D-MATH
Prof. Richard Pink

Solutions 7

Different and Discriminant, Cyclotomic Fields

1. (a) Prove that any Dedekind ring with only finitely many maximal ideals is a principal ideal domain.
(b) Let A be a discrete valuation ring and B its integral closure in a finite separable field extension of $\operatorname{Quot}(A)$. Deduce from (a) that B is a principal ideal domain.
Solution: Part (a) is Theorem 60 in section 1-6 of the book [I. Kaplansky: Commutative Rings. Revised Edition. The University of Chicago Press, Chicago, Ill.-London. 1974], as every non-zero fractional ideal of a Dedekind ring is invertible.
For (b) observe that A is a Dedekind ring with precisely one maximal ideal, say \mathfrak{m}. By $\S 6$ we know that B is a Dedekind ring with only finitely many prime ideals above \mathfrak{m}. Any other prime ideal of B must lie above the zero prime ideal of A and hence be zero itself, because the zero ideal of B is already prime and B has Krull dimension 1 . Thus B is a Dedekind ring with only finitely many maximal ideals. By (a) it is therefore a principal ideal domain.
2. Let $K:=\mathbb{Q}(\alpha)$, where $\alpha:=\sqrt[3]{539}$.
(a) Using exercise 3 of sheet 6 , show that (7) and (11) are totally ramified in \mathcal{O}_{K}. Let \mathfrak{p}_{7} and \mathfrak{p}_{11} denote the prime ideals above (7) and (11), respectively.
(b) Using the discriminant, show that $\mathcal{O}_{K}=\alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$, where $\beta:=\frac{77}{\alpha}$ and $\gamma:=\frac{1+2 \alpha+\beta}{3}$, and that $\operatorname{disc}\left(\mathcal{O}_{K}\right)=-3 \cdot 7^{2} \cdot 11^{2}$.
(c) Show that $3 \mathcal{O}_{K}=\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime}$ for distinct prime ideals \mathfrak{p}_{3} and $\mathfrak{p}_{3}^{\prime}$.
(d) Show that the different of $\mathcal{O}_{K} / \mathbb{Z}$ is $\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}$.
*(e) Using the norm, show that $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}$ is not principal and conclude that \mathcal{O}_{K} is not generated by one element over \mathbb{Z}.

Solution:

(a) The minimal polynomial of α is $X^{3}-7^{2} \cdot 11$, which is Eisenstein at 11 and therefore irreducible. Thus $[K / \mathbb{Q}]=3$. On the other hand K is also generated by $\beta:=\frac{77}{\alpha}$ which has minimal polynomial $X^{3}-7 \cdot 11^{2}$ that is Eisenstein at 7 . By exercise 3 of sheet 6 , the primes (7) and (11) are therefore totally ramified in \mathcal{O}_{K} with decompositions $7 \mathcal{O}_{K}=\mathfrak{p}_{7}^{3}$ for $\mathfrak{p}_{7}:=(7, \beta)$ and $11 \mathcal{O}_{K}=\mathfrak{p}_{11}^{3}$ for $\mathfrak{p}_{11}:=(11, \alpha)$.
(b) Since $\beta=\frac{\alpha^{2}}{7}$, the elements α, β, γ form a basis of K over \mathbb{Q}. We compute the multiplication table for pairs of basis elements:

	α	β	γ
α	7β	$77=-154 \alpha-77 \beta+231 \gamma$	$-51 \alpha-21 \beta+77 \gamma$
β	77	11α	$-99 \alpha-51 \beta+154 \gamma$
γ	$-51 \alpha-21 \beta+77 \gamma$	$-99 \alpha-51 \beta+154 \gamma$	$-67 \alpha-31 \beta+103 \gamma$

This table shows that $A:=\alpha \mathbb{Z} \oplus \beta \mathbb{Z} \oplus \gamma \mathbb{Z}$ is a subring. Since A is finitely generated as a \mathbb{Z}-module, it is integral over \mathbb{Z} and hence contained in \mathcal{O}_{K}. Next, we see from the minimal polynomials of α and β that $\operatorname{Tr}_{K / \mathbb{Q}}(\alpha)=$ $\operatorname{Tr}_{K / \mathbb{Q}}(\beta)=0$. By \mathbb{Q}-linearity this implies that $\operatorname{Tr}_{K / \mathbb{Q}}(\gamma)=\frac{1}{3} \operatorname{Tr}_{K / \mathbb{Q}}(1)=1$. Using the multiplication table we can now calculate the discriminant of A :

$$
\begin{aligned}
\operatorname{disc}(A) & =\operatorname{det}\left(\begin{array}{ccc}
\operatorname{Tr}\left(\alpha^{2}\right) & \operatorname{Tr}(\alpha \beta) & \operatorname{Tr}(\alpha \gamma) \\
\operatorname{Tr}(\beta \alpha) & \operatorname{Tr}\left(\beta^{2}\right) & \operatorname{Tr}(\beta \gamma) \\
\operatorname{Tr}(\gamma \alpha) & \operatorname{Tr}(\gamma \beta) & \operatorname{Tr}\left(\gamma^{2}\right)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{ccc}
0 & 231 & 77 \\
231 & 0 & 154 \\
77 & 154 & 103
\end{array}\right)=-17787=-3 \cdot 7^{2} \cdot 11^{2} .
\end{aligned}
$$

From the lecture course, we know that $\operatorname{disc}(A)=\left[\mathcal{O}_{K}: A\right]^{2} \operatorname{disc}\left(\mathcal{O}_{K}\right)$. Furthermore, by $\S 7$ Proposition 13, both 7 and 11 divide $\operatorname{disc}\left(\mathcal{O}_{K}\right)$ because they are ramified in \mathcal{O}_{K} by part (a). Thus $\left[\mathcal{O}_{K}: \mathfrak{a}\right]^{2}$ must divide $3 \cdot 7 \cdot 11$, which is only possible for $\left[\mathcal{O}_{K}: \mathfrak{a}\right]=1$. Therefore $A=\mathcal{O}_{K}$ with the stated discriminant, as desired.
(c) The multiplication table in (b) shows that $\alpha \equiv \gamma^{2}-\gamma-1 \bmod 3 \mathcal{O}_{K}$ and $\beta \equiv \gamma^{2}-\gamma+1 \bmod 3 \mathcal{O}_{K}$. Thus $\mathcal{O}_{K} / 3 \mathcal{O}_{K}$ is generated as an \mathbb{F}_{3}-algebra by the residue class of γ. Another direct calculation using the multiplication table shows that $\gamma^{3}-\gamma^{2} \equiv 0 \bmod 3 \mathcal{O}_{K}$. Therefore $\mathcal{O}_{K} / 3 \mathcal{O}_{K} \cong \mathbb{F}_{3}[X] /\left(X^{3}-X^{2}\right)=$ $\mathbb{F}_{3}[X] /\left(X^{2}(X-1)\right)$, where the residue class of γ corresponds to the residue class of X. Thus the maximal ideals (X) and $(X-1)$ of the right hand side correspond to the maximal ideals $\mathfrak{p}_{3}:=(3, \gamma)$ and $\mathfrak{p}_{3}^{\prime}:=(3, \gamma-1)$ of \mathcal{O}_{K}, both with residue fields isomorphic to \mathbb{F}_{3}. Since $\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime} / 3 \mathcal{O}_{K}$ maps to the ideal $(X)^{2}(X-1)=\left(X^{3}-X^{2}\right)=(0) \subset \mathbb{F}_{3}[X] /\left(X^{3}-X^{2}\right)$ via the isomorphism given above, we have $\mathfrak{p}_{3}^{2} \mathfrak{p}_{3}^{\prime} \subset 3 \mathcal{O}_{K}$. As both sides have the same norm, we deduce the desired equality.
(d) By $\S 7$ Proposition 11, a prime \mathfrak{p} of \mathcal{O}_{K} divides the different diff $\mathcal{O}_{K} / \mathbb{Z}$ if and only if \mathfrak{p} is ramified over \mathbb{Z}. By the multiplicativity of the norm $\operatorname{Nm}(\mathfrak{p})$ then divides $\operatorname{Nm}\left(\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}\right)$, which is equal to $\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|=3 \cdot 7^{2} \cdot 11^{2}$ by $\S 7$ Theorem 9 and part (b). In view of parts (a) and (c) this leaves only the possibilities $\mathfrak{p}=\mathfrak{p}_{3}, \mathfrak{p}_{7}, \mathfrak{p}_{11}$. But the norm of any prime ideal is the order of its residue field, and the residue field is a prime field in each of these cases. Thus the prime factorization of $\left|\operatorname{disc}\left(\mathcal{O}_{K}\right)\right|$ implies that $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}=\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}$.
*(e) By (a) we have $(\alpha)^{3}=\left(\alpha^{3}\right)=\left(7^{2} \cdot 11\right)=\mathfrak{p}_{7}^{6} \mathfrak{p}_{11}^{3}$. By unique prime factorization of ideals this implies that $(\alpha)=\mathfrak{p}_{7}^{2} \mathfrak{p}_{11}$. Using (d) it follows that diff $\mathcal{O}_{K} / \mathbb{Z}=$ $\mathfrak{p}_{3} \mathfrak{p}_{7}^{2} \mathfrak{p}_{11}^{2}=\alpha \mathfrak{p}_{3} \mathfrak{p}_{11}$, so $\operatorname{diff} \mathcal{O}_{K} / \mathbb{Z}$ is principal if and only if $\mathfrak{p}_{3} \mathfrak{p}_{11}$ is principal.
Suppose that $\mathfrak{p}_{3} \mathfrak{p}_{11}=(\xi)$ for some element $\xi \in \mathcal{O}_{K}$. Then $\left|\operatorname{Nm}_{K / \mathbb{Q}}(\xi)\right|=$ $\operatorname{Nm}\left(\mathfrak{p}_{3} \mathfrak{p}_{11}\right)=3 \cdot 11$, and so $\operatorname{Nm}_{K / \mathbb{Q}}(\xi)= \pm 33$. We will show that this is impossible. Write $\xi=a \alpha+b \beta+c \gamma$ with $a, b, c \in \mathbb{Z}$. The Galois conjugates of α, β, and γ are given in the following table, where ζ_{3} is a primitive 3rd root of unity:

$\varphi \in \operatorname{Hom}_{\mathbb{Q}}(K, \overline{\mathbb{Q}})$	$\varphi(\alpha)$	$\varphi(\beta)$	$\varphi(\gamma)$
id $: \alpha \mapsto \alpha$	α	β	γ
$\varphi_{1}: \alpha \mapsto \zeta_{3} \alpha$	$\zeta_{3} \alpha$	$\zeta_{3}^{2} \beta$	$\frac{1+2 \zeta_{3} \alpha+\zeta_{3}^{2} \beta}{3}$
$\varphi_{2}: \alpha \mapsto \zeta_{3}^{2} \alpha$	$\zeta_{3}^{2} \alpha$	$\zeta_{3} \beta$	$\frac{1+2 \zeta_{3}^{2} \alpha+\zeta_{3} \beta}{3}$

We calculate

$$
\begin{aligned}
\operatorname{Nm}_{K / \mathbb{Q}}(\xi)= & \xi \cdot \varphi_{1}(\xi) \cdot \varphi_{2}(\xi) \\
= & 7^{2} \cdot 11 a^{3}+7 \cdot 11^{2} b^{3}+2 \cdot 7^{2} \cdot 11 a^{2} c-7 \cdot 11 a b c+7 \cdot 11^{2} b^{2} c \\
& +3^{2} \cdot 7 \cdot 11 a c^{2}+3 \cdot 7 \cdot 11 b c^{2}+2 \cdot 3 \cdot 29 c^{3} .
\end{aligned}
$$

This is congruent to $-c^{3} \bmod (7)$. Since the only cubes in \mathbb{F}_{7} are 0 and ± 1, it follows that $\mathrm{Nm}_{K / \mathbb{Q}}(\xi)$ is congruent to 0 or ± 1 modulo (7). As each of these residue classes is distinct from $\pm 33 \equiv \pm 5 \bmod (7)$, we have obtained the desired contradiction. Therefore no element $\xi \in \mathcal{O}_{K}$ of norm ± 33 exists and $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}$ is not principal in \mathcal{O}_{K}.
Finally, if $\mathcal{O}_{K}=\mathbb{Z}[\omega]$ and $f(X)$ is the minimal polynomial of ω over \mathbb{Q}, by $\S 7$ Proposition 3 we have $\operatorname{diff}_{\mathcal{O}_{K} / \mathbb{Z}}=\left(\frac{d f}{d X}(\omega)\right)$. Since diff $\mathcal{O}_{\mathcal{O}_{K} / \mathbb{Z}}$ is not a principal ideal, it follows that \mathcal{O}_{K} is not generated by a single element over \mathbb{Z}.
3. Let K be a number field, let m be a positive integer, let $G_{m}(K):=\left\{x^{m} \mid x \in K^{\times}\right\}$ and let $L_{m}(K)$ be the group of elements $x \in K^{\times}$such that in the prime factorization of (x), all exponents are multiples of m.
(a) Prove that for every $x \in L_{m}(K)$, there exists a unique fractional ideal \mathfrak{a}_{x} such that $(x)=\mathfrak{a}_{x}^{m}$.
(b) Define $S_{m}(K):=L_{m}(K) / G_{m}(K)$ and $\operatorname{Cl}\left(\mathcal{O}_{K}\right)[m]:=\left\{c \in \operatorname{Cl}\left(\mathcal{O}_{K}\right) \mid c^{m}=1\right\}$ and show that the map

$$
\begin{aligned}
f: S_{m}(K) & \rightarrow \mathrm{Cl}\left(\mathcal{O}_{K}\right)[m] \\
x & \mapsto\left[\mathfrak{a}_{x}\right]
\end{aligned}
$$

is a well-defined group homomorphism.
(c) Show that f is surjective.
(d) Find the kernel of f.

Solution:

(a) Let $x \in L_{m}(K)$ and let $(x)=\prod_{i} \mathfrak{p}_{i}^{m a_{i}}$ be the prime factorization of the principal ideal generated by it. Then $\mathfrak{a}_{x}:=\prod_{i} \mathfrak{p}_{i}^{a_{i}}$ satisfies the required property. The uniqueness of \mathfrak{a}_{x} follows from the uniqueness of the prime factorization.
(b) Consider the map $\tilde{f}: L_{m}(K) \rightarrow \operatorname{Cl}\left(\mathcal{O}_{K}\right), x \mapsto\left[\mathfrak{a}_{x}\right]$. For any $x, y \in L_{m}(K)$ we have $\left(\mathfrak{a}_{x} \mathfrak{a}_{y}\right)^{m}=\mathfrak{a}_{x}^{m} \mathfrak{a}_{y}^{m}=(x)(y)=(x y)$ and so $\mathfrak{a}_{x y}=\mathfrak{a}_{x} \mathfrak{a}_{y}$, by uniqueness. It follows that \tilde{f} is a homomorphism. Note that $\tilde{f}(x)^{m}=\left[\mathfrak{a}_{x}\right]^{m}=\left[\mathfrak{a}_{x}^{m}\right]=$ $[(x)]=1$ and hence $\operatorname{Im} \tilde{f} \subset \mathrm{Cl}\left(\mathcal{O}_{K}\right)[m]$. Suppose that $x \in G_{m}(K)$ and choose $z \in K^{\times}$such that $z^{m}=x$. Then $\mathfrak{a}_{x}=(z)$ and hence $\tilde{f}(x)=1$. Therefore $G_{m}(K) \subset \operatorname{Ker} \tilde{f}$ and \tilde{f} factors through S_{m}, inducing the map f.
(c) Let $[\mathfrak{a}] \in \operatorname{Cl}\left(\mathcal{O}_{K}\right)[m]$. Then \mathfrak{a}^{m} is principal, say $\mathfrak{a}^{m}=(x)$. But then $x \in$ $L_{m}(K)$ and $\mathfrak{a}=\mathfrak{a}_{x}$ by uniqueness. Then $f(x)=[\mathfrak{a}]$ and f is surjective, as desired.
(d) Take any $x \in L_{m}(K)$. Then $f(x)=1$ if and only if $\mathfrak{a}_{x}=(y)$ for some $y \in K^{\times}$. By unique factorization of ideals this is equivalent to $\mathfrak{a}_{x}^{m}=(y)^{m}$, and hence to $(x)=\left(y^{m}\right)$, or again to $x=u y^{m}$ for some unit $u \in \mathcal{O}_{K}^{\times}$. Thus $f(x)=1$ if and only if $x \in \mathcal{O}_{K}^{\times} G_{m}(K)$. Therefore $\operatorname{Ker} f=\mathcal{O}_{K}^{\times} G_{m}(K) / G_{m}(K)$. Since $\mathcal{O}_{K}^{\times} \cap G_{m}(K)=\left(\mathcal{O}_{K}^{\times}\right)^{m}$, the second isomorphism theorem for groups yields a natural isomorphism Ker $f \cong \mathcal{O}_{K}^{\times} /\left(\mathcal{O}_{K}^{\times}\right)^{m}$.
*4. (Hilbert's Theorem 90) Let L / K be a finite Galois extension of fields whose Galois group is cyclic and generated by σ. Show that for any element $x \in L^{\times}$with $\mathrm{Nm}_{L / K}(x)=1$ there exists an element $y \in L^{\times}$with $x=\sigma(y) / y$.

Hint: Set $n:=[L / K]$ and consider the map

$$
h: L \longrightarrow L, \quad z \mapsto h(z):=\sum_{i=0}^{n-1} \sigma^{i}(z) \cdot \prod_{i<j<n} \sigma^{j}(x) .
$$

Solution: By Galois theory σ has finite order n and the elements id, $\sigma, \ldots, \sigma^{n-1} \in$ $\operatorname{Hom}_{K}(L, L)$ are L-linearly independent. Since all $\sigma^{j}(x)$ are non-zero, the map $h \in$ $\operatorname{Hom}_{K}(L, L)$ is therefore also non-zero. Thus there exists $z \in L$ with $y:=h(z) \neq 0$. Using the facts that $\sigma^{n}=\mathrm{id}$ and $\prod_{0<j \leqslant n} \sigma^{j}(x)=\operatorname{Nm}_{L / K}(x)=1$, we compute

$$
\begin{aligned}
x \cdot h(z) & =\sigma^{n}(x) \cdot \sum_{i=0}^{n-1} \sigma^{i}(z) \cdot \prod_{i<j<n} \sigma^{j}(x) \\
& =\sum_{i=0}^{n-1} \sigma^{i}(z) \cdot \prod_{i<j \leqslant n} \sigma^{j}(x) \\
& =z \cdot \prod_{0<j \leqslant n} \sigma^{j}(x)+\sum_{i=1}^{n-1} \sigma^{i}(z) \cdot \prod_{i<j \leqslant n} \sigma^{j}(x) \\
& =\sigma^{n}(z) \cdot 1+\sum_{i=1}^{n-1} \sigma^{i}(z) \cdot \prod_{i<j \leqslant n} \sigma^{j}(x) \\
& =\sum_{i=1}^{n} \sigma^{i}(z) \cdot \prod_{i<j \leqslant n} \sigma^{j}(x) \\
& =\sigma(h(z)) .
\end{aligned}
$$

We therefore have $x y=\sigma(y)$ and hence $x=\sigma(y) / y$, as desired.
*5. Set $d:=p_{1} \cdots p_{r}$ for prime numbers $2=p_{1}<p_{2}<\ldots<p_{r}$ and consider the imaginary quadratic number field $K:=\mathbb{Q}(\sqrt{-d})$. For each i write $p_{i} \mathcal{O}_{K}=\mathfrak{p}_{i}^{2}$. Show that the subgroup $H:=\left\{\xi \in \operatorname{Cl}\left(\mathcal{O}_{K}\right) \mid \xi^{2}=1\right\}$ has order 2^{r-1} and is generated by the ideal classes $\left[\mathfrak{p}_{i}\right]$ with the single relation $\left[\mathfrak{p}_{1}\right] \cdots\left[\mathfrak{p}_{r}\right]=1$.
Solution: Since $d \equiv 2 \bmod (4)$, we have $\mathcal{O}_{K}=\mathbb{Z}[\sqrt{-d}]$ with discriminant $-4 d$. So the prime divisors of the discriminant are p_{1}, \ldots, p_{r}, and these are precisely the rational primes that ramify in \mathcal{O}_{K}. In particular, for each i we have $p_{i} \mathcal{O}_{K}=\mathfrak{p}_{i}^{2}$ with a prime ideal \mathfrak{p}_{i}. For later use observe that, since K is imaginary quadratic, for any element $x \in L$ we have $\operatorname{Nm}_{K / \mathbb{Q}}(x)=x \bar{x} \geqslant 0$.
Since $\mathfrak{p}_{i}^{2}=\left(p_{i}\right)$, the ideal class $\left[\mathfrak{p}_{i}\right]$ lies in the subgroup H. Next, the computation $(\sqrt{-d})^{2}=(d)=\left(p_{1} \cdots p_{r}\right)=\mathfrak{p}_{1}^{2} \cdots \mathfrak{p}_{r}^{2}$ implies that $(\sqrt{-d})=\mathfrak{p}_{1} \cdots \mathfrak{p}_{r}$ and hence $\left[\mathfrak{p}_{1}\right] \cdots\left[\mathfrak{p}_{r}\right]=[(\sqrt{-d})]=1$ in H. Conversely consider any subset $I \subset\{1, \ldots, r\}$ such that $\prod_{i \in I}\left[\mathfrak{p}_{i}\right]=1$ in H. Then $\prod_{i \in I} \mathfrak{p}_{i}=(a+b \sqrt{-d})$ for some non-zero
element $a+b \sqrt{-d} \in \mathcal{O}_{K}$ with $a, b \in \mathbb{Z}$. Computing

$$
a^{2}+b^{2} d=\left|\operatorname{Nm}_{K / \mathbb{Q}}(a+b \sqrt{-d})\right|=\operatorname{Nm}_{\mathcal{O}_{K} / \mathbb{Z}}\left(\prod_{i \in I} \mathfrak{p}_{i}\right)=\prod_{i \in I} \mathrm{Nm}_{\mathcal{O}_{K} / \mathbb{Z}}\left(\mathfrak{p}_{i}\right)=\prod_{i \in I} p_{i}
$$

we deduce that $a^{2}+b^{2} d$ divides $\prod_{i=1}^{r} p_{i}=d$. In particular $b^{2} d \leqslant a^{2}+b^{2} d \leqslant d$ and hence $|b| \leqslant 1$. If $b=0$, we have $a^{2} \mid d$ with d squarefree and therefore $\prod_{i \in I} p_{i}=$ $a^{2}=1$ and hence $I=\varnothing$. If $b= \pm 1$ we must have $a=0$ and $\prod_{i \in I} p_{i}=d$ and hence $I=\{1, \ldots, r\}$. Together this implies that the classes $\left[\mathfrak{p}_{i}\right]$ generate a subgroup of H of order 2^{r-1}.
It remains to show that H is generated by the $\left[\mathfrak{p}_{i}\right]$. For this consider an arbitrary ideal class $[\mathfrak{a}] \in H$. Write $\mathfrak{a}^{2}=(x)$ and $\operatorname{Nm}_{\mathcal{O}_{K} / \mathbb{Z}}(\mathfrak{a})=(a)$ with $a>0$. Then

$$
\operatorname{Nm}_{K / \mathbb{Q}}(x)=\operatorname{Nm}_{\mathcal{O}_{K} / \mathbb{Z}}((x))=\operatorname{Nm}_{\mathcal{O}_{K} / \mathbb{Z}}\left(\mathfrak{a}^{2}\right)=\operatorname{Nm}_{\mathcal{O}_{K} / \mathbb{Z}}(\mathfrak{a})^{2}=a^{2}=\operatorname{Nm}_{K / \mathbb{Q}}(a)
$$

and hence $\operatorname{Nm}_{K / \mathbb{Q}}(x / a)=1$. By Hilbert Theorem 90 (see the preceding exercise) it follows that $x / a=\bar{y} / y$ for some $y \in K^{\times}$. The ideal $\mathfrak{b}:=y \mathfrak{a}$ then satisfies

$$
\mathfrak{b}^{2}=y^{2} \mathfrak{a}^{2}=\left(y^{2} x\right)=(y \bar{y} a)=(b)
$$

with $b:=y \bar{y} a \in \mathbb{Q}^{\times}$. Thus $\mathfrak{b}^{2}=(b)=(\bar{b})=\overline{(b)}=\overline{\mathfrak{b}^{2}}=\overline{\mathfrak{b}}^{2}$ and hence $\mathfrak{b}=\overline{\mathfrak{b}}$.
Now we look at the prime factorization of \mathfrak{b}. There are three kinds of non-zero prime ideals of \mathcal{O}_{K} : the ramified primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$, the inert primes of the form (p), and the pairs of distinct split primes $\mathfrak{p}, \overline{\mathfrak{p}}$ with $\mathfrak{p p}=(p)$. For any of the third kind the fact that $\mathfrak{b}=\overline{\mathfrak{b}}$ implies that \mathfrak{p} and $\overline{\mathfrak{p}}$ have the same exponent in the prime factorization of \mathfrak{b}. Combining these factors thus yields simply a power of p. Together it follows that \mathfrak{b} is a product of some powers of $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ and some powers of rational primes p. The latter factors form a principal ideal, so the ideal class $[\mathfrak{a}]=[y \mathfrak{a}]=[\mathfrak{b}]$ is a product of powers of the classes $\left[\mathfrak{p}_{1}\right], \ldots,\left[\mathfrak{p}_{r}\right]$, as desired. Remark: In the lecture we showed that K possesses an everywhere unramified finite extension of the form $L=\mathbb{Q}\left(\sqrt{p_{1}^{*}}, \ldots, \sqrt{p_{r}^{*}}\right)$ for suitable $p_{i}^{*}= \pm p_{i}$, which is Galois with a Galois group isomorphic to H. Combined with the result of the present exercise this illustrates a part of the theory of the Hilbert class field.
6. Show that for any root of unity $\zeta \in \mathbb{C}$ whose order is not a prime power, the element $1-\zeta$ is a unit in $\mathcal{O}_{\mathbb{Q}(\zeta)}$.
Solution: By assumption the order n of ζ is divisible by distinct primes p_{1}, p_{2}. Set $K:=\mathbb{Q}(\zeta)$, and for each $i=1,2$ set $\zeta_{i}:=\zeta^{n / p_{i}}$ and $K_{i}:=\mathbb{Q}\left(\zeta_{i}\right)$. Then ζ_{i} is a root of unity of order p_{i}, and so $p_{i} \in\left(1-\zeta_{i}\right) \mathcal{O}_{K_{i}}$ by $\S 8$ Theorem 3(b). Since $\frac{1-\zeta_{i}}{1-\zeta}=\sum_{j=0}^{n / p_{i}-1} \zeta^{j} \in \mathcal{O}_{K}$, it follows that $p_{i} \in(1-\zeta) \mathcal{O}_{K}$. Since $\left(p_{1}, p_{2}\right)=(1)$ in \mathbb{Z}, we deduce that $1 \in(1-\zeta) \mathcal{O}_{K}$ and hence $(1-\zeta) \mathcal{O}_{K}=\mathcal{O}_{K}$. Thus $1-\zeta$ is a unit in \mathcal{O}_{K}, as desired.

