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Solutions 9

p-adic Numbers, Absolute Values

1. Determine the p-adic expansions of ±1 and ±1
1−p for an arbitrary prime p.

Solution: The answers are

1 = 1 + 0 · p+ 0 · p2 + . . . ,

−1 = (p− 1) + (p− 1)p+ (p− 1)p2 + . . . ,
1

1−p = 1 + p+ p2 + p3 + . . . ,
−1
1−p = (p− 1) + (p− 2)p+ (p− 2)p2 + (p− 2)p3 + . . . .

The first case is obvious. In the second the partial sums of the right hand side
are −1 + pn ≡ −1 modulo pnZ for all n. The remaining two cases are proved by
multiplying by 1− p and computing modulo pnZ again.

2. Represent the rational numbers 2
3

and −2
3

as 5-adic numbers.

Solution: The answers are

2
3

= 4 + 1 · 5 + 3 · 52 + 1 · 53 + 3 · 54 + . . . = . . . 31314,

−2
3

= 1 + 3 · 5 + 1 · 52 + 3 · 53 + 1 · 54 + . . . = . . . 13131,

where the digit sequences become periodic with period 2. Both equations are
proved by multiplying with 1− 52 and expanding modulo 5nZ for all n.

3. (a) Show that a rational number x with ordp(x) = 0 has a purely periodic p-adic
expansion if and only if x ∈ [−1, 0).

(b) Show that in Qp the numbers with eventually periodic p-adic expansions are
precisely the rational numbers.

Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source:
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/rationalsinQp.pdf

4. Show that the equation x2 = 2 has a solution in Z7 and compute its first few
7-adic digits.

Solution: We have to find a sequence of integers a0, a1, a2, · · · ∈ {0, . . . , 6} such
that

(a0 + a17 + a27
2 + . . . )2 ≡ 2 mod(7n)

for every n > 1. For n = 1, we obtain a20 ≡ 2 mod(7), which has the solutions
a0 = 3 and a0 = 4. We choose a0 = 3 (the other case is similar). Let n > 1
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and suppose that we found a0, . . . , an−1 that fit in the above equation mod 7n and
let bn−1 :=

∑n−1
i=0 ai7

i. Then b2n−1 + 2bn−1an7n ≡ (bn−1 + an7n)2 ≡ 2 mod(7n+1) is
equivalent to

b2n−1 − 2

2 · 7n · bn−1
+ an ≡ 0 mod(7),

as 7n|(b2n−1 − 2). This equation possesses a unique solution for an ∈ {0, . . . , 6}.
We calculate the first few values and obtain

x = 3+7+2·72+6·73+74+2·75+76+2·77+4·78+6·79+ . . . = . . . 6421216213.

Aliter: The equation is equivalent to (2x)2 = 8 = 1 + 7. Thus a solution is given
by the binomial series

2x =
∑
n>0

(
1
2

n

)
· 7k = 1 +

1

2
· 7− 1

8
· 72 +

1

16
· 73 − 5

128
74 + . . . .

Dividing by two, we obtain the second solution to the equation

x = 4 + 5 · 7 + 4 · 72 + 5 · 74 + 4 · 75 + . . . = . . . 0245450454.

This is really minus the first solution, as can be seen by adding their p-adic ex-
pansions in the usual way.

*5. For any integer n > 2 consider the map

π :
∏
i>1

{0, 1, . . . , n− 1} −→ [0, 1], (ai)i 7→
∑
i>1

ain
−i.

Show that π is surjective and determine its fibers. Prove that the natural topology
on the interval [0, 1] is the quotient topology via π from the product topology on∏

i>1{0, 1, . . . , n − 1}, where each factor is endowed with the discrete topology.
Interpret this fact by comparing the topologies on the source and the target.

Solution: It is well-known that the map is well-defined and surjective, and that
the only distinct sequences representing the same number are those of the form
(a1, . . . , an, n− 1, n− 1, . . .) and (a1, . . . , an−1, an + 1, 0, 0, . . .) for arbitrary n > 1
and a1, . . . , an with an < n− 1.

A standard computation from first year calculus shows that π is continuous. Thus
for any closed subset X ⊂ [0, 1] the inverse image π−1(X) is closed. On the
other hand, since the source is compact and the target is Hausdorff, the map
is also closed. Thus for any subset X ⊂ [0, 1], if π−1(X) is closed, then so is
X = π(π−1(X)) by surjectivity. Therefore [0, 1] carries the quotient topology
via π.

This may be somewhat surprising, because the space
∏

i>1{0, 1, . . . , n − 1} is to-
tally disconnected, whereas [0, 1] is connected. But π is only bijective outside a
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countable subset, and countably many pairs of distinct points are glued with each
other. Roughly speaking π therefore pulls different pieces of the totally discon-
nected space

∏
i>1{0, 1, . . . , n − 1} together to form the nice smooth connected

interval [0, 1].

6. Consider the sequence of integers defined by a1 := 5 and ai+1 := a2i for all i > 1.
Write the decimal expansions of these ai below each other. Observe the pattern
and formulate and prove a theorem about it. Explain the pattern by comparison
with p-adic numbers. Does a similar pattern occur with other starting values and
other bases besides 10 for the expansion?

Solution: With a computer algebra system we can compute the first few numbers
as

i ai
1 5
2 25
3 625
4 390625
5 152587890625
6 . . . 386962890625
7 . . . 855712890625
8 . . . 793212890625
9 . . . 668212890625
10 . . . 418212890625
11 . . . 918212890625
12 . . . 918212890625

We observe that for each i > 1 the last i digits of ai coincide with those of ai+1.

To prove this note that for each i, we have ai = 52i−1 ≡ 0 modulo 5i. On the other
hand we claim that ai ≡ 1 modulo 2i. Indeed, that is clear for i = 1; and if it holds
for i, writing ai = 1 + 2ib shows that ai+1 = a2i = 1 + 2i+1b + 22ib2 ≡ 1 modulo
2i+1; so the claim follows by induction. Together this shows that ai ≡ 0 ≡ ai+1

modulo 5i and that ai ≡ 1 ≡ ai+1 modulo 2i. Therefore ai ≡ ai+1 modulo 10i,
which precisely means that the last i decimal digits of ai and ai+1 coincide.

For a general explanation observe that giving the last i decimal digits of a non-
negative integer is equivalent to giving the integer modulo 10i. By the Chinese
remainder theorem we have Z/10iZ ∼= Z/2iZ×Z/5iZ; hence it is also equivalent to
giving the integer modulo 5i and modulo 2i. For our sequence the above arguments
show that ai → 0 in Z5 and ai → 1 in Z2, so the last digits stabilize.

The same phenomenon occurs with any odd a1 = m and base 2m, and surely one
can find other cases.

7. Let | · | be an absolute value on a field K. Show that | · |α is also an absolute value
for every 0 < α 6 1.
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Solution: Let x, y ∈ K. Since | · | is an absolute value, we have |x|α > 0 with
equality if and only if x = 0. Furthermore |xy|α = (|x||y|)α = |x|α|y|α. Also
there exists z ∈ K with |z| /∈ {0, 1} and hence |z|α /∈ {0, 1}. It remains to
show the triangle inequality. For this note that | |α = h ◦ | | for the function
h : [0,∞) → [0,∞), a 7→ aα. Since the second derivative h′′(t) = α(α − 1)tα−2 is
negative on the interval (0,∞), this function is concave, i.e., for all a, b ∈ [0,∞)
and t ∈ [0, 1] we have

h(ta+ (1− t)b) > th(a) + (1− t)h(b).

Since also h(0) = 0, using the following lemma from analysis we can conclude that
|x+ y|α 6 (|x|+ |y|)α 6 |x|α + |y|α, as desired.

Lemma. Any concave function f : [0,∞)→ R with f(0) > 0 is subadditive, that
is, it satisfies f(a+ b) 6 f(a) + f(b) for all a, b ∈ [0,∞).

Proof. For all x ∈ [0,∞) and t ∈ [0, 1] we have

f(tx) = f(tx+ (1− t)0) > tf(x) + (1− t)f(0) > tf(x).

For all a, b ∈ [0,∞) it follows that

f(a) + f(b) = f

(
a

a+ b
(a+ b)

)
+ f

(
b

a+ b
(a+ b)

)
>

a

a+ b
f(a+ b) +

b

a+ b
f(a+ b) = f(a+ b).
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