D-MATH Algebraic Number Theory FS 2018

Prof. Richard Pink .
Solutions 9

p-ADIC NUMBERS, ABSOLUTE VALUES

1. Determine the p-adic expansions of +1 and liTlp for an arbitrary prime p.

Solution: The answers are

1 =14+0-p+0-p*+...,
-1 =@pE-D+@E-p+@@-1p*+...,
5 = Ltptpi i+,
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The first case is obvious. In the second the partial sums of the right hand side
are —1 + p" = —1 modulo p"Z for all n. The remaining two cases are proved by
multiplying by 1 — p and computing modulo p"Z again.
2. Represent the rational numbers % and —% as H-adic numbers.
Solution: The answers are
= 44+1-54+3-524+1-53+3-5*+... = ...31314,
=1+3-5+1-52+3-53+1-51+... = ... 13131,
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where the digit sequences become periodic with period 2. Both equations are
proved by multiplying with 1 — 52 and expanding modulo 5"Z for all n.

3. (a) Show that a rational number = with ord,(z) = 0 has a purely periodic p-adic
expansion if and only if x € [—1,0).
(b) Show that in @@, the numbers with eventually periodic p-adic expansions are
precisely the rational numbers.

Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source:
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/rationalsinQp.pdf

4. Show that the equation 22 = 2 has a solution in Z; and compute its first few
T-adic digits.

Solution: We have to find a sequence of integers ag, ai, as, -+ € {0,...,6} such
that
(ap 4+ ar7 + as7* 4+ ...)* = 2mod(7")

for every n > 1. For n = 1, we obtain a3 = 2mod(7), which has the solutions
ap = 3 and ap = 4. We choose ag = 3 (the other case is similar). Let n > 1
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and suppose that we found ayg, ..., a,_1 that fit in the above equation mod 7" and
let b,y := 7 ;7" Then b2_| + 2b, 10, 7" = (by_1 + a,7")* = 2mod(7"+") is
equivalent to
by —2 _
m + a, = 0mod(7),
as 7"[(b2_, — 2). This equation possesses a unique solution for a, € {0,...,6}.
We calculate the first few values and obtain

T = 347427246 +7 427 4+74+2.77+4-7%4+6-7"+... = ...6421216213.

Aliter: The equation is equivalent to (22)> = 8 = 1+ 7. Thus a solution is given
by the binomial series
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Dividing by two, we obtain the second solution to the equation
T=4+45-T+4-T+5-T' +4-7+... = ...0245450454.

This is really minus the first solution, as can be seen by adding their p-adic ex-
pansions in the usual way.

For any integer n > 2 consider the map

m [J{0. L. on—1} — [0,1], (@) > am™

i>1 i>1

Show that 7 is surjective and determine its fibers. Prove that the natural topology
on the interval [0, 1] is the quotient topology via m from the product topology on
[[,5110,1,...,n — 1}, where each factor is endowed with the discrete topology.
Interpret this fact by comparing the topologies on the source and the target.

Solution: It is well-known that the map is well-defined and surjective, and that
the only distinct sequences representing the same number are those of the form
(a1,...,ap,n—1,n—1,...) and (ay,...,an_1,a, +1,0,0,...) for arbitrary n > 1
and aq,...,a, with a, <n — 1.

A standard computation from first year calculus shows that 7 is continuous. Thus
for any closed subset X C [0, 1] the inverse image 7~*(X) is closed. On the
other hand, since the source is compact and the target is Hausdorff, the map
is also closed. Thus for any subset X C [0,1], if 77'(X) is closed, then so is
X = 7w(7m (X)) by surjectivity. Therefore [0,1] carries the quotient topology
via 7.

This may be somewhat surprising, because the space [[;.,{0,1,...,n — 1} is to-
tally disconnected, whereas [0, 1] is connected. But 7 is only bijective outside a
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countable subset, and countably many pairs of distinct points are glued with each
other. Roughly speaking 7 therefore pulls different pieces of the totally discon-
nected space [[;5,{0,1,...,n — 1} together to form the nice smooth connected
interval [0, 1].

. Consider the sequence of integers defined by a; := 5 and a;4; := a? for all i > 1.
Write the decimal expansions of these a; below each other. Observe the pattern
and formulate and prove a theorem about it. Explain the pattern by comparison
with p-adic numbers. Does a similar pattern occur with other starting values and
other bases besides 10 for the expansion?

Solution: With a computer algebra system we can compute the first few numbers
as

a;

5}

25

625

390625
152587890625
... 386962890625
... 855712890625
... 793212890625
... 668212890625
10| ...418212890625
11 ]...918212890625
121 ...918212890625
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We observe that for each ¢ > 1 the last ¢ digits of a; coincide with those of a;.

To prove this note that for each 7, we have a; = 52 = 0 modulo 5*. On the other
hand we claim that a; = 1 modulo 2°. Indeed, that is clear for i = 1; and if it holds
for i, writing a; = 1 + 2% shows that ;41 = a? = 1 + 2771 + 2%0? = 1 modulo
2171 50 the claim follows by induction. Together this shows that a; = 0 = a4,
modulo 5° and that a; = 1 = a,4; modulo 2!. Therefore a; = a;; modulo 10,
which precisely means that the last ¢ decimal digits of a; and a;;; coincide.

For a general explanation observe that giving the last ¢ decimal digits of a non-
negative integer is equivalent to giving the integer modulo 10°. By the Chinese
remainder theorem we have Z/10'Z = 7Z/2'7 x Z./5'Z; hence it is also equivalent to
giving the integer modulo 5" and modulo 2¢. For our sequence the above arguments
show that a; — 0 in Zs and a; — 1 in Zs, so the last digits stabilize.

The same phenomenon occurs with any odd a; = m and base 2m, and surely one

can find other cases.

. Let | -| be an absolute value on a field K. Show that |- | is also an absolute value
for every 0 < a < 1.



Solution: Let z,y € K. Since | - | is an absolute value, we have |z|* > 0 with
equality if and only if = 0. Furthermore |zy|* = (|z|ly])* = |z|*|y|*. Also
there exists z € K with |z| ¢ {0,1} and hence |z|* ¢ {0,1}. It remains to
show the triangle inequality. For this note that | |* = ho | | for the function
h: [0,00) — [0,00), a — a®. Since the second derivative h/(t) = a(a — 1)t*72 is
negative on the interval (0,00), this function is concave, i.e., for all a,b € [0, c0)
and ¢ € [0, 1] we have

h(ta + (1 — t)b) > th(a) + (1 — t)h(D).

Since also h(0) = 0, using the following lemma from analysis we can conclude that
|z +y|* < (2] + |y])* < |z|* + |y|*, as desired.

Lemma. Any concave function f: [0,00) — R with f(0) > 0 is subadditive, that
is, it satisfies f(a+0) < f(a) + f(b) for all a,b € [0, c0).

Proof. For all x € [0,00) and ¢ € [0, 1] we have
fltz) = f(tz + (1 =1)0) > tf(z) + (1 = ) f(0) = tf(z).

For all a,b € [0, 00) it follows that

a+b a-+b

r@+ 50 = 1 (ptatn) + £ (5tae)

© _fla+b)+

>
a+b a+b

fla+b)= fla+0).



