D-MATH
Prof. Richard Pink

Solutions 9

p-adic Numbers, Absolute Values

1. Determine the p-adic expansions of ± 1 and $\frac{ \pm 1}{1-p}$ for an arbitrary prime p.

Solution: The answers are

$$
\begin{aligned}
1 & =1+0 \cdot p+0 \cdot p^{2}+\ldots \\
-1 & =(p-1)+(p-1) p+(p-1) p^{2}+\ldots \\
\frac{1}{1-p} & =1+p+p^{2}+p^{3}+\ldots \\
\frac{-1}{1-p} & =(p-1)+(p-2) p+(p-2) p^{2}+(p-2) p^{3}+\ldots
\end{aligned}
$$

The first case is obvious. In the second the partial sums of the right hand side are $-1+p^{n} \equiv-1$ modulo $p^{n} \mathbb{Z}$ for all n. The remaining two cases are proved by multiplying by $1-p$ and computing modulo $p^{n} \mathbb{Z}$ again.
2. Represent the rational numbers $\frac{2}{3}$ and $-\frac{2}{3}$ as 5 -adic numbers.

Solution: The answers are

$$
\begin{aligned}
\frac{2}{3} & =4+1 \cdot 5+3 \cdot 5^{2}+1 \cdot 5^{3}+3 \cdot 5^{4}+\ldots \\
-\frac{2}{3} & =1+3 \cdot 5+1 \cdot 5^{2}+3 \cdot 5^{3}+1 \cdot 5^{4}+\ldots
\end{aligned}=\ldots 1314,
$$

where the digit sequences become periodic with period 2. Both equations are proved by multiplying with $1-5^{2}$ and expanding modulo $5^{n} \mathbb{Z}$ for all n.
3. (a) Show that a rational number x with $\operatorname{ord}_{p}(x)=0$ has a purely periodic p-adic expansion if and only if $x \in[-1,0)$.
(b) Show that in \mathbb{Q}_{p} the numbers with eventually periodic p-adic expansions are precisely the rational numbers.

Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source: http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/rationalsinQp.pdf
4. Show that the equation $x^{2}=2$ has a solution in \mathbb{Z}_{7} and compute its first few 7 -adic digits.

Solution: We have to find a sequence of integers $a_{0}, a_{1}, a_{2}, \cdots \in\{0, \ldots, 6\}$ such that

$$
\left(a_{0}+a_{1} 7+a_{2} 7^{2}+\ldots\right)^{2} \equiv 2 \bmod \left(7^{n}\right)
$$

for every $n \geqslant 1$. For $n=1$, we obtain $a_{0}^{2} \equiv 2 \bmod (7)$, which has the solutions $a_{0}=3$ and $a_{0}=4$. We choose $a_{0}=3$ (the other case is similar). Let $n>1$
and suppose that we found a_{0}, \ldots, a_{n-1} that fit in the above equation $\bmod 7^{n}$ and let $b_{n-1}:=\sum_{i=0}^{n-1} a_{i} 7^{i}$. Then $b_{n-1}^{2}+2 b_{n-1} a_{n} 7^{n} \equiv\left(b_{n-1}+a_{n} 7^{n}\right)^{2} \equiv 2 \bmod \left(7^{n+1}\right)$ is equivalent to

$$
\frac{b_{n-1}^{2}-2}{2 \cdot 7^{n} \cdot b_{n-1}}+a_{n} \equiv 0 \bmod (7)
$$

as $7^{n} \mid\left(b_{n-1}^{2}-2\right)$. This equation possesses a unique solution for $a_{n} \in\{0, \ldots, 6\}$. We calculate the first few values and obtain
$x=3+7+2 \cdot 7^{2}+6 \cdot 7^{3}+7^{4}+2 \cdot 7^{5}+7^{6}+2 \cdot 7^{7}+4 \cdot 7^{8}+6 \cdot 7^{9}+\ldots=\ldots 6421216213$.
Aliter: The equation is equivalent to $(2 x)^{2}=8=1+7$. Thus a solution is given by the binomial series

$$
2 x=\sum_{n \geqslant 0}\binom{\frac{1}{2}}{n} \cdot 7^{k}=1+\frac{1}{2} \cdot 7-\frac{1}{8} \cdot 7^{2}+\frac{1}{16} \cdot 7^{3}-\frac{5}{128} 7^{4}+\ldots
$$

Dividing by two, we obtain the second solution to the equation

$$
x=4+5 \cdot 7+4 \cdot 7^{2}+5 \cdot 7^{4}+4 \cdot 7^{5}+\ldots=\ldots 0245450454
$$

This is really minus the first solution, as can be seen by adding their p-adic expansions in the usual way.
${ }^{*} 5$. For any integer $n \geqslant 2$ consider the map

$$
\pi: \prod_{i \geqslant 1}\{0,1, \ldots, n-1\} \longrightarrow[0,1], \quad\left(a_{i}\right)_{i} \mapsto \sum_{i \geqslant 1} a_{i} n^{-i} .
$$

Show that π is surjective and determine its fibers. Prove that the natural topology on the interval $[0,1]$ is the quotient topology via π from the product topology on $\prod_{i \geqslant 1}\{0,1, \ldots, n-1\}$, where each factor is endowed with the discrete topology. Interpret this fact by comparing the topologies on the source and the target.
Solution: It is well-known that the map is well-defined and surjective, and that the only distinct sequences representing the same number are those of the form $\left(a_{1}, \ldots, a_{n}, n-1, n-1, \ldots\right)$ and $\left(a_{1}, \ldots, a_{n-1}, a_{n}+1,0,0, \ldots\right)$ for arbitrary $n \geqslant 1$ and a_{1}, \ldots, a_{n} with $a_{n}<n-1$.
A standard computation from first year calculus shows that π is continuous. Thus for any closed subset $X \subset[0,1]$ the inverse image $\pi^{-1}(X)$ is closed. On the other hand, since the source is compact and the target is Hausdorff, the map is also closed. Thus for any subset $X \subset[0,1]$, if $\pi^{-1}(X)$ is closed, then so is $X=\pi\left(\pi^{-1}(X)\right)$ by surjectivity. Therefore $[0,1]$ carries the quotient topology via π.
This may be somewhat surprising, because the space $\prod_{i \geqslant 1}\{0,1, \ldots, n-1\}$ is totally disconnected, whereas $[0,1]$ is connected. But π is only bijective outside a
countable subset, and countably many pairs of distinct points are glued with each other. Roughly speaking π therefore pulls different pieces of the totally disconnected space $\prod_{i \geqslant 1}\{0,1, \ldots, n-1\}$ together to form the nice smooth connected interval $[0,1]$.
6. Consider the sequence of integers defined by $a_{1}:=5$ and $a_{i+1}:=a_{i}^{2}$ for all $i \geqslant 1$. Write the decimal expansions of these a_{i} below each other. Observe the pattern and formulate and prove a theorem about it. Explain the pattern by comparison with p-adic numbers. Does a similar pattern occur with other starting values and other bases besides 10 for the expansion?
Solution: With a computer algebra system we can compute the first few numbers as

i	a_{i}
1	5
2	25
3	625
4	390625
5	152587890625
6	$\ldots 386962890625$
7	$\ldots 855712890625$
8	$\ldots 793212890625$
9	$\ldots 668212890625$
10	$\ldots 418212890625$
11	$\ldots 918212890625$
12	$\ldots 918212890625$

We observe that for each $i \geqslant 1$ the last i digits of a_{i} coincide with those of a_{i+1}.
To prove this note that for each i, we have $a_{i}=5^{2^{i-1}} \equiv 0$ modulo 5^{i}. On the other hand we claim that $a_{i} \equiv 1$ modulo 2^{i}. Indeed, that is clear for $i=1$; and if it holds for i, writing $a_{i}=1+2^{i} b$ shows that $a_{i+1}=a_{i}^{2}=1+2^{i+1} b+2^{2 i} b^{2} \equiv 1$ modulo 2^{i+1}; so the claim follows by induction. Together this shows that $a_{i} \equiv 0 \equiv a_{i+1}$ modulo 5^{i} and that $a_{i} \equiv 1 \equiv a_{i+1}$ modulo 2^{i}. Therefore $a_{i} \equiv a_{i+1}$ modulo 10^{i}, which precisely means that the last i decimal digits of a_{i} and a_{i+1} coincide.
For a general explanation observe that giving the last i decimal digits of a nonnegative integer is equivalent to giving the integer modulo 10^{i}. By the Chinese remainder theorem we have $\mathbb{Z} / 10^{i} \mathbb{Z} \cong \mathbb{Z} / 2^{i} \mathbb{Z} \times \mathbb{Z} / 5^{i} \mathbb{Z}$; hence it is also equivalent to giving the integer modulo 5^{i} and modulo 2^{i}. For our sequence the above arguments show that $a_{i} \rightarrow 0$ in \mathbb{Z}_{5} and $a_{i} \rightarrow 1$ in \mathbb{Z}_{2}, so the last digits stabilize.
The same phenomenon occurs with any odd $a_{1}=m$ and base $2 m$, and surely one can find other cases.
7. Let $|\cdot|$ be an absolute value on a field K. Show that $|\cdot|^{\alpha}$ is also an absolute value for every $0<\alpha \leqslant 1$.

Solution: Let $x, y \in K$. Since $|\cdot|$ is an absolute value, we have $|x|^{\alpha} \geqslant 0$ with equality if and only if $x=0$. Furthermore $|x y|^{\alpha}=(|x||y|)^{\alpha}=|x|^{\alpha}|y|^{\alpha}$. Also there exists $z \in K$ with $|z| \notin\{0,1\}$ and hence $|z|^{\alpha} \notin\{0,1\}$. It remains to show the triangle inequality. For this note that $\left|\left.\right|^{\alpha}=h \circ\right| \mid$ for the function $h:[0, \infty) \rightarrow[0, \infty), a \mapsto a^{\alpha}$. Since the second derivative $h^{\prime \prime}(t)=\alpha(\alpha-1) t^{\alpha-2}$ is negative on the interval $(0, \infty)$, this function is concave, i.e., for all $a, b \in[0, \infty)$ and $t \in[0,1]$ we have

$$
h(t a+(1-t) b) \geqslant t h(a)+(1-t) h(b) .
$$

Since also $h(0)=0$, using the following lemma from analysis we can conclude that $|x+y|^{\alpha} \leqslant(|x|+|y|)^{\alpha} \leqslant|x|^{\alpha}+|y|^{\alpha}$, as desired.

Lemma. Any concave function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0) \geqslant 0$ is subadditive, that is, it satisfies $f(a+b) \leqslant f(a)+f(b)$ for all $a, b \in[0, \infty)$.

Proof. For all $x \in[0, \infty)$ and $t \in[0,1]$ we have

$$
f(t x)=f(t x+(1-t) 0) \geqslant t f(x)+(1-t) f(0) \geqslant t f(x)
$$

For all $a, b \in[0, \infty)$ it follows that

$$
\begin{aligned}
f(a)+f(b) & =f\left(\frac{a}{a+b}(a+b)\right)+f\left(\frac{b}{a+b}(a+b)\right) \\
& \geqslant \frac{a}{a+b} f(a+b)+\frac{b}{a+b} f(a+b)=f(a+b) .
\end{aligned}
$$

