D-MATH
Prof. Richard Pink

Solutions 5

Units, Decomposition Of Prime Ideals

1. (a) Determine the ring of integers of $K:=\mathbb{Q}(\sqrt{5}, i)$.
(b) Determine \mathcal{O}_{F}^{\times}for the subfield $F:=\mathbb{Q}(\sqrt{5})$.
(c) Find a fundamental unit of \mathcal{O}_{K}^{\times}.
(d) Show that $|\mu(K)|=4$ and write down \mathcal{O}_{K}^{\times}.

Solution:
(a) Consider the subfields $F:=\mathbb{Q}(\sqrt{5})$ and $F^{\prime}:=\mathbb{Q}(i)=\mathbb{Q}(\sqrt{-1})$. Since $5 \equiv 1 \bmod 4$ and $-1 \not \equiv 1 \bmod 4$, their discriminants are $\operatorname{disc}\left(\mathcal{O}_{F}\right)=5$ and $\operatorname{disc}\left(\mathcal{O}_{F^{\prime}}\right)=-4$ and hence coprime. Furthermore, the fields F and F^{\prime} are linearly disjoint, since $\left[F F^{\prime} / \mathbb{Q}\right]=[K / \mathbb{Q}]=4=[F / \mathbb{Q}] \cdot\left[F^{\prime} / \mathbb{Q}\right]$. Therefore $\S 1$ Theorem 22 implies that $\mathcal{O}_{K} \cong \mathcal{O}_{F} \otimes_{\mathbb{Z}} \mathcal{O}_{F^{\prime}} \cong \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}, i\right]$. In particular a \mathbb{Z}-basis of \mathcal{O}_{K} is $1, \frac{1+\sqrt{5}}{2}, i, i \frac{1+\sqrt{5}}{2}$.
(b) By $\S 5$ Proposition 15 , the element $\varepsilon:=a+b \sqrt{5} \in \mathcal{O}_{F}$ with minimal $a, b \in$ $\frac{1}{2} \mathbb{Z}^{>0}$ such that $\mathrm{Nm}_{F / \mathbb{Q}}(\varepsilon)= \pm 1$ is a fundamental unit in \mathcal{O}_{F}^{\times}. By a direct calculation, we verify that $\varepsilon:=\frac{1+\sqrt{5}}{2}$ already has norm -1 and hence is a fundamental unit. It follows that $\mathcal{O}_{F}^{\times}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$.
(c) The field K has $(r, s)=(0,2)$ and hence $\mathcal{O}_{K}^{\times}=\mu(K) \times \tilde{\varepsilon}^{\mathbb{Z}}$ for some fundamental unit $\tilde{\varepsilon} \in \mathcal{O}_{K}^{\times}$. In view of (b) it follows that $\zeta \tilde{\varepsilon}^{n}=\varepsilon^{ \pm 1}$ for some $n \geqslant 1$ and $\zeta \in \mu(K)$. After possibly replacing $\tilde{\varepsilon}$ with $\tilde{\varepsilon}^{-1}$ and ζ with ζ^{-1}, we may assume that $\zeta \tilde{\varepsilon}^{n}=\varepsilon$. Writing $\operatorname{Nm}_{K / F}(\tilde{\varepsilon})= \pm \varepsilon^{k}$ with $k \in \mathbb{Z}$, we deduce that

$$
\varepsilon^{2}=\operatorname{Nm}_{K / F}(\varepsilon)=\operatorname{Nm}_{K / F}\left(\zeta \widetilde{\varepsilon}^{n}\right)= \pm \operatorname{Nm}_{K / F}(\tilde{\varepsilon})^{n}= \pm\left(\pm \varepsilon^{k}\right)^{n}
$$

which implies that $k n=2$. Suppose that $n=2$ and hence $k=1$. Write $\tilde{\varepsilon}=a+b \frac{1+\sqrt{5}}{2}+c i+d i \frac{1+\sqrt{5}}{2}$ with $a, b, c, d \in \mathbb{Z}$. Then
$\pm \frac{1+\sqrt{5}}{2}= \pm \varepsilon=\operatorname{Nm}_{K / F}(\tilde{\varepsilon})=\tilde{\varepsilon} \tilde{\tilde{\varepsilon}}=\left(a^{2}+b^{2}+c^{2}+d^{2}\right)+\left(2 a b+b^{2}+2 c d+d^{2}\right) \frac{1+\sqrt{5}}{2}$.
Comparing coefficients implies that $a^{2}+b^{2}+c^{2}+d^{2}=0$ and hence $a=$ $b=c=d=0$. This contradicts the fact that $\tilde{\varepsilon} \neq 0$. Therefore $n=1$ and $\tilde{\varepsilon}=\zeta^{-1} \varepsilon$ is also a fundamental unit in \mathcal{O}_{K}^{\times}. Since the fundamental unit of K is only determined up multiplication with an element of $\mu(K)$ and taking its inverse, we conclude that ε is a fundamental unit in \mathcal{O}_{K}^{\times}.
(d) Let ζ be a generator of $\mu(K)$ and let n be the order of ζ. Then $[\mathbb{Q}(\zeta) / \mathbb{Q}]=$ $\varphi(n)$, where $\varphi(\cdot)$ denotes the Euler φ-function, and this divides $[K / \mathbb{Q}]=4$. On the other hand, since $i \in K$, we have $n=2^{k} m$ with m odd and $k \geqslant 2$ and hence $\varphi(n)=\left(2^{k}-2^{k-1}\right) \varphi(m)=2^{k-1} \varphi(m)$. Together this leaves only the possibilities $n=4,8,12$.
If $n=8$, we have $\zeta=\frac{ \pm 1 \pm i}{\sqrt{2}}$ and hence $\mathbb{Q}(\sqrt{2})=\mathbb{Q}(\zeta+\bar{\zeta}) \subset K$.
If $n=12$, we have $\zeta^{4}=\frac{-1 \pm \sqrt{-3}}{2}$ and hence $\mathbb{Q}(\sqrt{-3})=\mathbb{Q}\left(\zeta^{4}\right) \subset K$.
But the extension K / \mathbb{Q} is galois with a non-cyclic Galois group of order 4; hence by Galois theory it contains precisely three different quadratic subfields. Since $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{-1})$ and $\mathbb{Q}(i \sqrt{5})=\mathbb{Q}(\sqrt{-5})$ are all contained in K and non-isomorphic by the classification of quadratic number fields, these are precisely all quadratic subfields of K. Again by the classification of quadratic number fields, none of them is isomorphic to $\mathbb{Q}(\sqrt{2})$ or $\mathbb{Q}(\sqrt{-3})$. Thus the cases $n=8,12$ are impossible, leaving only $n=4$.
In conclusion, we have $|\mu(K)|=4$ and $\mathcal{O}_{K}^{\times}=\{ \pm 1, \pm i\} \times\left(\frac{1+\sqrt{5}}{2}\right)^{\mathbb{Z}}$.
2. (a) Let K be a cubic number field with exactly one real embedding. We identify K with its image. Show that for any unit $u \in \mathcal{O}_{K}^{\times}$with $u>1$ we have

$$
\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right| \leqslant 3\left(u^{2}+\frac{2}{u}\right)\left(u^{4}+\frac{2}{u^{2}}\right) .
$$

Hint: Use Hadamard's inequality: For any complex $n \times n$-matrix M with columns v_{1}, \ldots, v_{n}, we have $|\operatorname{det}(M)| \leqslant \prod_{i=1}^{n}\left\|v_{i}\right\|$.
(b) Show that a fundamental unit of \mathcal{O}_{K}^{\times}for the number field $K:=\mathbb{Q}(\sqrt[3]{2})$ is $1+\sqrt[3]{2}+\sqrt[3]{4}$
Solution: (a) Let $\sigma: K \rightarrow \mathbb{C}$ be any nonreal embedding, and take any unit $u>1$ in \mathcal{O}_{K}. Then $u \notin \mathbb{Q}$ and hence $K=\mathbb{Q}(u)$. Thus $1, u, u^{2}$ is a \mathbb{Q}-basis of K that is contained in \mathcal{O}_{K}, and so

$$
\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right| \leqslant\left|\operatorname{disc}\left(1, u, u^{2}\right)\right|=\left|\operatorname{det}\left(\begin{array}{ccc}
1 & u & u^{2} \\
1 & \sigma(u) & \sigma(u)^{2} \\
1 & \bar{\sigma}(u) & \bar{\sigma}(u)^{2}
\end{array}\right)\right|^{2}
$$

Since $u|\sigma(u)|^{2}=u \sigma(u) \bar{\sigma}(u)=\operatorname{Nm}_{K / \mathbb{Q}}(u)= \pm 1$ and $u>0$, we have $|\sigma(u)|^{2}=$ $|\bar{\sigma}(u)|^{2}=\frac{1}{u}$. Using Hadamard's inequality we deduce that
$\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right| \leqslant\left\|\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\|^{2} \cdot\left\|\left(\begin{array}{c}u \\ \sigma(u) \\ \bar{\sigma}(u)\end{array}\right)\right\|^{2} \cdot\left\|\left(\begin{array}{c}u^{2} \\ \sigma(u)^{2} \\ \bar{\sigma}(u)^{2}\end{array}\right)\right\|^{2} \leqslant 3\left(u^{2}+\frac{2}{u}\right)\left(u^{4}+\frac{2}{u^{2}}\right)$.
(b) From the solution of exercise 3 on sheet 1 we know that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{2}]$ with discriminant -108 and that the norm is given by the formula

$$
\operatorname{Nm}_{K / \mathbb{Q}}(a+b \sqrt[3]{2}+c \sqrt[3]{4})=6 a b c-a^{3}-2 a b^{3}-4 a c^{3}
$$

for any $a, b, c \in \mathbb{Z}$. In particular the element $\alpha:=1+\sqrt[3]{2}+\sqrt[3]{4}$ has norm $\mathrm{Nm}_{K / \mathbb{Q}}(\alpha)=-1 \in \mathbb{Z}^{\times}$and is therefore a unit. Since K has $(r, s)=(1,1)$, by Dirichlet's unit theorem we have $\mathcal{O}_{K}^{\times}=\{ \pm 1\} \times \varepsilon^{\mathbb{Z}}$ for a fundamental unit ε. After possibly replacing ε by $\pm \varepsilon^{ \pm 1}$, we may assume that $\varepsilon>1$. Since $\alpha>1$, it then follows that $\alpha=\varepsilon^{k}$ for some integer $k \geqslant 1$. We must show that $k=1$.
For this let $\lambda(u)$ denote the right-hand side of the inequality in part (a). Looking at the derivative shows that this is a monotone increasing function of $u \geqslant 1$. Thus if $k \geqslant 3$, it follows that

$$
108 \leqslant \lambda(\varepsilon)=\lambda(\sqrt[k]{\alpha}) \leqslant \lambda(\sqrt[3]{\alpha})=76.6 \ldots
$$

which is a contradiction. Therefore $k \leqslant 2$. To rule out $k=2$ we must show that α is not a square in \mathcal{O}_{K}. For this observe that $\mathfrak{p}:=(5,2+\sqrt[3]{2})$ is a prime ideal with $\mathcal{O}_{K} / \mathfrak{p} \cong \mathbb{F}_{5}$ and $\alpha+\mathfrak{p}=3+\mathfrak{p}$. Since 3 is not a square in \mathbb{F}_{5}, it follows that α is not a square in \mathcal{O}_{K}. Hence $k=1$ and α is a fundamental unit.
3. Using continued fractions:
(a) Compute a fundamental unit of \mathcal{O}_{K}^{\times}for $K:=\mathbb{Q}(\sqrt{318})$.
(b) Find the smallest positive integer solution of the equation $x^{2}-61 y^{2}=1$.

Solution: (a) Because $318 \not \equiv 1 \bmod 4$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{318}]$. Let ($)^{\prime}$ denote the nontrivial Galois automorphism of K over \mathbb{Q}. Since $\sqrt{318}=17.8 \ldots$, the element $\eta:=17+\sqrt{318}$ satisfies $\mathcal{O}_{K}=\mathbb{Z}[\eta]$ with $\eta>1$ and $-1<\eta^{\prime}<0$. The continued fraction expansion of η is obtained by the calculation

$$
\begin{aligned}
& \eta_{0}:=\eta \\
& a_{0}:=\left\lfloor\eta_{0}\right\rfloor=34 \\
& \eta_{1}:=\frac{1}{\eta_{0}-a_{0}}=\frac{1}{-17+\sqrt{318}}=\frac{-17-\sqrt{318}}{17^{2}-318}=\frac{\eta}{29}=1.2 \ldots \\
& a_{1}:=1 \\
& \eta_{2}:=\frac{1}{\eta_{1}-a_{1}}=\frac{1}{\frac{\eta}{29}-1}=\frac{29(-12-\sqrt{318})}{12^{2}-318}=2+\frac{\sqrt{318}}{6}=4.97 \ldots \\
& a_{2}:=4 \\
& \eta_{3}:=\frac{1}{\eta_{2}-a_{2}}=\frac{1}{-2+\frac{\sqrt{318}}{6}}=\frac{6(-6-\sqrt{318})}{12^{2}-318}=\frac{12+\sqrt{318}}{29}=1.02 \ldots \\
& a_{3}:=1 \\
& \eta_{4}:=\frac{1}{\eta_{3}-a_{3}}=\frac{1}{\frac{-17+\sqrt{318}}{29}}=\frac{29(-17-\sqrt{318})}{17^{2}-318}=\eta
\end{aligned}
$$

Here the sequence $\left(a_{i}\right)=(\overline{34,1,4,1})$ is periodic with period 4 . We further calculate the numerators and denominators of the approximations to η :

i	-2	-1	0	1	2	3
a_{i}			34	1	4	1
p_{i}	0	1	34	35	174	209
q_{i}	1	0	1	1	5	6

Thus a fundamental unit in \mathcal{O}_{K}^{\times}is

$$
\varepsilon:=p_{3}-q_{3} \eta=209-6(17+\sqrt{318})=107-6 \sqrt{318} .
$$

(b) This is a challenge that Pierre de Fermat sent to some fellow mathematicians in 1657 and which was solved by several of them. Our source for the question is [J. S. Silverman: A friendly introduction to number theory, 4th Ed., Pearson 2013] Chapter 32.
Let $K:=\mathbb{Q}(\sqrt{61})$. Then $\mathcal{O}_{K}=\mathbb{Z}\left[\frac{1+\sqrt{61}}{2}\right]$, because $61 \equiv 1 \bmod 4$. Let ε be the fundamental unit of K in $\mathbb{R}^{>1}$. We are looking for the smallest power $\varepsilon^{k}=a+b \sqrt{61}$ that satisfies $\mathrm{Nm}_{K / \mathbb{Q}}\left(\varepsilon^{k}\right)=a^{2}-61 b^{2}=1$ with $a, b \in \mathbb{Z}$.
Let () 'denote the nontrivial Galois automorphism of K over \mathbb{Q}. Since $\left(\frac{1+\sqrt{61}}{2}\right)^{\prime}=$ $\frac{1-\sqrt{61}}{2}=-3.4 \ldots$, the element $\eta:=\frac{7+\sqrt{61}}{2}$ satisfies $\mathcal{O}_{K}=\mathbb{Z}[\eta]$ with $\eta>1$ and $-1<\eta^{\prime}<0$. The continued fraction expansion of η is obtained by the calculation

$$
\begin{aligned}
& \eta_{0}:=\eta=7.4 \ldots \\
& a_{0}:=\lfloor\eta\rfloor=7 \\
& \eta_{1}:=\frac{1}{\eta_{0}-a_{0}}=\frac{1}{\frac{-7+\sqrt{61}}{2}}=\frac{2(-7-\sqrt{61})}{7^{2}-61}=\frac{7+\sqrt{61}}{6}=2.4 \ldots \\
& a_{1}:=2 \\
& \eta_{2}:=\frac{1}{\eta_{1}-a_{1}}=\frac{1}{\frac{-5+\sqrt{61}}{6}}=\frac{5+\sqrt{61}}{6}=2.1 \ldots \\
& a_{2}:=2 \\
& \eta_{3}:=\frac{1}{\eta_{2}-a_{2}}=\frac{1}{\frac{-7+\sqrt{61}}{6}}=\eta
\end{aligned}
$$

Here the sequence $\left(a_{i}\right)=(\overline{7,2,2})$ is periodic with period 3 . We calculate the numerators and denominators of the approximations to η :

i	-2	1	0	1	2
a_{i}			7	2	2
p_{i}	0	1	7	15	37
q_{i}	1	0	1	2	5

Hence a fundamental unit in \mathcal{O}_{K}^{\times}is

$$
\tilde{\varepsilon}:=p_{2}-q_{2} \eta=37-5 \frac{7+\sqrt{61}}{2}=\frac{39-5 \sqrt{61}}{2} .
$$

The corresponding fundamental unit $\varepsilon>1$ is therefore $\varepsilon:=\tilde{\varepsilon}^{\prime}=\frac{39+5 \sqrt{61}}{2}$. Since $\mathrm{Nm}_{K / \mathbb{Q}}(\varepsilon)=\left(39^{2}-5^{2} \cdot 61\right) / 4=-1$, our desired exponent k must be even. Since $\varepsilon^{2}=\frac{1523+195 \sqrt{61}}{2}$ does not yield an integer solution to the equation, we compute:

$$
\begin{aligned}
& \varepsilon^{4}=\frac{2319527+296985 \sqrt{61}}{2} \\
& \varepsilon^{6}=1766319049+226153980 \sqrt{61}
\end{aligned}
$$

The answer is therefore $(x, y)=(1766319049,226153980)$.
4. Let K be a number field and let S be a finite set of prime ideals of \mathcal{O}_{K}. We define the ring of S-integers in K to be

$$
\mathcal{O}_{K, S}:=\bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{K, \mathfrak{p}}=\left\{\alpha \in K \mid \forall \mathfrak{p} \notin S: \operatorname{ord}_{\mathfrak{p}}(\alpha) \geqslant 0\right\} .
$$

The group $\mathcal{O}_{K, S}^{\times}$is called the group of S-units in K.
(a) Show that the torsion subgroup of $\mathcal{O}_{K, S}^{\times}$is $\mu(K)$.
(b) Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t}$ be the distinct elements of S. Show that the homomorphism

$$
\varphi: \mathcal{O}_{K, S}^{\times} \rightarrow \mathbb{Z}^{t}, \alpha \mapsto\left(\operatorname{ord}_{\mathfrak{p}_{i}}(\alpha)\right)_{i}
$$

has kernel \mathcal{O}_{K}^{\times}and that its image has rank t.
(c) Deduce that $\mathcal{O}_{K, S}^{\times} \cong \mu(K) \times \mathbb{Z}^{r+s+|S|-1}$.

Solution: This proof partly follows Milne's notes on algebraic number theory, page 89: http://www.jmilne.org/math/CourseNotes/ANT.pdf.
(a) Since the torsion subgroup of K^{\times}is $\mu(K)$, the torsion subgroup of $\mathcal{O}_{K, S}^{\times}$must be a subgroup of $\mu(K)$. But $\mu(K) \subseteq \mathcal{O}_{K}^{\times} \subseteq \mathcal{O}_{K, S}^{\times}$and the conclusion follows.
(b) For each non-zero prime ideal $\mathfrak{p} \subset \mathcal{O}_{K}$ the localization $\mathcal{O}_{K, \mathfrak{p}}$ is a discrete valuation ring; hence $\mathcal{O}_{K, \mathfrak{p}}^{\times}=\left\{\alpha \in K \mid \operatorname{ord}_{\mathfrak{p}}(\alpha)=0\right\}$. Taking the intersection over all $\mathfrak{p} \notin S$, it follows that

$$
\mathcal{O}_{K, S}^{\times}=\bigcap_{\mathfrak{p} \notin S} \mathcal{O}_{K, \mathfrak{p}}^{\times}=\left\{\alpha \in K \mid \forall \mathfrak{p} \notin S: \operatorname{ord}_{\mathfrak{p}}(\alpha)=0\right\} .
$$

Taking the intersection over all \mathfrak{p}, it follows that

$$
\mathcal{O}_{K}^{\times}=\left\{\alpha \in \mathcal{O}_{K, S}^{\times} \mid \forall \mathfrak{p} \in S: \operatorname{ord}_{\mathfrak{p}}(\alpha)=0\right\}=\operatorname{Ker}(\varphi) .
$$

Let h be the class number of \mathcal{O}_{K}. Then each $\mathfrak{p}_{i}^{h}=\left(\pi_{i}\right)$ for an element $\pi_{i} \in \mathcal{O}_{K, S}^{\times}$with

$$
\varphi\left(\pi_{i}\right)=(0, \ldots, h, \ldots, 0)
$$

Thus $h \mathbb{Z}^{t} \subset \operatorname{Im}(\varphi) \subset \mathbb{Z}^{t}$, and so $\operatorname{Im}(\varphi)$ is a free abelian group of rank $t=|S|$.
(c) By (b), we obtain a short exact sequence

$$
1 \rightarrow \mathcal{O}_{K}^{\times} \rightarrow \mathcal{O}_{K, S}^{\times} \rightarrow \operatorname{Im}(\varphi) \cong \mathbb{Z}^{t} \rightarrow 0
$$

Since $\operatorname{Im}(\varphi)$ is free of rank t the sequence splits and we have $\mathcal{O}_{K, S}^{\times} \cong \mathcal{O}_{K}^{\times} \times$ $\mathbb{Z}^{t} \cong \mu(K) \times \mathbb{Z}^{r+s+t-1}$.
5. In the number field $K:=\mathbb{Q}(\sqrt[3]{2})$, what are the possible decompositions of $p \mathcal{O}_{K}$ for rational primes p ?
Solution: Let p be a rational prime and $p \mathcal{O}_{K}=\prod_{i=1}^{r} \mathfrak{p}_{i}^{e_{i}}$ its prime factorization in \mathcal{O}_{K}. Then $\sum_{i=1}^{r} e_{i} f_{i}=[K / \mathbb{Q}]=3$. Hence $1 \leqslant r \leqslant 3$ and the possibilities for $\left(r ; e_{1}, f_{1} ; e_{2}, f_{2} ; \ldots\right)$ are, up to permutation of the \mathfrak{p}_{i} :

$$
\begin{array}{ll}
r=1: & (1 ; 3,1) \\
& (1 ; 1,3) \\
r=2: & (2 ; 1,1 ; 2,1) \\
& (2 ; 1,1 ; 1,2) \\
r=3: & (3 ; 1,1 ; 1,1 ; 1,1)
\end{array}
$$

To compute the decomposition recall from the solution of exercise 3 on sheet 1 that $\mathcal{O}_{K}=\mathbb{Z}[\sqrt[3]{2}] \cong \mathbb{Z}[X] /\left(X^{3}-2\right)$. For any prime p we therefore have $\mathcal{O}_{K} / p \mathcal{O}_{K} \cong$ $\mathbb{F}_{p}[X] /\left(X^{3}-2\right)$, and the prime factorization of $p \mathcal{O}_{K}$ corresponds to the prime factorization of $X^{3}-2$ in $\mathbb{F}_{p}[X]$. For instance

$$
\begin{array}{ll}
\mathcal{O}_{K} / 2 \mathcal{O}_{K} \cong \mathbb{F}_{2}[X] /\left(X^{3}\right) & \rightsquigarrow(1 ; 3,1) \\
\mathcal{O}_{K} / 3 \mathcal{O}_{K} \cong \mathbb{F}_{3}[X] /(X-2)^{3} & \rightsquigarrow(1 ; 3,1) \\
\mathcal{O}_{K} / 5 \mathcal{O}_{K} \cong \mathbb{F}_{5}[X] /\left((X-3)\left(X^{2}+3 X+4\right)\right) & \rightsquigarrow(2 ; 1,1 ; 1,2) \\
\mathcal{O}_{K} / 7 \mathcal{O}_{K} \cong \mathbb{F}_{7}[X] /\left(X^{3}-2\right) & \rightsquigarrow(1 ; 1,3) \\
\mathcal{O}_{K} / 31 \mathcal{O}_{K} \cong \mathbb{F}_{31}[X] /((X-4)(X-7)(X-20)) & \rightsquigarrow(3 ; 1,1 ; 1,1 ; 1,1)
\end{array}
$$

Hence we found all theoretically possible decompositions except $(2 ; 1,1 ; 2,1)$. We claim that this type does not occur and present two proofs for it:
Using separability of polynomials: If the decomposition $(2 ; 1,1 ; 2,1)$ occurs for some prime p, then $X^{3}-2 \equiv(X-a)^{2}(X-b) \bmod p$ for some distinct $a, b \in \mathbb{Z}$. Hence the image of $X^{3}-2$ in $\mathbb{F}_{p}[X]$ is not separable. In this case, we have for the discriminant Δ of $X^{3}-2$:

$$
0 \equiv \Delta=-\operatorname{det}\left(\begin{array}{ccccc}
1 & 0 & 0 & -2 & 0 \\
0 & 1 & 0 & 0 & -2 \\
3 & 0 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & 0 \\
0 & 0 & 3 & 0 & 0
\end{array}\right)=-108=-2^{2} 3^{3} \bmod p
$$

where the matrix is the Sylvester matrix of $X^{3}-2$ and $\frac{d}{d X}\left(X^{3}-2\right)=3 X^{2}$. Hence $p \in\{2,3\}$. But in these cases the decomposition type is $(1 ; 3,1)$, as shown above. In conclusion, the decomposition cannot be of the form ($2 ; 1,1 ; 2,1$).

Using $\S 7$ Proposition 13: By $\S 7$ Proposition 13, a prime p is ramified if and only if p divides $\operatorname{disc}\left(\mathcal{O}_{K}\right)$. In sheet 1, exercise 3, we calculated $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-108=-2^{2} 3^{3}$. Since 2 and 3 do not ramify with the type $(2 ; 1,1 ; 2,1)$, no prime decomposes in this way.

