D-MATH
Prof. Richard Pink

Algebraic Number Theory
FS 2018

Solutions 8

Cyclotomic Fields, Legendre Symbol

1. The Möbius function $\mu: \mathbb{Z} \geqslant 1 \rightarrow \mathbb{Z}$ is defined by

$$
\mu(n):= \begin{cases}(-1)^{k} & \text { if } n \text { is the product of } k \geqslant 0 \text { distinct primes } \\ 0 & \text { otherwise }\end{cases}
$$

(a) Show that for any integer $n \geqslant 1$ we have

$$
\sum_{d \mid n} \mu\left(\frac{n}{d}\right)=\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { if } n>1\end{cases}
$$

(b) Möbius inversion: Let $(G,+)$ be an abelian group and let f and g be arbitrary functions $\mathbb{Z}^{\geqslant 1} \rightarrow G$. Use (a) to show that

$$
\forall n \in \mathbb{Z}^{\geqslant 1}: g(n)=\sum_{d \mid n} f(d)
$$

if and only if

$$
\forall n \in \mathbb{Z}^{\geqslant 1}: f(n)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d) .
$$

(c) Let $n \in \mathbb{Z}^{\geqslant 1}$ and let $\zeta \in \mathbb{C}$ be an $n^{\text {th }}$ primitive root of unit. We define the $n^{\text {th }}$ cyclotomic polynomial as

$$
\Phi_{n}(X):=\prod_{d \in(\mathbb{Z} / n \mathbb{Z})^{\times}}\left(X-\zeta^{d}\right)
$$

Use (b) to show that

$$
\Phi_{n}(X)=\prod_{d \mid n}\left(X^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}
$$

(d) Deduce that Φ_{n} has coefficients in \mathbb{Z} and is irreducible in $\mathbb{Q}[X]$.
(e) Euler's phi function: Deduce that

$$
\varphi(n):=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d
$$

Solution: All sums are extended only over positive divisors.
(a) The first equality follows by reordering the summands. Next write $n=$ $p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ with distinct primes p_{i} and exponents $k_{i}>0$. Then the divisors of n are the numbers $d=p_{1}^{l_{1}} \cdots p_{r}^{l_{r}}$ for all choices of $0 \leqslant l_{i} \leqslant k_{i}$. If any $l_{i}>1$, then $\mu(d)=0$. Hence the divisors with $\mu(d) \neq 0$ are precisely the numbers $d=\prod_{s \in S} s$ for all subsets $S \subset\left\{p_{1}, \ldots, p_{r}\right\}$. We obtain

$$
\sum_{d \mid n} \mu(d)=\sum_{S \subset\left\{p_{1}, \ldots, p_{r}\right\}}(-1)^{|S|}=\sum_{k=0}^{r}\binom{r}{k}(-1)^{k}= \begin{cases}(1-1)^{r}=0 & \text { if } r>0 \\ 1 & \text { if } r=0\end{cases}
$$

(b) Suppose that the first condition holds. We calculate

$$
\begin{aligned}
\sum_{d \mid n} \mu\left(\frac{n}{d}\right) g(d) & =\sum_{d \mid n} \mu\left(\frac{n}{d}\right) \sum_{k \mid d} f(k)=\sum_{k \mid n} f(k) \sum_{d: k|d| n} \mu\left(\frac{n}{d}\right) \\
& =\sum_{k \mid n} f(k) \sum_{d: k|d| n} \mu\left(\frac{n / k}{d / k}\right)=\sum_{k \mid n} f(k) \sum_{d \left\lvert\, \frac{n}{k}\right.} \mu\left(\frac{n / k}{d}\right)=f(n) .
\end{aligned}
$$

Suppose now that the second condition holds. We calculate

$$
\sum_{d \mid n} f(d)=\sum_{d \mid n} \sum_{k \mid d} \mu\left(\frac{d}{k}\right) g(k)=\sum_{k \mid n} g(k) \sum_{d: k|d| n} \mu\left(\frac{d}{k}\right)=\sum_{k \mid n} g(k) \sum_{d: d \left\lvert\, \frac{n}{k}\right.} \mu(d)=g(n),
$$

where the last equality follows from (a).
(c) For any $m \in \mathbb{Z}^{\geqslant 1}$ we have $X^{m}-1=\prod_{d \mid m} \Phi_{d}(X)$, because any $m^{\text {th }}$ root of unity is a primitive $d^{\text {th }}$ root of unity for precisely one $d \mid m$. Applying Möbius inversion (here written multiplicatively) to the map $f: \mathbb{Z} \geqslant 1 \rightarrow \mathbb{C}(X)^{\times}$with $f(m):=\Phi_{m}(X)$ we obtain the desired result.
(d) By (c) the $n^{\text {th }}$ cyclotomic polynomial can be written as $\Phi_{n}=P(X) / Q(X)$ for some polynomials $P, Q \in \mathbb{Z}[X]$ with constant terms ± 1. Thus we can expand it as a power series in $\mathbb{Z}[[X]]$ with constant term ± 1. But by definition Φ_{n} is a polynomial over \mathbb{C}; hence the power series expansion stops and Φ_{n} is a polynomial in $\mathbb{Z}[X]$.
Since $\Phi_{n} \in \mathbb{Q}[X]$ is monic with $\Phi_{n}(\zeta)=0$ and $[\mathbb{Q}(\zeta) / \mathbb{Q}]=\varphi(n)=\operatorname{deg} \Phi_{n}$ it follows that Φ_{n} is the minimal polynomial of ζ over \mathbb{Q} and thus irreducible. (Since ζ is an algebraic integer, this also implies that Φ_{n} has coefficients in \mathbb{Z}.)
(e) By (c), we have

$$
\varphi(n)=\left|(\mathbb{Z} / n \mathbb{Z})^{\times}\right|=\operatorname{deg} \Phi_{n}=\sum_{d \mid n} \operatorname{deg}\left(\left(X^{d}-1\right)^{\mu\left(\frac{n}{d}\right)}\right)=\sum_{d \mid n} \mu\left(\frac{n}{d}\right) d .
$$

2. Determine the possibilities for the group $\mu(K)$ of roots of unity in K for all number fields K of degree 4 over \mathbb{Q}.
Solution: Let $n:=|\mu(K)|$; then K contains the field of $n^{\text {th }}$ roots of unity $\mathbb{Q}\left(\mu_{n}\right)$. Thus $\varphi(n)=\left[\mathbb{Q}\left(\mu_{n}\right) / \mathbb{Q}\right]$ divides $[K / \mathbb{Q}]=4$. A quick computation shows that $\varphi(n) \mid 4$ precisely for the values $n=1,2,3,4,5,6,8,10,12$. Since always $\{ \pm 1\} \subset$ $\mu(K)$, this leaves only the values $n=2,4,6,8,10,12$. We claim that each of these actually occurs for a number field of degree 4 over \mathbb{Q}.
For $n=8,10,12$ the field $\mathbb{Q}\left(\mu_{n}\right)$ already has degree $\varphi(n)=4$ over \mathbb{Q}.
For $n=6$ set $K:=\mathbb{Q}(\sqrt{-3}, \sqrt{7})$. This has degree 4 over \mathbb{Q}, because its quadratic subfields $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{7})$ have distinct discriminants -3 and 28 . The inclusion $\mathbb{Q}(\sqrt{7}) \subset K$ also implies that the discriminant of K / \mathbb{Q} is divisible by 7 . On the other hand K contains the primitive $6^{\text {th }}$ root of unity $\frac{1+\sqrt{-3}}{2}$. Thus 6 divides $|\mu(K)|$ and hence, by the above list $|\mu(K)| \in\{6,12\}$. But $|\mu(K)|=12$ would require that $K=\mathbb{Q}\left(\mu_{12}\right)$, which is impossible, because 7 does not divide the discriminant of $\mathbb{Q}\left(\mu_{12}\right) / \mathbb{Q}$. Thus $|\mu(K)|=6$, as desired.
For $n=4$, see exercise 1 on sheet 5 , where we proved that $\mu(\mathbb{Q}(\sqrt{5}, i))$ has order 4 .
Finally, for $n=2$ note that any subfield of \mathbb{R} contains only the roots of unity $\{ \pm 1\}$. An example of such a field is $K:=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. This has degree 4 over \mathbb{Q}, because its quadratic subfields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(\sqrt{3})$ have distinct discriminants.
3. Prove that for any odd prime number p the following are equivalent:
(a) $p \equiv 1 \bmod (4)$.
(b) p is totally split in $\mathbb{Z}[i]$.
(c) $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.

Solution: $(\mathrm{a}) \Leftrightarrow(\mathrm{b})$: By $\S 8$ Proposition 6 of the lecture course, the prime p splits in $\mathbb{Z}[i]=\mathcal{O}_{\mathbb{Q}\left(\mu_{4}\right)}$ if and only if the image of p in $(\mathbb{Z} / 4 \mathbb{Z})^{\times}$has order 1 . This is equivalent to $p \equiv 1 \bmod (4)$.
$(\mathrm{c}) \Rightarrow(\mathrm{b})$: If $p=a^{2}+b^{2}$, we have $p=(a+b i)(a-b i)=(a+b i) \overline{(a+b i)}$. Since p is not a unit, this shows that neither of $a \pm b i$ is a unit. Thus p is not prime in $\mathbb{Z}[i]$. Being odd, it is also not ramified in $\mathbb{Z}[i]$. It only remains that p is split in $\mathbb{Z}[i]$, and then $p=(a+b i)(a-b i)$ is actually its prime factorization in $\mathbb{Z}[i]$.
$(\mathrm{b}) \Rightarrow(\mathrm{c})$: As $\mathbb{Z}[i]$ is a principal ideal domain, the prime p is totally split in $\mathbb{Z}[i]$ if and only if $p \mathbb{Z}[i]=p_{1} p_{2} \mathbb{Z}[i]$ for inequivalent prime elements p_{1} and p_{2} in $\mathbb{Z}[i]$. Since $\operatorname{Gal}(\mathbb{Q}(i) / \mathbb{Q})$ acts transitively on the primes above p, it follows that in this case $p_{2} \mathbb{Z}[i]=\bar{p}_{1} \mathbb{Z}[i]$. Writing $p_{1}=a+b i$, we deduce that $\left(a^{2}+b^{2}\right) \mathbb{Z}[i]=\left(p_{1} \overline{p_{2}}\right) \mathbb{Z}[i]=$ $p \mathbb{Z}[i]$. As both $a^{2}+b^{2}$ and p are positive, it follows that $a^{2}+b^{2}=p$.
4. Prove that every quadratic number field can be embedded in a cyclotomic field.

Solution: As usual write $K:=\mathbb{Q}(\sqrt{d})$ for a squarefree integer $d= \pm p_{1} \cdots p_{r}$ with distinct prime factors. Rewrite this in the form $d= \pm p_{1}^{*} \cdots p_{r}^{*}$ with $p_{\nu}^{*}:=-p_{\nu}$ if $p_{\nu} \equiv 3 \bmod (4)$ and $p_{\nu}^{*}:=p_{\nu}$ otherwise. Abbreviate $K_{n}:=\mathbb{Q}\left(e^{\frac{2 \pi i}{n}}\right)$. Then, by $\S 8$ Proposition 7 from the lecture course, for all ν with p_{ν} odd we have $\sqrt{p_{\nu}^{*}} \in K_{p_{\nu}}$. We also have $\sqrt{-1} \in K_{4}$, and since $e^{\frac{2 \pi i}{8}}=\frac{1+i}{\sqrt{2}}$ we have $\sqrt{2}=e^{\frac{2 \pi i}{8}}+e^{-\frac{2 \pi i}{8}} \in K_{8}$. Therefore $\sqrt{d}=\sqrt{ \pm 1} \sqrt{p_{1}^{*}} \cdots \sqrt{p_{r}^{*}} \in K_{4 d}$ and hence $K \subset K_{4 d}$.
5. Prove the third case of Gauss's reciprocity law, i.e., that for any odd prime p

$$
\left(\frac{2}{p}\right)=(-1)^{\frac{p^{2}-1}{8}}
$$

Hint: Use that $(1+i)^{2}=2 i$ to evaluate $(1+i)^{p}$ and prove that

$$
\left(\frac{2}{p}\right)(1+i) i^{\frac{p-1}{2}} \equiv 1+i(-1)^{\frac{p-1}{2}} \bmod (p)
$$

Solution: See Theorem 8.6 in Chapter 1 of Neukirch.
6. Calculate the following Legendre symbols:
(a) Calculate ($\frac{3}{p}$) for any odd prime p.
(b) Calculate $\left(\frac{-22}{71}\right)$.

Solution:

(a) If $p \neq \pm 3$, the law of quadratic reciprocity states that $\left(\frac{3}{p}\right)\left(\frac{p}{3}\right)=(-1)^{\frac{p-1}{2}}$. Note that $\left(\frac{p}{3}\right)$ and $(-1)^{\frac{p-1}{2}}$ depend only on the residue classes of p modulo 3 and 4 , respectively. We calculate for $p \neq \pm 3$:

$$
\begin{aligned}
\left(\frac{p}{3}\right) & = \begin{cases}1 & \text { if } p \equiv 1 \bmod (3), \\
-1 & \text { if } p \equiv 2 \bmod (3),\end{cases} \\
(-1)^{\frac{p-1}{2}} & = \begin{cases}1 & p \equiv 1 \bmod (4), \\
-1 & p \equiv 3 \bmod (4) .\end{cases}
\end{aligned}
$$

The cases $p \equiv 0,2 \bmod (4)$ cannot occur, since p is odd. Combining these results with $\left(\frac{3}{ \pm 3}\right)=0$, we obtain

$$
\left(\frac{3}{p}\right)= \begin{cases}0 & \text { if } p \equiv 3,9 \bmod (12) \\ 1 & \text { if } p \equiv 1,11 \bmod (12) \\ -1 & \text { if } p \equiv 5,7 \bmod (12)\end{cases}
$$

(b) It follows from the multiplicativity of the Legendre symbol that $\left(\frac{-22}{71}\right)=$ $\left(\frac{-1}{71}\right)\left(\frac{2}{71}\right)\left(\frac{11}{71}\right)$. We have $\left(\frac{-1}{71}\right)=(-1)^{35}=-1$, and by exercise 5 we obtain $\left(\frac{2}{71}\right)=(-1)^{630}=1$. Furthermore $\left(\frac{11}{71}\right)\left(\frac{71}{11}\right)=(-1)^{5 \cdot 35}=-1$ and

$$
\left(\frac{71}{11}\right)=\left(\frac{5}{11}\right)=(-1)^{2 \cdot 5}\left(\frac{11}{5}\right)=\left(\frac{1}{5}\right)=1 .
$$

Hence $\left(\frac{11}{71}\right)=-1$ and $\left(\frac{-22}{71}\right)=1$.

