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Prof. Richard Pink )
Solutions 7

DIFFERENT AND DISCRIMINANT, CYCLOTOMIC FIELDS

1. (a) Prove that any Dedekind ring with only finitely many maximal ideals is a
principal ideal domain.

(b) Let A be a discrete valuation ring and B its integral closure in a finite sepa-
rable field extension of Quot(A). Deduce from (a) that B is a principal ideal
domain.

Solution: Part (a) is Theorem 60 in section 1-6 of the book [I. Kaplansky: Com-
mutative Rings. Revised Edition. The University of Chicago Press, Chicago,

[l.-London. 1974], as every non-zero fractional ideal of a Dedekind ring is invert-
ible.

For (b) observe that A is a Dedekind ring with precisely one maximal ideal, say m.
By §6 we know that B is a Dedekind ring with only finitely many prime ideals
above m. Any other prime ideal of B must lie above the zero prime ideal of A and
hence be zero itself, because the zero ideal of B is already prime and B has Krull
dimension 1. Thus B is a Dedekind ring with only finitely many maximal ideals.
By (a) it is therefore a principal ideal domain.

2. Let K := Q(a), where a := v/539.

(a) Using exercise 3 of sheet 6, show that (7) and (11) are totally ramified in Of.
Let p7 and p1; denote the prime ideals above (7) and (11), respectively.

(b) Using the discriminant, show that Ox = oZ & BZ & yZ, where [ := % and
v = 248 and that disc(Og) = —3- 72 - 112,

(c) Show that 30k = p2p4 for distinct prime ideals p3 and pj.

(d) Show that the different of Ok /Z is pap2p3;.

*(e) Using the norm, show that diff, /7 is not principal and conclude that O is
not generated by one element over Z.

Solution:

(a) The minimal polynomial of « is X3 — 72 - 11, which is Eisenstein at 11 and
therefore irreducible. Thus [K/Q] = 3. On the other hand K is also gener-
ated by 8 := I which has minimal polynomial X® —7-11% that is Eisenstein
at 7. By exercise 3 of sheet 6, the primes (7) and (11) are therefore to-
tally ramified in Ok with decompositions 70k = p3 for p; = (7,3) and
110k = p3, for py; := (11,a).



(b)

Since 8 = “—72, the elements «, 5,7 form a basis of K over Q. We compute
the multiplication table for pairs of basis elements:

L] a | B | v |
a 78 77 = —154a — 778 + 2317 | —bla — 218 + 77y
B 77 1la —99a — 518 + 154y
v =5la— 218+ 77v| —99a — 513+ 154y | —67a — 313 + 1037

This table shows that A := aZ @ BZ @ ~Z is a subring. Since A is finitely
generated as a Z-module, it is integral over Z and hence contained in Ok.
Next, we see from the minimal polynomials of o and § that Trg/q(a) =
Trg/o(8) = 0. By Q-linearity this implies that Trx/g(v) = 3 Trg/g(1) = 1.
Using the multiplication table we can now calculate the discriminant of A:

Tr(a?) Tr(aB) Tr(avy)
disc(A) = det | Tr(Ba) Tr(B*) Tr(By)
Tr(ya) Tr(v8) Tr(y?)

0 231 77
=det | 231 0 154 | =—17787 = —-3-7%.11%
77 154 103

From the lecture course, we know that disc(A) = [Of : A]*disc(Of). Fur-
thermore, by §7 Proposition 13, both 7 and 11 divide disc(Of) because they
are ramified in Ok by part (a). Thus [Of : a]> must divide 3 -7 - 11, which
is only possible for [Of : a] = 1. Therefore A = O with the stated discrim-
inant, as desired.

The multiplication table in (b) shows that a = 7% — v — 1 mod 30k and
B =72—v+1mod30k. Thus O /30 is generated as an Fs-algebra by the
residue class of . Another direct calculation using the multiplication table
shows that v* —9? = 0mod 30k. Therefore O /30 = F3[X]/(X? - X?) =
F3[X]/(X?(X — 1)), where the residue class of v corresponds to the residue
class of X. Thus the maximal ideals (X) and (X — 1) of the right hand side
correspond to the maximal ideals p3 := (3,7) and p} := (3,7 — 1) of Ok,
both with residue fields isomorphic to Fs. Since p3p4/30k maps to the ideal
(X)3(X —1) = (X? — X?) = (0) C F3[X]/(X? — X?) via the isomorphism
given above, we have p2p; C 30k. As both sides have the same norm, we
deduce the desired equality.

By §7 Proposition 11, a prime p of Ok divides the different diffp, /7 if and
only if p is ramified over Z. By the multiplicativity of the norm Nm(p)
then divides Nm(diffp,. /z), which is equal to | disc(Ok)| = 3 - 7* - 11% by §7
Theorem 9 and part (b). In view of parts (a) and (c) this leaves only the
possibilities p = p3, p7, p11. But the norm of any prime ideal is the order of
its residue field, and the residue field is a prime field in each of these cases.
Thus the prime factorization of | disc(Ok)| implies that diffo, 7z = psp3pi;.
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*(e) By (a) we have (a)® = (a®) = (72-11) = pSp3,. By unique prime factorization
of ideals this implies that (o) = p?p1;. Using (d) it follows that diffp, 7 =
pspapt; = apspii, so diffp, /7 is principal if and only if pspy; is principal.
Suppose that psp1; = (§) for some element { € Ok. Then |Nmg/g(§)| =
Nm(psp11) = 3 - 11, and so Nmg/g(§) = +33. We will show that this is
impossible. Write ¢ = aa 4 b3 4 ¢y with a,b,c € Z. The Galois conjugates
of a, B, and ~ are given in the following table, where (3 is a primitive 3rd
root of unity:

p € Homg(K, Q) | p(a) | ¢(B) |  ¢(7)
id:a— « Q@ 6] v
priamGa | Ga | G | Tl
9 a Ca 2a | G w

We calculate

Nmgg(€) = & - 01(€) - ¢2(§)
=72 11a®>+ 7 1120 +2- 7% - 11a%c — 7 - 11labe + 7 - 11%b%¢c
+32.7-1lac®> +3-7-11bc* +2- 3 - 29¢°.

This is congruent to —c® mod(7). Since the only cubes in F; are 0 and 41,
it follows that Nmg /(&) is congruent to 0 or 1 modulo (7). As each of
these residue classes is distinct from £33 = £5mod(7), we have obtained
the desired contradiction. Therefore no element & € Ok of norm £33 exists
and diffp, /7 is not principal in O.

Finally, if Ox = Z[w] and f(X) is the minimal polynomial of w over Q, by §7
Proposition 3 we have diffp, /7 = (d—)f((w)) Since diffp,. /7 is not a principal
ideal, it follows that O is not generated by a single element over Z.



3. Let K be a number field, let m be a positive integer, let G, (K) = {z™ | v € K*}
and let L,,(K) be the group of elements © € K* such that in the prime factoriza-
tion of (x), all exponents are multiples of m.

(a) Prove that for every z € L,,(K), there exists a unique fractional ideal a,
such that (z) = al".

(b) Define S,,,(K) := L,,(K)/G(K) and Cl(Ok)[m] := {c € Cl(Ok) | ¢™ = 1}
and show that the map

I Sm(K) — Cl(Ok)[m]
x> [ag]

is a well-defined group homomorphism.
(c) Show that f is surjective.
(d) Find the kernel of f.

Solution:

(a) Let € L, (K) and let (z) = [[,p;"* be the prime factorization of the
principal ideal generated by it. Then a, := [[, p;* satisfies the required
property. The uniqueness of a, follows from the uniqueness of the prime
factorization.

(b) Consider the map f : L, (K) = Cl(Ok), z — [a,]. For any z,y € L, (K)
we have (a,a,)™ = afa)’ = (v)(y) = (vy) and so a,,, = a,a,, by uniqueness.
It follows that f is a homomorphism. Note that f(z)™ = [a,]™ = [a7] =
[(z)] = 1 and hence Im f € Cl(Ok)[m]. Suppose that 2 € G,,(K) and choose
z € K* such that 2™ = z. Then a, = (z) and hence f(z) = 1. Therefore

Gm(K) C Ker f and f factors through S,,, inducing the map f.

(c) Let [a] € Cl(Ok)[m]. Then a™ is principal, say a”™ = (x). But then z €
L, (K) and a = a, by uniqueness. Then f(z) = [a] and f is surjective, as
desired.

(d) Takeany z € L,,(K). Then f(x) = 1if and only if a, = (y) for some y € K*.
By unique factorization of ideals this is equivalent to a* = (y)™, and hence
to (z) = (y™), or again to x = uy™ for some unit u € Of. Thus f(z) =1
if and only if x € O G, (K). Therefore Ker f = OxG,,,(K)/G,,(K). Since
O NGy (K) = (OF)™, the second isomorphism theorem for groups yields a
natural isomorphism Ker f = O /(Ox)™.

*4. (Hilbert’s Theorem 90) Let L/K be a finite Galois extension of fields whose Galois
group is cyclic and generated by o. Show that for any element z € L* with
Nmy /i (z) = 1 there exists an element y € L* with x = o(y)/y.



*5.

Hint: Set n := [L/K] and consider the map

n—1
hi L— L, zh(z):=> o'(z) - [[ o' (x).
1=0 i<j<n
Solution: By Galois theory o has finite order n and the elements id, o, ..., 0" ! €

Homp (L, L) are L-linearly independent. Since all ¢7(z) are non-zero, the map h €
Homp (L, L) is therefore also non-zero. Thus there exists z € L with y := h(z) # 0.
Using the facts that ¢" = id and [],_;, 07 (2) = Nmp g (2) = 1, we compute

x-h(z) = o"(x)- Zai(z) . Haj(:p)

= a(h(2)).
We therefore have xy = o(y) and hence x = o(y)/y, as desired.

Set d := py---p, for prime numbers 2 = p; < p; < ... < p, and consider the
imaginary quadratic number field K := Q(v/—d). For each i write p;Ox = p2.
Show that the subgroup H := {£ € Cl(Ok) | & = 1} has order 2! and is
generated by the ideal classes [p;] with the single relation [p]---[p,] = 1.

Solution: Since d = 2mod(4), we have Oy = Z[v/—d| with discriminant —4d. So
the prime divisors of the discriminant are py,...,p,, and these are precisely the
rational primes that ramify in Og. In particular, for each i we have p;Ox = p?
with a prime ideal p;. For later use observe that, since K is imaginary quadratic,
for any element x € L we have Nmg g(x) = 2z > 0.

Since p? = (p;), the ideal class [p;] lies in the subgroup H. Next, the computation
(vV—=d)? = (d) = (p1---p,) = p?---p? implies that (v/—d) = p;---p, and hence
[p1]---[p,] = [(V—d)] = 1 in H. Conversely consider any subset I C {1,...,r}
such that [],.;[p:] = 1 in H. Then [[,.;p; = (a + bv/—d) for some non-zero



element a + bv/—d € Ok with a,b € Z. Computing

a? +b3d = |NII1K/Q(CL + b\/—_d)’ = Nm@K/Z< sz) H NmOK/Z sz

el el el

we deduce that a* 4 b*d divides [];_, p; = d. In particular b*d < a® + b?d < d and
hence |b] < 1. If b = 0, we have a?|d with d squarefree and therefore [, ., p; =
a®* = 1 and hence I = &. If b = 1 we must have @ = 0 and [],_; p; = d and hence
I ={1,...,r}. Together this implies that the classes [p;] generate a subgroup of
H of order 271,

It remains to show that H is generated by the [p;]. For this consider an arbitrary
ideal class [a] € H. Write a* = (z) and Nmo, /z(a) = (a) with @ > 0. Then

Nm/q(z) = Nmo, /z((x)) = Nmo, jz(a*) = Nmo, /z(a)* = a* = Nmg/g(a)

and hence Nmg g(x/a) = 1. By Hilbert Theorem 90 (see the preceding exercise)
it follows that x/a = y/y for some y € K*. The ideal b := ya then satisfies

b* = y*a® = (y*z) = (yya) = (b)

with b := yya € Q*. Thus b2 = (b) = (b) = (b) = b2 = b and hence b = b.

Now we look at the prime factorization of b. There are three kinds of non-zero
prime ideals of Ok: the ramified primes pq,...,p,, the inert primes of the form
(p), and the pairs of distinct split primes p,p with pp = (p). For any of the
third kind the fact that b = b implies that p and p have the same exponent in
the prime factorization of b. Combining these factors thus yields simply a power

of p. Together it follows that b is a product of some powers of py, ..., p, and some
powers of rational primes p. The latter factors form a principal ideal, so the ideal
class [a] = [ya] = [b] is a product of powers of the classes [p1], ..., [p.], as desired.

Remark: In the lecture we showed that K possesses an everywhere unramified
finite extension of the form L = Q(\/p5,...,+/p}) for suitable pf = =£p;, which
is Galois with a Galois group isomorphic to H. Combined with the result of the
present exercise this illustrates a part of the theory of the Hilbert class field.

. Show that for any root of unity ( € C whose order is not a prime power, the
element 1 — ¢ is a unit in Og(¢)

Solution: By assumption the order n of { is divisible by distinct primes pi, ps.
Set K := Q(¢), and for each i = 1,2 set ¢; := ("7 and K; := Q((;). Then ¢ is
a root of unity of order p;, and so p; € (1 — (;)Ok, by §8 Theorem 3(b). Since
11%% = Z"/pﬁl ¢’ € Ok, it follows that p; € (1 — ()Of. Since (p1,p2) = (1) in Z,
we deduce that 1 € (1 — ()Ok and hence (1 — ()Og = Ok. Thus 1 — ( is a unit
in Ok, as desired.



