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Prof. Richard Pink )
Solutions 8

CycrLoroMmic FIELDS, LEGENDRE SYMBOL

1. The Mdébius function p : Z7* — Z is defined by

(n) {(—1)’c if n is the product of £ > 0 distinct primes,
u(n) =

0 otherwise.

1 ifn=1,
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(b) Mdbius inversion: Let (G,+) be an abelian group and let f and g be arbitrary
functions Z7! — G. Use (a) to show that

Vn € Z7': g(n) =Y f(d)
dn

if and only if
Vn e Z7': f(n) =Y p(%)g(d).

dln

(c) Let n € Z?* and let ¢ € C be an n'® primitive root of unit. We define the
n™ cyclotomic polynomial as

0, (X) = [ (X = ¢%).

de(Z/nZ)*

Use (b) to show that

©,(X) = [ (x4 = 1)),

dln

(d) Deduce that ®,, has coefficients in Z and is irreducible in Q[X].
(e) Euler’s phi function: Deduce that

p(n) = (Z/nZ)*| =) n(5)d.

din



Solution: All sums are extended only over positive divisors.

(a)

(e)

The first equality follows by reordering the summands. Next write n =
plfl -+ pPr with distinct primes p; and exponents k; > 0. Then the divisors of
n are the numbers d = pll1 - plr for all choices of 0 < I; < k;. If any [; > 1,
then p(d) = 0. Hence the divisors with p(d) # 0 are precisely the numbers
d = [[,cq s for all subsets S C {p1,...,p,}. We obtain

S /r & 1-1)"=0 ifr>0,
S = S =30 (e = {700

djn SC{p1,..pr} k=0

Suppose that the first condition holds. We calculate

S u(mg(d) => " p(m)> fk) =) fk)> (%)

dn dn k|d k|n d: k|d|n
n k n/k
= D) 3 naf) = D7 FR) Yo p(*E) =
kin d: k|d|n kln d| %

Suppose now that the second condition holds. We calculate

STH@ =D u(Bgk) =D gk) > w(H) =D g(k) Y u(d) =g(n),

din din  k|d kln d: k|d|n k|n d:d| %

where the last equality follows from (a).

For any m € Z”! we have X™ — 1 = [ T4 a(X), because any m' root of
unity is a primitive d® root of unity for precisely one d|m. Applying Mébius
inversion (here written multiplicatively) to the map f: Z*' — C(X)* with
f(m) := ®,,(X) we obtain the desired result.

By (c) the n™® cyclotomic polynomial can be written as ®,, = P(X)/Q(X) for
some polynomials P, Q) € Z[X] with constant terms +1. Thus we can expand
it as a power series in Z[[X]] with constant term +1. But by definition ®,,
is a polynomial over C; hence the power series expansion stops and ®,, is a
polynomial in Z[X].

Since ®,, € Q[X] is monic with ®,(¢) = 0 and [Q(¢)/Q] = ¢(n) = deg ¥,, it
follows that ®,, is the minimal polynomial of { over Q and thus irreducible.

(Since ¢ is an algebraic integer, this also implies that &, has coefficients
in Z.)

By (c), we have

¢(n) = [(Z/nZ)*| = deg @y, —Zdeg () Zug

dln dln



2. Determine the possibilities for the group p(K) of roots of unity in K for all number
fields K of degree 4 over Q.

Solution: Let n := |u(K)|; then K contains the field of n'" roots of unity Q(u,).
Thus ¢(n) = [Q(u,)/Q] divides [K/Q] = 4. A quick computation shows that
©(n)|4 precisely for the values n = 1,2,3,4,5,6,8,10,12. Since always {+1} C
w(K), this leaves only the values n = 2, 4,6, 8,10, 12. We claim that each of these
actually occurs for a number field of degree 4 over Q.

For n = 8,10, 12 the field Q(u,) already has degree ¢(n) = 4 over Q.

For n = 6 set K := Q(v/-3, VT ). This has degree 4 over Q, because its quadratic
subfields Q(v/—3) and Q(+/7) have distinct discriminants —3 and 28. The inclusion
Q(v/7) C K also implies that the discriminant of K/Q is divisible by 7. On the
other hand K contains the primitive 6" root of unity %TB Thus 6 divides |u(K)|
and hence, by the above list |u(K)| € {6,12}. But |u(K)| = 12 would require
that K = Q(u12), which is impossible, because 7 does not divide the discriminant
of Q(u12)/Q. Thus |u(K)| = 6, as desired.

For n = 4, see exercise 1 on sheet 5, where we proved that 1(Q(+/5,)) has order 4.

Finally, for n = 2 note that any subfield of R contains only the roots of unity
{£1}. An example of such a field is K := Q(+/2,v/3). This has degree 4 over Q,
because its quadratic subfields @(\/5) and @(\/5) have distinct discriminants.



3. Prove that for any odd prime number p the following are equivalent:

(a) p=1mod (4).
(b) p is totally split in Z][].
(c) p=a®+b? for some a,b € Z.

Solution: (a) < (b): By §8 Proposition 6 of the lecture course, the prime p splits
in Z[i] = Og(u,) if and only if the image of p in (Z/4Z)* has order 1. This is
equivalent to p = 1 mod (4).

(c) = (b): If p = a® + b* we have p = (a + bi)(a — bi) = (a + bi)(a + bi). Since
p is not a unit, this shows that neither of a + bi is a unit. Thus p is not prime in
Z[i]. Being odd, it is also not ramified in Z[i]. It only remains that p is split in

Zli], and then p = (a + bi)(a — bi) is actually its prime factorization in Z[i].

(b) = (c): As Z[i] is a principal ideal domain, the prime p is totally split in Z[:] if
and only if pZ[i] = p1p.Z|i] for inequivalent prime elements p; and ps in Z[i]. Since
Gal(Q(7)/Q) acts transitively on the primes above p, it follows that in this case
p2Zi] = prZ[i). Writing p; = a + bi, we deduce that (a® + b*)Z[i] = (pi1p2)Z[i] =
pZ[i]. As both a® + b* and p are positive, it follows that a® + b* = p.

4. Prove that every quadratic number field can be embedded in a cyclotomic field.

Solution: As usual write K := Q(\/E) for a squarefree integer d = +py - - - p, with
distinct prime factors. Rewrite this in the form d = £p7---p; with p; := —p, if
p, = 3mod (4) and p’, := p, otherwise. Abbreviate K,, := Q(e’'). Then, by §8
Proposition 7 from the lecture course, for all v with p, odd we have \/p} € K, .

We also have /—1 € K, and since e = 1—\;; we have v/2 = o5 + = Ks.

Therefore vd = VEIDPT - /DE € Kyg and hence K C Ky,.

5. Prove the third case of Gauss’s reciprocity law, i.e., that for any odd prime p

Hint: Use that (1 +14)? = 2i to evaluate (1 +4)? and prove that
(%) (1+ 2)2% =1+ i(—l)% mod (p).

Solution: See Theorem 8.6 in Chapter 1 of Neukirch.



6. Calculate the following Legendre symbols:
(a) Calculate (%) for any odd prime p.
(b) Calculate (=22).
Solution:

(a) If p # £3, the law of quadratic reciprocity states that (%) (g) = (—1)%1.

Note that (%) and (—1)% depend only on the residue classes of p modulo 3
and 4, respectively. We calculate for p # +3:

(2) = 1 if p=1mod(3),
3 —1 if p=2mod(3),

(

(

pt 1 p=lmod(4),
—1 p=3mod(4).

The cases p = 0,2mod (4) cannot occur, since p is odd. Combining these

results with ( jE3) = 0, we obtain

0 if p=3,9mod (12),
3\ _ P
(3) =491 ifp=111mod(12),
—1 if p=5,7mod (12).

(b) It follows from the multiplicativity of the Legendre symbol that (_7—2?) =

;11)(721)(%) We have (;—11) = (=1)*® = —1, and by exercise 5 we obtain
Z) = (—=1)%% = 1. Furthermore (3)(8) = (-1)*% = —1 and

71
(3 -

(8) = 0P (8) = () =1
Hence (E) = —1 and (‘7—212) =1

1

71



