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Prof. Richard Pink

Solutions 6
Decomposition Of Prime Ideals, Different

1. Let R := Fp(t)[x] for a rational prime p and algebraically independent t and x.
Let A be the localization of R at the prime ideal Rx, and let p := Ax denote its
maximal ideal. Let K be the quotient field of A.

(a) Show that the polynomial f(Y ) := Y p − xp−1Y − t ∈ A[Y ] is separable and
irreducible over K.

(b) Consider a field extension L = K(y) with f(y) = 0. Show that L/K is galois
with Galois group isomorphic to Fp, acting by y 7→ y + αx for all α ∈ Fp.

(c) Show that B := A[y] is the integral closure of A in L and that P := Bp is
the unique prime ideal of B above p.

(d) Show that the extension of residue fields k(P)/k(p) is inseparable.
*(e) Repeat the constructions of R,A, p, K, L after replacing the field Fp(t) by its

inseparable extension Fp(s) with sp = t, so that f(Y ) = Y p − xp−1Y − sp.
Show that (a) and (b) are still true for the resulting items by R′, A′, p′, K ′, L′.
But in (c) define B′ instead as the integral closure of A′ in L′ and prove that
B′p′ = Q′p for a prime ideal Q′.
Note: The correct definition of an unramified prime P/p requires not only
that eP/p = 1 but also that the residue field extension is separable. If one
left out the second condition, the above example would be an unramified
extension which becomes ramified after the base change from Fp(t) to Fp(s),
which is just one of the things that would go wrong.

Solution:

(a) The polynomial Y p−xp−1Y − t ∈ Fp[x, Y, t] is monic of degree 1 with respect
to the variable t, hence it is irreducible in Fp(x, Y )[t]. Being monic, by the
Gauss lemma it is therefore also irreducible in Fp[x, Y, t] and hence in A[Y ].
Furthermore the formal derivative df

dY
= −xp−1 is nonzero, so f is separable.

(b) For any α ∈ Fp we have αp = α and hence

f(y+αx) = (y+αx)p−xp−1(y+αx)−t = yp+αxp−xp−1y−αxp−t = f(y) = 0.

Since the y+αx are all distinct, it follows that f(Y ) =
∏

α∈Fp
(Y −y−αx) in

L[Y ]. Thus L/K is already a splitting field of f and hence galois with Galois
group in bijection with Fp. Direct computation shows that this bijection is
a group isomorphism.
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(c) Since B ∼= A[Y ]/(f), we have

(∗) B/P ∼= A[Y ]/(f, x) ∼= (A/p)[Y ]/(Y p − t) ∼= Fp(t)[Y ]/(Y p − t).

The latter is a field, because, like in (a), the polynomial Y p − t is irreducible
over Fp(t). Thus P is a maximal ideal of B. Since p ⊂ P∩A and the former
is a maximal ideal of A, it follows that p = P ∩ A. Thus P = Bp is the
unique prime ideal of B above p.
Now observe that B is an integral domain and an integral ring extension
of A, because y is integral over A. Thus for any prime ideal (0) ̸= P′ ⊂ B we
have (0) ̸= P′ ∩A. As A is a discrete valuation ring with maximal ideal p, it
follows that P′∩A = p. By what we proved above, this implies that P′ = P.
Thus P is the only non-zero prime ideal of B.
Together we now know that B is a noetherian local integral domain of Krull
dimension 1 whose maximal ideal P = Bx is principal. It is thus a discrete
valuation ring and therefore normal, i.e., its own integral closure in L. Since
it is integral over A, it is therefore the integral closure of A in L, as desired.

(d) The isomorphism (∗) in (c) and the fact that the polynomial Y p − t is insep-
arable over Fp(t) together imply that k(P)/k(p) is inseparable of degree p.

*(e) After substituting t = sp we have K ′ = Fp(s, x) and f = Y p − xp−1Y − sp =
(Y − s)p − xp−1Y . To show that this is irreducible in Fp(s, x)[Y ], it suffices
to show that it is irreducible in Fp[s, x, Y ]. Since s, x, Y are algebraically
independent over Fp, after substituting Y − s = Z it suffices to show that
Zp − Xp−1Y is irreducible in Fp[Z,X, Y ]. As this polynomial has degree 1
with respect to the variable Y , it is irreducible in Fp(Z,X)[Y ]. Since its
coefficients Zp,−Xp−1 ∈ Fp[Z,X] have no common divisor, by the Gauss
lemma it is therefore also irreducible in Fp[Z,X, Y ], as desired.
The same arguments as above imply that f is still separable and that L′ =
K ′(y)/K ′ is galois with Galois group Fp. Thus (a) and (b) still hold for the
new objects.
To obtain the analogue of (c) we substitute y = s + x

z
. Then L′ = K ′(z)

and the equation (y− s)p = xp−1y implies that (x
z
)p = xp−1(s+ x

z
) and hence

zp+ x
s
zp−1− x

s
= 0. Here the polynomial Zp+ x

s
Zp−1− x

s
∈ A′[Z] satisfies the

Eisenstein criterion for the prime p′ = (x). The desired statement B′p′ = Q′p

thus follows from exercise 3 below.

2. Consider a Dedekind ring A with quotient field K, a finite Galois extension L/K,
and let B denote the integral closure of A in L. Consider a subextension K ′/K
which is also Galois and let A′ denote the integral closure of A in K ′. Consider
a prime p of A and a prime P ⊂ B above p, such that k(P)/k(p) is separable.
Determine the decomposition of p in A′ with its numerical invariants r, e, f and
its decomposition and inertia groups from the corresponding data in B.
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Solution: Write G′ := Gal(L/K ′) and G′′ := Gal(K ′/K) ∼= G/G′. Let IP ◁GP <
G be the inertia group and the decomposition group for P/p. We will show how
these groups determine all the desired data.
Set p′ := P ∩ A′, which is a prime of A′ above p. Then by §6 Proposition 11 the
inertia and decomposition groups for P/p′ are I ′P := G′∩IP◁G

′
P := G′∩GP < G′.

Let I ′′p′ ◁ G′′
p′ < G′′ denote the inertia and decomposition groups for p′/p. Since

k(P)/k(p′)/k(p) are separable field extensions, we have

e := eP/p = |IP| f := fP/p = [GP : IP] r := rB/p = [G : GP]

e′ := eP/p′ = |I ′P| f ′ := fP/p′ = [G′
P : I ′P] r′ := rB/p′ = [G′ : G′

P]

e′′ := ep′/p = |I ′′p′ | f ′′ := fp′/p = [G′′
p′ : I

′′
p′ ] r′′ := rA′/p = [G′′ : G′′

p′ ]

where r../.. denotes the number of primes of .. above ... Since I ′P and G′
P are already

given by explicit formulas, a complete answer follows from the descriptions:

(a) G′′
p′ = GPG

′/G′ ∼= GP/G
′
P.

(b) I ′′p′ = IPG
′/G′ ∼= IP/I

′
P.

In both statements the last isomorphism results from the first isomorphism theo-
rem. To prove (a) note that GP stabilizes P and A′ and hence also p′ := P ∩ A′.
Thus its image GPG

′/G′ in G/G′ ∼= Gal(K ′/K) is contained in G′′
p′ . It follows

that
e′′f ′′ = |G′′

p′ | ⩾ |GPG
′/G′| = |GP/G

′
P| =

|GP|
|G′

P|
=

ef

e′f ′ .

Since e = e′e′′ and f = f ′f ′′, this inequality must be an equality; hence so is the
inclusion GPG

′/G′ ⊂ G′′
p′ , proving (a).

Likewise, for (b) observe that IP acts trivially on the residue field k(P) and hence
also on the subfield k(p′). Thus its image IPG

′/G′ in G/G′ ∼= Gal(K ′/K) is
contained in I ′′p′ . It follows that

e′′ = |I ′′p′| ⩾ |IPG′/G′| = |IP/I ′P| =
|IP|
|I ′P|

=
e

e′
.

Since again e = e′e′′, the inclusion IPG
′/G′ ⊂ I ′′p′ must be an equality, proving (b).

3. Consider a Dedekind ring A with quotient field K, a finite separable extension
L/K, and let B denote the integral closure of A in L. Assume that L = K(α),
where the minimal polynomial f(X) = Xn +

∑n−1
i=0 aiX

i of α over K lies in A[X]
and is Eisenstein at a prime ideal p of A, that is, all ai ∈ p and a0 ̸∈ p2. Show
that pB = Pn with P := pB + αB prime, so that p is totally ramified in B.
(Hint: Prove that pB ⊂ Pj for all j ⩽ n by induction on j.)
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Solution: Since f(α) = 0, the element α is integral over A and hence lies in B.
Thus P is an ideal of B.
We first claim that pB ⊂ Pn. For this note that pB ⊂ P by construction. Suppose
that pB ⊂ Pj for some integer 1 ⩽ j < n. Then we have αn ∈ Pn ⊂ Pj+1, and
for all 0 < i < n we have aiα

i ∈ pPi ⊂ Pj+1. The equation f(α) = 0 thus
implies that a0 ∈ Pj+1. But since a0 ∈ p ∖ p2, we have p = a0A + p2; hence
pB = a0B+p2B ⊂ Pj+1+(Pj)2 = Pj+1. By induction on j this proves the claim.
In particular, the claim implies that Pn ̸= B and hence P ̸= B. Thus P is
contained in some prime ideal P′ ⊂ B. Write pB = Pe1

1 · · ·Per
r with distinct

prime ideals Pi, exponents ei > 0, and residue degrees fi. Then
∑r

i=1 eifi = n.
SincePe1

1 · · ·Per
r = pB ⊂ Pn ⊂ P′n andP′ is prime, this leaves only the possibility

that r = 1 and e1 = n and Pn
1 = pB = Pn = P′n. Therefore P = P′ and this

ideal is prime.
Remark: If we knew that B = A[α], we could directly compute that B ∼= A[X]/(f)
and hence B/pB ∼= (A/p)[X]/(Xn), whence the prime decomposition pB = Pn.
But in general we do not have B = A[α], for instance, because the assumptions
do not change on replacing α by aα for an arbitrary a ∈ A∖ p. However, one can
prove that Bp = Ap[α] in this case.

4. Let L/K be a Galois extension of number fields with noncyclic Galois group.

(a) Show that any prime ideal of OK over which lies only one prime ideal of OL

is ramified in OL.
(b) Deduce that there are at most finitely many prime ideals with the property

in (a), and in particular no prime ideals of OK that are totally inert in OL.

Solution:

(a) Let p be a prime ideal of OK over which lies only one prime ideal P of OL.
Then the decomposition group at P is equal to Gal(L/K), so we have a short
exact sequence

1 → IP → Gal(L/K) → Gal(k(P)/k(p)) → 1.

Since k(p) is a finite field, the group Gal(k(P)/k(p)) is cyclic; hence it is not
isomorphic to Gal(L/K). Thus the inertia group IP is not trivial. By §6
Proposition 10, it follows that e = |IP| > 1, as desired.

(b) By (a), every such prime is ramified. Hence, there are no totally inert primes.
Since, by §7 Corollary 14, there are only finitely many ramified primes, there
are only finitely many primes with the property from (a).

Note: The Cebotarev density theorem implies that for any finite Galois extension
K/Q with group G and any element g ∈ G, there exist infinitely many rational
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primes p such that the Frobenius element associated to some prime above p is
equal to g. In fact, the theorem says specifically that for any real number x, the
proportion of primes p ⩽ x with the above property tends to |CentG(g)|−1 for
x → ∞.

5. For K := Q( 3
√
2) compute the prime factorization of the different diffOK/Z and

verify that a prime ideal of OK divides diffOK/Z if and only if it is ramified over Z.
Solution: By the solution of exercise 3 on sheet 1 we have OK = Z[α] with
α := 3

√
2. The minimal polynomial of α over Q is f(X) := X3 − 2; hence by §7

Proposition 3 we have

diffOK/Z =
(

df
dX

(α)
)
=

(
3α2

)
.

In the solution of exercise 5 on sheet 5, we calculated that OK/2OK
∼= F2[X]/(X)3

and OK/3OK
∼= F3[X]/(X − 2)3. Therefore 2OK = p32 and 3OK = p33 for the

prime ideals p2 := (2, α) = (α) and p3 := (3, α − 2). The prime factorization of
the different is therefore diffOK/Z = p33p

2
2.

In particular, the primes p2 and p3 are totally ramified over Z and divide the
different. Any other prime p of OK lies over a rational prime p ̸= 2, 3. The
polynomial f(X) = X3 − 2 is then separable modulo p. Thus its decomposition
in Fp[X] has no multiple factors, and so all exponents in the prime factorization
of pOK are 1. (Compare again the solution of exercise 5 on sheet 5). Thus p is
unramified over Z and does not divide the different. Together this shows that a
prime of OK is ramified over Z if and only if it divides diffOK/Z.
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