D-MATH
Prof. Richard Pink

Solutions 4

Lattices, Units

1. Suppose that the equation $y^{2}=x^{5}-2$ has a solution with $x, y \in \mathbb{Z}$.
(a) Write down the ring of integers and the class number of $K:=\mathbb{Q}(\sqrt{-2})$.
(b) Show that y is odd and that the two ideals $(y \pm \sqrt{-2})$ of \mathcal{O}_{K} are coprime.
(c) Prove that $y+\sqrt{-2}$ is a 5 -th power in \mathcal{O}_{K}.
(d) Deduce a contradiction, proving that the equation has no integer solution.

Solution: (a) Since $-2 \not \equiv 1 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-2}]$ and $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-8$. Furthermore, we have $r=0$ and $s=1$. To compute the class number of K, we use Minkowski's bound: Every ideal class in $\operatorname{Cl}\left(\mathcal{O}_{K}\right)$ contains an ideal $\mathfrak{a} \subseteq \mathcal{O}_{K}$ with

$$
\operatorname{Nm}(\mathfrak{a}) \leqslant \frac{2}{\pi} \sqrt{8}=1.8 \ldots<2
$$

Since the only ideal in \mathcal{O}_{K} with norm 1 is the unit ideal, it follows that the class group is trivial and the class number is 1 .
(b) Assume, for contradiction, that y is even. Then $x^{5}-2=y^{2} \equiv 0 \bmod 4$. By checking all cases in $\mathbb{Z} / 4 \mathbb{Z}$, the equation $x^{5}-2 \equiv 0 \bmod 4$ has no solutions. We obtain a contradiction and hence y is odd.
Next the ideal $(y+\sqrt{-2})+(y-\sqrt{-2})$ contains the element $2 \sqrt{-2}$ and hence its square -8 . But it also contains the integer $(y+\sqrt{-2})(y-\sqrt{-2})=y^{2}+2$, which is odd, because y is odd. Thus it contains 1 , and so the ideals $(y+\sqrt{-2})$ and $(y-\sqrt{-2})$ are coprime.
(c) Since the class number is 1 , the ring \mathcal{O}_{K} is a unique factorization domain. Since $x^{5}=(y+\sqrt{-2})(y-\sqrt{-2})$, where the factors are coprime, it follows that $y+\sqrt{-2}=u \alpha^{5}$ for some $\alpha \in \mathcal{O}_{K}$ and some unit $u \in \mathcal{O}_{K}^{\times}$. But here $\mathcal{O}_{K}^{\times}=\{ \pm 1\}$ has order 2, so we have $u=u^{5}$ and hence $y+\sqrt{-2}=u^{5} \alpha^{5}=(u \alpha)^{5}$.
(d) By (c), we can write $y+\sqrt{-2}=(a+b \sqrt{-2})^{5}$ for some $a, b \in \mathbb{Z}$. The binomial expansion yields

$$
y+\sqrt{-2}=(a+b \sqrt{-2})^{5}=\left(a^{5}-20 a^{3} b^{2}+20 a b^{4}\right)+\left(5 a^{4} b-20 a^{2} b^{3}+4 b^{5}\right) \sqrt{-2} .
$$

Comparing coefficients shows that $b\left(5 a^{4}-20 a^{2} b^{2}+4 b^{4}\right)=1$. This implies that $b= \pm 1$ and hence $5 a^{4}-20 a^{2}+4=b$.

If $b=1$, we have $5 a^{4}-20 a^{2}+3=0$. Thus a^{2} is a rational root of the quadratic polynomial $5 X^{2}-20 X+3$. But this polynomial has discriminant $(-20)^{2}-4 \cdot 5 \cdot 3=$ $20 \cdot 17$, which is not a square in \mathbb{Q}, hence it does not possess any rational root.
If $b=-1$, we have $5 a^{4}-20 a^{2}+5=0$. Dividing by 5 , we obtain $a^{4}-4 a^{2}+1=0$. Thus a^{2} is a rational root of the quadratic polynomial $X^{2}-4 X+1$. But this polynomial has discriminant 12 , which is not a square in \mathbb{Q}, hence it does not possess any rational root.
In either case we have obtained a contradiction, proving that $y^{2}=x^{5}-2$ has no solutions in \mathbb{Z}.
P.S.: Is there a direct proof that does not use algebraic number theory?
2. (a) A cone in a real vector space is a subset that is invariant under multiplication by $\mathbb{R}^{>0}$. Let C be a non-empty open convex cone in a finite dimensional real vector space V. Prove that for any complete lattice $\Gamma \subset V$ there exists a point in $\Gamma \cap C$.
(b) Let K be a totally real number field, i.e., one with $\Sigma:=\operatorname{Hom}(K, \mathbb{C})=$ $\operatorname{Hom}(K, \mathbb{R})$. Let T be any nonempty proper subset of Σ. Show that there exists a unit $\varepsilon \in \mathcal{O}_{K}^{\times}$such that $\sigma(\varepsilon)>1$ for all $\sigma \in T$ and $0<\sigma(\varepsilon)<1$ for all $\sigma \in \Sigma \backslash T$.

Solution: (a) The definition of convexity implies that a subset C is a convex cone if and only if any linear combination of vectors in C with coefficients in $\mathbb{R} \geqslant 0$ and not all zero again lies in C.
As the given subset C is open and non-empty, its measure is positive. Since any proper linear subspace of V has measure 0 , we deduce that $\operatorname{span}(C)=V$. Choose a basis $v_{1}, \ldots, v_{n} \in C$ of V. Choose a bounded subset $\Phi \subset V$ with $V=\Gamma+\Phi$. Choose $c>0$ such that $\Phi \subset\left\{\sum_{i=1}^{n} x_{i} v_{i}\left|\forall i:\left|x_{i}\right|<c\right\}\right.$. Write $\sum_{i=1}^{n} c v_{i}=\gamma+v$ with $\gamma \in \Gamma$ and $v=\sum_{i=1}^{n} x_{i} v_{i} \in \Phi$. By the above characterization of convex cones we deduce that

$$
\gamma=\sum_{i=1}^{n}\left(c-x_{i}\right) v_{i} \in C
$$

because $c-x_{i}>0$ for all i. Thus $\gamma \in \Gamma \cap C$, as desired.
(b) By $\S 5$, Theorem 10 of the lecture, the subgroup $\Gamma:=l \circ j\left(\mathcal{O}_{K}^{\times}\right)$is a complete lattice in the vector space $H:=\operatorname{ker}\left(\operatorname{Tr}:\left(\mathbb{R}^{\Sigma}\right)^{+} \rightarrow \mathbb{R}\right)$. Here $\left(\mathbb{R}^{\Sigma}\right)^{+}=\mathbb{R}^{\Sigma}$, because K is totally real. Consider the subset

$$
C:=\left\{\left(x_{\sigma}\right)_{\sigma \in \Sigma} \in H \mid \forall \sigma \in T: x_{\sigma}>0 \text { and } \forall \sigma \notin T: x_{\sigma}<0\right\} .
$$

As this is defined by homogeneous linear strict inequalities, it is an open cone in H. It also contains the element $\left(a_{\sigma}\right)_{\sigma}$ with

$$
a_{\sigma}:=\left\{\begin{array}{cc}
|\Sigma \backslash T| & \text { if } \sigma \in T, \\
-|T| & \text { if } \sigma \notin T .
\end{array}\right.
$$

Thus C is a non-empty open convex cone. By part (a) it follows that $\Gamma \cap C$ contains the point $(\log (|\sigma(\varepsilon)|))_{\sigma \in \Sigma}$ for some $\varepsilon \in \mathcal{O}_{K}^{\times}$. The choice of C means that $|\sigma(\varepsilon)|>1$ for all $\sigma \in T$ and $0<|\sigma(\varepsilon)|<1$ for all $\sigma \in \Sigma \backslash T$. The unit ε^{2} then satisfies the required condition.
*3. (a) Let M be a bounded subset of a finite dimensional real vector space V. Construct another bounded subset $N \subset V$ such that for any complete lattice $\Gamma \subset V$ with $V=\Gamma+M$, the subset $\Gamma \cap N$ generates Γ.
(b) Deduce that, in principle, for every number field K one can effectively find generators of \mathcal{O}_{K}^{\times}.
Solution: See for example [Borewicz-Shafarevic: Zahlentheorie (1966) Kapitel II §5.3]. Alternatively, here is an ad hoc solution for (a):
After replacing M by the convex closure of $M+(-M)$ we may assume that M is convex and centrally symmetric. Let $n:=\operatorname{dim}_{\mathbb{R}}(V)$. We claim that then $N:=\max \{n, 2\} M$ does the job.
First let Γ^{\prime} be the subgroup generated by $\Gamma \cap 2 M$. For any $\gamma \in \Gamma$ write $\frac{\gamma}{2}=\delta+m$ with $\delta \in \Gamma$ and $m \in M$. Then $2 m=\gamma-2 \delta \in \Gamma \cap 2 M \subset \Gamma^{\prime}$; hence $\gamma \in 2 \Gamma+\Gamma^{\prime}$. Since γ was arbitrary, it follows that the composite homomorphism $\Gamma^{\prime} \hookrightarrow \Gamma \rightarrow \Gamma / 2 \Gamma$ is surjective. But Γ is a lattice of rank n, and so Γ^{\prime} is a sublattice of some rank $n^{\prime} \leqslant n$. We thus have a surjective homomorphism $\mathbb{Z}^{n^{\prime}} \cong \Gamma^{\prime} \rightarrow \Gamma / 2 \Gamma \cong(\mathbb{Z} / 2 \mathbb{Z})^{n}$, which implies that $n^{\prime}=n$.
We can therefore choose \mathbb{R}-linearly independent elements $\gamma_{1}, \ldots, \gamma_{n} \in \Gamma \cap 2 M$. With $\Gamma^{\prime \prime}:=\bigoplus_{i=1}^{n} \mathbb{Z} \gamma_{i}$ we then have $V=\bigoplus_{i=1}^{n} \mathbb{R} \gamma_{i}=\Gamma^{\prime \prime}+\Phi$ for the subset $\Phi:=\sum_{i=1}^{n}\left[-\frac{1}{2}, \frac{1}{2}\right] \gamma_{i}$. Here the fact that $\gamma_{i} \in 2 M$ and the assumption that M is convex and centrally symmetric implies that $\left[-\frac{1}{2}, \frac{1}{2}\right] \gamma_{i} \subset M$. Again by the convexity of M we therefore have $\Phi \subset n M \subset N$, and so $V=\Gamma^{\prime \prime}+N$. Finally this implies that $\Gamma=\Gamma^{\prime \prime}+(\Gamma \cap N)$. Since $\Gamma^{\prime \prime}$ is already generated by a subset of $\Gamma \cap 2 M \subset \Gamma \cap N$, it follows that Γ is generated by $\Gamma \cap N$, as desired.
4. (a) For any number field K, any subring $\mathcal{O} \subset \mathcal{O}_{K}$ of finite index is called an order in \mathcal{O}_{K}. For any such order prove that \mathcal{O}^{\times}is a subgroup of finite index in \mathcal{O}_{K}^{\times}.
(b) Consider a squarefree integer $d>1$ with $d \equiv 1 \bmod (4)$, so that $K:=\mathbb{Q}(\sqrt{d})$ has the ring of integers $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$. Explain the precise relation between $\mathbb{Z}[\sqrt{d}]^{\times}$and \mathcal{O}_{K}^{\times}.
Solution: (a) Any ring homomorphism induces a homomorphism for the groups of units. Thus the embedding $\mathcal{O} \hookrightarrow \mathcal{O}_{K}$ induces an embedding $\mathcal{O}^{\times} \hookrightarrow \mathcal{O}_{K}^{\times}$as a subgroup. Next abbreviate $m:=\left[\mathcal{O}_{K}: \mathcal{O}\right]$. Then $m \mathcal{O}_{K} \subset \mathcal{O}$, so we have an embedding $\mathcal{O} / m \mathcal{O}_{K} \hookrightarrow \mathcal{O}_{K} / m \mathcal{O}_{K}$ and hence a homomorphism of abelian groups $\left(\mathcal{O} / m \mathcal{O}_{K}\right)^{\times} \hookrightarrow\left(\mathcal{O}_{K} / m \mathcal{O}_{K}\right)^{\times}$. From this we deduce that \mathcal{O}^{\times}is the kernel of the
composite homomorphism

$$
\mathcal{O}_{K}^{\times} \rightarrow\left(\mathcal{O}_{K} / m \mathcal{O}_{K}\right)^{\times} \rightarrow\left(\mathcal{O}_{K} / m \mathcal{O}_{K}\right)^{\times} /\left(\mathcal{O} / m \mathcal{O}_{K}\right)^{\times}
$$

Since the target is a finite group, it follows that $\left[\mathcal{O}_{K}^{\times}: \mathcal{O}^{\times}\right]$is finite.
(b) Here we have $m=2$, and the minimal polynomial of $\omega:=\frac{1+\sqrt{d}}{2}$ over \mathbb{Z} is

$$
\left.P(X):=\left(X-\frac{1+\sqrt{d}}{2}\right)\left(X-\frac{1-\sqrt{d}}{2}\right)\right)=X^{2}-X+\frac{1-d}{4} .
$$

Hence $\mathcal{O}_{K} \cong \mathbb{Z}[X] /(P(X))$.
Assume first that $d \equiv 1 \bmod$ (8). Then $P(X) \equiv X(X-1) \bmod (2)$ and hence $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[X] /(X(X-1)) \cong\left(\mathbb{F}_{2}\right)^{2}$. Thus $\left(\mathcal{O}_{K} / 2 \mathcal{O}_{K}\right)^{\times}=1$, which by the construction in (a) implies that $\mathcal{O}^{\times}=\mathcal{O}_{K}^{\times}$.
In the other case we have $d \equiv 5 \bmod (8)$. Then $P(X) \equiv X^{2}+X+1 \bmod (2)$, which is irreducible in $\mathbb{F}_{2}[X]$. Thus $\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[X] /\left(X^{2}+X+1\right)$ is a field of order 4, and so $\left(\mathcal{O}_{K} / 2 \mathcal{O}_{K}\right)^{\times}$is a cyclic group of order 3. From the construction in (a) it follows that $\mathbb{Z}[\sqrt{d}]^{\times}$is a subgroup of \mathcal{O}_{K}^{\times}of index dividing 3.

In either case this shows that $\mathbb{Z}[\sqrt{d}]^{\times}$is a subgroup of \mathcal{O}_{K}^{\times}of index 1 or 3 . The case $d \equiv 1 \bmod (8)$ shows that the index 1 actually occurs, and the example of $d=13$ explained in the lecture course shows that the index 3 also occurs.
5. Show that the equation $a^{2}-b^{2} d=-1$ has infinitely many solutions $(a, b) \in \mathbb{Z}^{2}$ for $d=2$, but none for $d=3$. Explain the answer with algebraic number theory.
Solution: Elementary solution using renaissance arithmetic only: For $d=2$ we find the solution $(a, b)=(1,1)$ by trial and error. Given a solution (a, b) with $a, b>0$, a direct computation shows that $\left(a^{3}+6 a b^{2}, 3 a^{2} b+2 b^{2}\right)$ is another solution with strictly larger coefficients. Thus there exist infinitely many solutions. For $d=3$ the equation implies that $a^{2} \equiv 2 \bmod (3)$, which is not solvable in $\mathbb{Z} / 3 \mathbb{Z}$.
Explanation: Let $K:=\mathbb{Q}(\sqrt{d}) \subset \mathbb{R}$. In both cases $d \not \equiv 1 \bmod 4$, hence we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{d}]$. The norm of a general element is $\operatorname{Nm}_{K / \mathbb{Q}}(a+b \sqrt{d})=a^{2}-b^{2} d$. Hence, we want to find all elements of norm -1. Any such element is a unit in \mathcal{O}_{K}^{\times}. By $\S 5$ Cor. 14 of the lecture, we have $\mathcal{O}_{K}^{\times}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$ for a fundamental unit $\varepsilon>1$. Since $\mathrm{Nm}_{K / \mathbb{Q}}$ is multiplicative and $\mathrm{Nm}_{K / \mathbb{Q}}(-1)=1$, we deduce that

$$
\left\{a+b \sqrt{d} \in \mathcal{O}_{K} \mid a^{2}-b^{2} d=-1\right\}=\left\{\begin{array}{cl}
\left\{ \pm \varepsilon^{m} \mid m \in \mathbb{Z} \text { odd }\right\} & \text { if } \operatorname{Nm}_{K / \mathbb{Q}}(\varepsilon)=-1 \\
\varnothing & \text { if } \operatorname{Nm}_{K / \mathbb{Q}}(\varepsilon)=1
\end{array}\right.
$$

Moreover, by $\S 5$ Prop. 15 we have $\varepsilon=a+b \sqrt{d}$ for $a, b \in \mathbb{Z}^{>0}$ with $a^{2}-b^{2} d= \pm 1$ and a minimal, which we can find by trial and error.
For $d=2$ the element $1+\sqrt{2}$ is a fundamental unit with $\operatorname{Nm}_{K / \mathbb{Q}}(1+\sqrt{2})=$ $1^{2}-1^{2} \cdot 2=-1$; hence we are in the first case.

For $d=3$ the element $2+\sqrt{3}$ is a unit with $\operatorname{Nm}_{K / \mathbb{Q}}(2+\sqrt{3})=2^{2}-1^{2} \cdot 3=1$. On the other hand \mathcal{O}_{K} has discriminant $4 d=12$; hence by $\S 5$ Prop. 17 of the lecture the fundamental unit $\varepsilon>1$ satisfies $\varepsilon \geqslant \frac{\sqrt{12}+\sqrt{12-4}}{2}=\sqrt{3}+\sqrt{2}$. Since $(\sqrt{3}+\sqrt{2})^{2}>2+\sqrt{3}>1$, we cannot have $2+\sqrt{3}=\varepsilon^{k}$ with an integer $k>1$, so $2+\sqrt{3}=\varepsilon$ is already a fundamental unit. Therefore we are in the second case.

