦ j(O×

K) is a complete
lattice in the vector space H := ker(Tr : (RΣ)+ → R). Here (RΣ)+ = RΣ, because
K is totally real. Consider the subset

C :=
{
(xσ)σ∈Σ ∈ H

∣∣ ∀σ ∈ T : xσ > 0 and ∀σ /∈ T : xσ < 0
}
.

As this is defined by homogeneous linear strict inequalities, it is an open cone
in H. It also contains the element (aσ)σ with

aσ :=

{
|Σ∖ T | if σ ∈ T ,
−|T | if σ ̸∈ T .
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Thus C is a non-empty open convex cone. By part (a) it follows that Γ ∩ C
contains the point (log(|σ(ε)|))σ∈Σ for some ε ∈ O×

K . The choice of C means that
|σ(ε)| > 1 for all σ ∈ T and 0 < |σ(ε)| < 1 for all σ ∈ Σ ∖ T . The unit ε2 then
satisfies the required condition.

*3. (a) Let M be a bounded subset of a finite dimensional real vector space V .
Construct another bounded subset N ⊂ V such that for any complete lattice
Γ ⊂ V with V = Γ +M , the subset Γ ∩N generates Γ.

(b) Deduce that, in principle, for every number field K one can effectively find
generators of O×

K .
Solution: See for example [Borewicz-Shafarevic: Zahlentheorie (1966) Kapitel II
§5.3]. Alternatively, here is an ad hoc solution for (a):
After replacing M by the convex closure of M + (−M) we may assume that
M is convex and centrally symmetric. Let n := dimR(V ). We claim that then
N := max{n, 2}M does the job.
First let Γ′ be the subgroup generated by Γ∩ 2M . For any γ ∈ Γ write γ

2
= δ+m

with δ ∈ Γ andm ∈ M . Then 2m = γ−2δ ∈ Γ∩2M ⊂ Γ′; hence γ ∈ 2Γ+Γ′. Since
γ was arbitrary, it follows that the composite homomorphism Γ′ ↪→ Γ ↠ Γ/2Γ
is surjective. But Γ is a lattice of rank n, and so Γ′ is a sublattice of some rank
n′ ⩽ n. We thus have a surjective homomorphism Zn′ ∼= Γ′ ↠ Γ/2Γ ∼= (Z/2Z)n,
which implies that n′ = n.
We can therefore choose R-linearly independent elements γ1, . . . , γn ∈ Γ ∩ 2M .
With Γ′′ :=

⊕n
i=1 Zγi we then have V =

⊕n
i=1Rγi = Γ′′ + Φ for the subset

Φ :=
∑n

i=1[−
1
2
, 1
2
]γi. Here the fact that γi ∈ 2M and the assumption that M

is convex and centrally symmetric implies that [−1
2
, 1
2
]γi ⊂ M . Again by the

convexity of M we therefore have Φ ⊂ nM ⊂ N , and so V = Γ′′ + N . Finally
this implies that Γ = Γ′′ + (Γ ∩N). Since Γ′′ is already generated by a subset of
Γ ∩ 2M ⊂ Γ ∩N , it follows that Γ is generated by Γ ∩N , as desired.

4. (a) For any number field K, any subring O ⊂ OK of finite index is called an
order in OK . For any such order prove that O× is a subgroup of finite index
in O×

K .
(b) Consider a squarefree integer d > 1 with d ≡ 1 mod (4), so that K := Q(

√
d)

has the ring of integers OK = Z[1+
√
d

2
]. Explain the precise relation between

Z[
√
d]× and O×

K .
Solution: (a) Any ring homomorphism induces a homomorphism for the groups
of units. Thus the embedding O ↪→ OK induces an embedding O× ↪→ O×

K as
a subgroup. Next abbreviate m := [OK : O]. Then mOK ⊂ O, so we have an
embedding O/mOK ↪→ OK/mOK and hence a homomorphism of abelian groups
(O/mOK)

× ↪→ (OK/mOK)
×. From this we deduce that O× is the kernel of the
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composite homomorphism

O×
K → (OK/mOK)

× ↠ (OK/mOK)
×/(O/mOK)

×.

Since the target is a finite group, it follows that [O×
K : O×] is finite.

(b) Here we have m = 2, and the minimal polynomial of ω := 1+
√
d

2
over Z is

P (X) := (X − 1+
√
d

2
)(X − 1−

√
d

2
)) = X2 −X + 1−d

4
.

Hence OK
∼= Z[X]/(P (X)).

Assume first that d ≡ 1 mod (8). Then P (X) ≡ X(X − 1) mod (2) and hence
OK/2OK

∼= F2[X]/(X(X − 1)) ∼= (F2)
2. Thus (OK/2OK)

× = 1, which by the
construction in (a) implies that O× = O×

K .
In the other case we have d ≡ 5 mod (8). Then P (X) ≡ X2 + X + 1 mod (2),
which is irreducible in F2[X]. Thus OK/2OK

∼= F2[X]/(X2 +X + 1) is a field of
order 4, and so (OK/2OK)

× is a cyclic group of order 3. From the construction in
(a) it follows that Z[

√
d]× is a subgroup of O×

K of index dividing 3.
In either case this shows that Z[

√
d]× is a subgroup of O×

K of index 1 or 3. The
case d ≡ 1 mod (8) shows that the index 1 actually occurs, and the example of
d = 13 explained in the lecture course shows that the index 3 also occurs.

5. Show that the equation a2− b2d = −1 has infinitely many solutions (a, b) ∈ Z2 for
d = 2, but none for d = 3. Explain the answer with algebraic number theory.
Solution: Elementary solution using renaissance arithmetic only: For d = 2
we find the solution (a, b) = (1, 1) by trial and error. Given a solution (a, b) with
a, b > 0, a direct computation shows that (a3+6ab2, 3a2b+2b2) is another solution
with strictly larger coefficients. Thus there exist infinitely many solutions. For
d = 3 the equation implies that a2 ≡ 2 mod (3), which is not solvable in Z/3Z.
Explanation: Let K := Q(

√
d) ⊂ R. In both cases d ̸≡ 1mod 4, hence we have

OK = Z[
√
d]. The norm of a general element is NmK/Q(a + b

√
d) = a2 − b2d.

Hence, we want to find all elements of norm −1. Any such element is a unit
in O×

K . By §5 Cor. 14 of the lecture, we have O×
K = {±1} × εZ for a fundamental

unit ε > 1. Since NmK/Q is multiplicative and NmK/Q(−1) = 1, we deduce that

{
a+b

√
d ∈ OK

∣∣ a2−b2d = −1
}

=

{
{±εm | m ∈ Z odd} if NmK/Q(ε) = −1,

∅ if NmK/Q(ε) = 1.

Moreover, by §5 Prop. 15 we have ε = a+ b
√
d for a, b ∈ Z>0 with a2 − b2d = ±1

and a minimal, which we can find by trial and error.
For d = 2 the element 1 +

√
2 is a fundamental unit with NmK/Q(1 +

√
2) =

12 − 12 · 2 = −1; hence we are in the first case.
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For d = 3 the element 2 +
√
3 is a unit with NmK/Q(2 +

√
3) = 22 − 12 · 3 = 1.

On the other hand OK has discriminant 4d = 12; hence by §5 Prop.17 of the
lecture the fundamental unit ε > 1 satisfies ε ⩾

√
12+

√
12−4

2
=

√
3 +

√
2. Since

(
√
3 +

√
2)2 > 2 +

√
3 > 1, we cannot have 2 +

√
3 = εk with an integer k > 1, so

2 +
√
3 = ε is already a fundamental unit. Therefore we are in the second case.

5


