Solutions 9

p-ADIC NUMBERS, ABSOLUTE VALUES

1. Determine the *p*-adic expansions of ± 1 and $\frac{\pm 1}{1-p}$ for an arbitrary prime *p*. Solution: The answers are

$$\begin{array}{rcl} 1 &=& 1+0 \cdot p + 0 \cdot p^2 + \ldots, \\ -1 &=& (p-1) + (p-1)p + (p-1)p^2 + \ldots, \\ \frac{1}{1-p} &=& 1+p+p^2+p^3 + \ldots, \\ \frac{-1}{1-p} &=& (p-1) + (p-2)p + (p-2)p^2 + (p-2)p^3 + \ldots \end{array}$$

The first case is obvious. In the second the partial sums of the right hand side are $-1 + p^n \equiv -1$ modulo $p^n \mathbb{Z}$ for all n. The remaining two cases are proved by multiplying by 1 - p and computing modulo $p^n \mathbb{Z}$ again.

2. Represent the rational numbers $\frac{2}{3}$ and $-\frac{2}{3}$ as 5-adic numbers.

Solution: The answers are

$$\frac{2}{3} = 4 + 1 \cdot 5 + 3 \cdot 5^2 + 1 \cdot 5^3 + 3 \cdot 5^4 + \dots = \dots 31314, -\frac{2}{3} = 1 + 3 \cdot 5 + 1 \cdot 5^2 + 3 \cdot 5^3 + 1 \cdot 5^4 + \dots = \dots 13131,$$

where the digit sequences become periodic with period 2. Both equations are proved by multiplying with $1-5^2$ and expanding modulo $5^n\mathbb{Z}$ for all n.

- 3. (a) Show that a rational number x with $\operatorname{ord}_p(x) = 0$ has a purely periodic p-adic expansion if and only if $x \in [-1, 0)$.
 - (b) Show that in \mathbb{Q}_p the numbers with eventually periodic *p*-adic expansions are precisely the rational numbers.

Solution: See Theorem 3.1 for (a) and Theorem 2.1 for (b) in this source: http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/rationalsinQp.pdf

4. Show that the equation $x^2 = 2$ has a solution in \mathbb{Z}_7 and compute its first few 7-adic digits.

Solution: We have to find a sequence of integers $a_0, a_1, a_2, \dots \in \{0, \dots, 6\}$ such that

$$(a_0 + a_17 + a_27^2 + \dots)^2 \equiv 2 \mod(7^n)$$

for every $n \ge 1$. For n = 1, we obtain $a_0^2 \equiv 2 \mod(7)$, which has the solutions $a_0 = 3$ and $a_0 = 4$. We choose $a_0 = 3$ (the other case is similar). Let n > 1

and suppose that we found a_0, \ldots, a_{n-1} that fit in the above equation mod 7^n and let $b_{n-1} := \sum_{i=0}^{n-1} a_i 7^i$. Then $b_{n-1}^2 + 2b_{n-1}a_n 7^n \equiv (b_{n-1} + a_n 7^n)^2 \equiv 2 \mod(7^{n+1})$ is equivalent to

$$\frac{b_{n-1}^2 - 2}{2 \cdot 7^n \cdot b_{n-1}} + a_n \equiv 0 \mod(7),$$

as $7^n | (b_{n-1}^2 - 2)$. This equation possesses a unique solution for $a_n \in \{0, \ldots, 6\}$. We calculate the first few values and obtain

$$x = 3 + 7 + 2 \cdot 7^2 + 6 \cdot 7^3 + 7^4 + 2 \cdot 7^5 + 7^6 + 2 \cdot 7^7 + 4 \cdot 7^8 + 6 \cdot 7^9 + \dots = \dots 6421216213.$$

Aliter: The equation is equivalent to $(2x)^2 = 8 = 1 + 7$. Thus a solution is given by the binomial series

$$2x = \sum_{n \ge 0} {\binom{\frac{1}{2}}{n}} \cdot 7^k = 1 + \frac{1}{2} \cdot 7 - \frac{1}{8} \cdot 7^2 + \frac{1}{16} \cdot 7^3 - \frac{5}{128} 7^4 + \dots$$

Dividing by two, we obtain the second solution to the equation

$$x = 4 + 5 \cdot 7 + 4 \cdot 7^2 + 5 \cdot 7^4 + 4 \cdot 7^5 + \dots = \dots 0245450454.$$

This is really minus the first solution, as can be seen by adding their *p*-adic expansions in the usual way.

*5. For any integer $n \ge 2$ consider the map

$$\pi \colon \prod_{i \ge 1} \{0, 1, \dots, n-1\} \longrightarrow [0, 1], \ (a_i)_i \mapsto \sum_{i \ge 1} a_i n^{-i}.$$

Show that π is surjective and determine its fibers. Prove that the natural topology on the interval [0, 1] is the quotient topology via π from the product topology on $\prod_{i\geq 1}\{0, 1, \ldots, n-1\}$, where each factor is endowed with the discrete topology. Interpret this fact by comparing the topologies on the source and the target.

Solution: It is well-known that the map is well-defined and surjective, and that the only distinct sequences representing the same number are those of the form $(a_1, \ldots, a_n, n-1, n-1, \ldots)$ and $(a_1, \ldots, a_{n-1}, a_n+1, 0, 0, \ldots)$ for arbitrary $n \ge 1$ and a_1, \ldots, a_n with $a_n < n-1$.

A standard computation from first year calculus shows that π is continuous. Thus for any closed subset $X \subset [0,1]$ the inverse image $\pi^{-1}(X)$ is closed. On the other hand, since the source is compact and the target is Hausdorff, the map is also closed. Thus for any subset $X \subset [0,1]$, if $\pi^{-1}(X)$ is closed, then so is $X = \pi(\pi^{-1}(X))$ by surjectivity. Therefore [0,1] carries the quotient topology via π .

This may be somewhat surprising, because the space $\prod_{i \ge 1} \{0, 1, \ldots, n-1\}$ is totally disconnected, whereas [0, 1] is connected. But π is only bijective outside a countable subset, and countably many pairs of distinct points are glued with each other. Roughly speaking π therefore pulls different pieces of the totally disconnected space $\prod_{i \ge 1} \{0, 1, \ldots, n-1\}$ together to form the nice smooth connected interval [0, 1].

6. Consider the sequence of integers defined by $a_1 := 5$ and $a_{i+1} := a_i^2$ for all $i \ge 1$. Write the decimal expansions of these a_i below each other. Observe the pattern and formulate and prove a theorem about it. Explain the pattern by comparison with *p*-adic numbers. Does a similar pattern occur with other starting values and other bases besides 10 for the expansion?

Solution: With a computer algebra system we can compute the first few numbers as

i	a_i
1	5
2	25
3	625
4	390625
5	152587890625
6	386962890625
7	$\dots 855712890625$
8	$\dots 793212890625$
9	$\dots 668212890625$
10	$\dots 418212890625$
11	$\dots 918212890625$
12	$\dots 918212890625$

We observe that for each $i \ge 1$ the last *i* digits of a_i coincide with those of a_{i+1} .

To prove this note that for each *i*, we have $a_i = 5^{2^{i-1}} \equiv 0 \mod 5^i$. On the other hand we claim that $a_i \equiv 1 \mod 2^i$. Indeed, that is clear for i = 1; and if it holds for *i*, writing $a_i = 1 + 2^i b$ shows that $a_{i+1} = a_i^2 = 1 + 2^{i+1}b + 2^{2i}b^2 \equiv 1 \mod 2^{i+1}$; so the claim follows by induction. Together this shows that $a_i \equiv 0 \equiv a_{i+1}$ modulo 5^i and that $a_i \equiv 1 \equiv a_{i+1} \mod 2^i$. Therefore $a_i \equiv a_{i+1} \mod 10^i$, which precisely means that the last *i* decimal digits of a_i and a_{i+1} coincide.

For a general explanation observe that giving the last *i* decimal digits of a nonnegative integer is equivalent to giving the integer modulo 10^i . By the Chinese remainder theorem we have $\mathbb{Z}/10^i\mathbb{Z} \cong \mathbb{Z}/2^i\mathbb{Z} \times \mathbb{Z}/5^i\mathbb{Z}$; hence it is also equivalent to giving the integer modulo 5^i and modulo 2^i . For our sequence the above arguments show that $a_i \to 0$ in \mathbb{Z}_5 and $a_i \to 1$ in \mathbb{Z}_2 , so the last digits stabilize.

The same phenomenon occurs with any odd $a_1 = m$ and base 2m, and surely one can find other cases.

7. Let $|\cdot|$ be an absolute value on a field K. Show that $|\cdot|^{\alpha}$ is also an absolute value for every $0 < \alpha \leq 1$.

Solution: Let $x, y \in K$. Since $|\cdot|$ is an absolute value, we have $|x|^{\alpha} \ge 0$ with equality if and only if x = 0. Furthermore $|xy|^{\alpha} = (|x||y|)^{\alpha} = |x|^{\alpha}|y|^{\alpha}$. Also there exists $z \in K$ with $|z| \notin \{0,1\}$ and hence $|z|^{\alpha} \notin \{0,1\}$. It remains to show the triangle inequality. For this note that $||^{\alpha} = h \circ ||$ for the function $h: [0, \infty) \to [0, \infty), a \mapsto a^{\alpha}$. Since the second derivative $h''(t) = \alpha(\alpha - 1)t^{\alpha-2}$ is negative on the interval $(0, \infty)$, this function is *concave*, i.e., for all $a, b \in [0, \infty)$ and $t \in [0, 1]$ we have

$$h(ta + (1 - t)b) \ge th(a) + (1 - t)h(b).$$

Since also h(0) = 0, using the following lemma from analysis we can conclude that $|x + y|^{\alpha} \leq (|x| + |y|)^{\alpha} \leq |x|^{\alpha} + |y|^{\alpha}$, as desired.

Lemma. Any concave function $f: [0, \infty) \to \mathbb{R}$ with $f(0) \ge 0$ is subadditive, that is, it satisfies $f(a+b) \le f(a) + f(b)$ for all $a, b \in [0, \infty)$.

Proof. For all $x \in [0, \infty)$ and $t \in [0, 1]$ we have

$$f(tx) = f(tx + (1-t)0) \ge tf(x) + (1-t)f(0) \ge tf(x).$$

For all $a, b \in [0, \infty)$ it follows that

$$f(a) + f(b) = f\left(\frac{a}{a+b}(a+b)\right) + f\left(\frac{b}{a+b}(a+b)\right)$$
$$\geqslant \frac{a}{a+b}f(a+b) + \frac{b}{a+b}f(a+b) = f(a+b).$$