
D-MATH Algebraic Number Theory FS 2018
Prof. Richard Pink

Solutions 8
Cyclotomic Fields, Legendre Symbol

1. The Möbius function µ : Z⩾1 → Z is defined by

µ(n) :=

{
(−1)k if n is the product of k ⩾ 0 distinct primes,
0 otherwise.

(a) Show that for any integer n ⩾ 1 we have

∑
d|n

µ(n
d
) =

∑
d|n

µ(d) =

{
1 if n = 1,

0 if n > 1.

(b) Möbius inversion: Let (G,+) be an abelian group and let f and g be arbitrary
functions Z⩾1 → G. Use (a) to show that

∀n ∈ Z⩾1 : g(n) =
∑
d|n

f(d)

if and only if
∀n ∈ Z⩾1 : f(n) =

∑
d|n

µ(n
d
)g(d).

(c) Let n ∈ Z⩾1 and let ζ ∈ C be an nth primitive root of unit. We define the
nth cyclotomic polynomial as

Φn(X) :=
∏

d∈(Z/nZ)×
(X − ζd).

Use (b) to show that

Φn(X) =
∏
d|n

(Xd − 1)µ(
n
d
).

(d) Deduce that Φn has coefficients in Z and is irreducible in Q[X].
(e) Euler’s phi function: Deduce that

φ(n) := |(Z/nZ)×| =
∑
d|n

µ(n
d
)d.
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Solution: All sums are extended only over positive divisors.

(a) The first equality follows by reordering the summands. Next write n =
pk11 · · · pkrr with distinct primes pi and exponents ki > 0. Then the divisors of
n are the numbers d = pl11 · · · plrr for all choices of 0 ⩽ li ⩽ ki. If any li > 1,
then µ(d) = 0. Hence the divisors with µ(d) ̸= 0 are precisely the numbers
d =

∏
s∈S s for all subsets S ⊂ {p1, . . . , pr}. We obtain

∑
d|n

µ(d) =
∑

S⊂{p1,...,pr}

(−1)|S| =
r∑

k=0

(
r

k

)
(−1)k =

{
(1− 1)r = 0 if r > 0,

1 if r = 0.

(b) Suppose that the first condition holds. We calculate∑
d|n

µ(n
d
)g(d) =

∑
d|n

µ(n
d
)
∑
k|d

f(k) =
∑
k|n

f(k)
∑

d: k|d|n

µ(n
d
)

=
∑
k|n

f(k)
∑

d: k|d|n

µ(n/k
d/k

) =
∑
k|n

f(k)
∑
d|n

k

µ(n/k
d
) = f(n).

Suppose now that the second condition holds. We calculate∑
d|n

f(d) =
∑
d|n

∑
k|d

µ( d
k
)g(k) =

∑
k|n

g(k)
∑

d: k|d|n

µ( d
k
) =

∑
k|n

g(k)
∑
d: d|n

k

µ(d) = g(n),

where the last equality follows from (a).
(c) For any m ∈ Z⩾1 we have Xm − 1 =

∏
d|m Φd(X), because any mth root of

unity is a primitive dth root of unity for precisely one d|m. Applying Möbius
inversion (here written multiplicatively) to the map f : Z⩾1 → C(X)× with
f(m) := Φm(X) we obtain the desired result.

(d) By (c) the nth cyclotomic polynomial can be written as Φn = P (X)/Q(X) for
some polynomials P,Q ∈ Z[X] with constant terms ±1. Thus we can expand
it as a power series in Z[[X]] with constant term ±1. But by definition Φn

is a polynomial over C; hence the power series expansion stops and Φn is a
polynomial in Z[X].
Since Φn ∈ Q[X] is monic with Φn(ζ) = 0 and [Q(ζ)/Q] = φ(n) = deg Φn it
follows that Φn is the minimal polynomial of ζ over Q and thus irreducible.
(Since ζ is an algebraic integer, this also implies that Φn has coefficients
in Z.)

(e) By (c), we have

φ(n) = |(Z/nZ)×| = degΦn =
∑
d|n

deg
(
(Xd − 1)µ(

n
d
)
)
=

∑
d|n

µ(n
d
)d.
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2. Determine the possibilities for the group µ(K) of roots of unity in K for all number
fields K of degree 4 over Q.
Solution: Let n := |µ(K)|; then K contains the field of nth roots of unity Q(µn).
Thus φ(n) = [Q(µn)/Q] divides [K/Q] = 4. A quick computation shows that
φ(n)|4 precisely for the values n = 1, 2, 3, 4, 5, 6, 8, 10, 12. Since always {±1} ⊂
µ(K), this leaves only the values n = 2, 4, 6, 8, 10, 12. We claim that each of these
actually occurs for a number field of degree 4 over Q.
For n = 8, 10, 12 the field Q(µn) already has degree φ(n) = 4 over Q.
For n = 6 set K := Q(

√
−3,

√
7). This has degree 4 over Q, because its quadratic

subfields Q(
√
−3) and Q(

√
7) have distinct discriminants −3 and 28. The inclusion

Q(
√
7) ⊂ K also implies that the discriminant of K/Q is divisible by 7. On the

other hand K contains the primitive 6th root of unity 1+
√
−3

2
. Thus 6 divides |µ(K)|

and hence, by the above list |µ(K)| ∈ {6, 12}. But |µ(K)| = 12 would require
that K = Q(µ12), which is impossible, because 7 does not divide the discriminant
of Q(µ12)/Q. Thus |µ(K)| = 6, as desired.
For n = 4, see exercise 1 on sheet 5, where we proved that µ(Q(

√
5, i)) has order 4.

Finally, for n = 2 note that any subfield of R contains only the roots of unity
{±1}. An example of such a field is K := Q(

√
2,
√
3). This has degree 4 over Q,

because its quadratic subfields Q(
√
2) and Q(

√
3) have distinct discriminants.
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3. Prove that for any odd prime number p the following are equivalent:

(a) p ≡ 1mod (4).
(b) p is totally split in Z[i].
(c) p = a2 + b2 for some a, b ∈ Z.

Solution: (a) ⇔ (b): By §8 Proposition 6 of the lecture course, the prime p splits
in Z[i] = OQ(µ4) if and only if the image of p in (Z/4Z)× has order 1. This is
equivalent to p ≡ 1mod (4).
(c) ⇒ (b): If p = a2 + b2, we have p = (a + bi)(a − bi) = (a + bi)(a+ bi). Since
p is not a unit, this shows that neither of a± bi is a unit. Thus p is not prime in
Z[i]. Being odd, it is also not ramified in Z[i]. It only remains that p is split in
Z[i], and then p = (a+ bi)(a− bi) is actually its prime factorization in Z[i].
(b) ⇒ (c): As Z[i] is a principal ideal domain, the prime p is totally split in Z[i] if
and only if pZ[i] = p1p2Z[i] for inequivalent prime elements p1 and p2 in Z[i]. Since
Gal(Q(i)/Q) acts transitively on the primes above p, it follows that in this case
p2Z[i] = p̄1Z[i]. Writing p1 = a + bi, we deduce that (a2 + b2)Z[i] = (p1p̄2)Z[i] =
pZ[i]. As both a2 + b2 and p are positive, it follows that a2 + b2 = p.

4. Prove that every quadratic number field can be embedded in a cyclotomic field.
Solution: As usual write K := Q(

√
d) for a squarefree integer d = ±p1 · · · pr with

distinct prime factors. Rewrite this in the form d = ±p∗1 · · · p∗r with p∗ν := −pν if
pν ≡ 3mod (4) and p∗ν := pν otherwise. Abbreviate Kn := Q(e

2πi
n ). Then, by §8

Proposition 7 from the lecture course, for all ν with pν odd we have √
p∗ν ∈ Kpν .

We also have
√
−1 ∈ K4, and since e

2πi
8 = 1+i√

2
we have

√
2 = e

2πi
8 + e−

2πi
8 ∈ K8.

Therefore
√
d =

√
±1

√
p∗1 · · ·

√
p∗r ∈ K4d and hence K ⊂ K4d.

5. Prove the third case of Gauss’s reciprocity law, i.e., that for any odd prime p(
2
p

)
= (−1)

p2−1
8 .

Hint: Use that (1 + i)2 = 2i to evaluate (1 + i)p and prove that(
2
p

)
(1 + i)i

p−1
2 ≡ 1 + i(−1)

p−1
2 mod (p).

Solution: See Theorem 8.6 in Chapter 1 of Neukirch.
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6. Calculate the following Legendre symbols:

(a) Calculate
(
3
p

)
for any odd prime p.

(b) Calculate
(−22

71

)
.

Solution:

(a) If p ̸= ±3, the law of quadratic reciprocity states that
(
3
p

)(
p
3

)
= (−1)

p−1
2 .

Note that
(
p
3

)
and (−1)

p−1
2 depend only on the residue classes of p modulo 3

and 4, respectively. We calculate for p ̸= ±3:

(
p
3

)
=

{
1 if p ≡ 1mod (3),

−1 if p ≡ 2mod (3),

(−1)
p−1
2 =

{
1 p ≡ 1mod (4),

−1 p ≡ 3mod (4).

The cases p ≡ 0, 2mod (4) cannot occur, since p is odd. Combining these
results with

(
3
±3

)
= 0, we obtain

(
3
p

)
=


0 if p ≡ 3, 9mod (12),

1 if p ≡ 1, 11mod (12),

−1 if p ≡ 5, 7mod (12).

(b) It follows from the multiplicativity of the Legendre symbol that
(−22

71

)
=(−1

71

)(
2
71

)(
11
71

)
. We have

(−1
71

)
= (−1)35 = −1, and by exercise 5 we obtain(

2
71

)
= (−1)630 = 1. Furthermore

(
11
71

)(
71
11

)
= (−1)5·35 = −1 and(

71
11

)
=

(
5
11

)
= (−1)2·5

(
11
5

)
=

(
1
5

)
= 1.

Hence
(
11
71

)
= −1 and

(−22
71

)
= 1.
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