
D-MATH Algebraic Number Theory FS 2018
Prof. Richard Pink

Solutions 10
p-adic Numbers, Absolute Values, Completion

1. Let p be a prime number.

(a) Show that the sequence 1
10
, 1
102

, 1
103

, . . . does not converge in Qp.
(b) For any a ∈ Z coprime to p show that the sequence (apn)n⩾1 converges in Qp.
(c) Determine this limit.

Solution:

(a) Note that 10−n − 10−n−1 = 9 · 10−n−1 and the latter does not converge
to 0 because no prime factor appears with increasing positive multiplicity.
Therefore the sequence 1

10
, 1
102

, 1
103

, . . . is not a Cauchy sequence in Qp and
thus does not converge.

(b) Let n be a positive integer. Then ap
n+k−pn+k−1 ≡ 1mod pn for k ⩾ 0, because

a is a unit mod pn and |(Z/pnZ)×| = pn − pn−1 divides pn+k − pn+k−1. Hence
ap

n+k ≡ ap
n+k−1

mod pn and inductively, we obtain ap
n+k ≡ ap

n−1
mod pn. It

follows that |apn−1 −ap
n+k | ⩽ p−n and we deduce that {apn}n∈Z⩾1 is a Cauchy

sequence. As Qp is complete, the sequence converges to some element α ∈ Qp.
(c) The above congruences include the fact that ap

n ∈ a + pZ ⊂ a + pZp for
all n. In the limit we therefore find that α ∈ a + pZp. On the other hand
the Cauchy sequence also means that (ap

n
)p − ap

n
= ap

n+1 − ap
n goes to 0

for n → ∞. In the limit we therefore find that αp − α = 0. Thus α is either
0 or a (p − 1)st root of unity. As this leaves at most p different possibilities
for α, and we already know that α ≡ amod p runs through p distinct residue
classes, we deduce that this residue class alone determines α. In conclusion
we find that α is zero if p|a, and otherwise it is the unique (p − 1)st root of
unity in Z×

p which is congruent to a modulo (p).
Note: This α ∈ Zp is called the Teichmüller representative of the residue
class amod p.
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2. Here we consider Qp as an abstract field and include Q∞ := R.

(a) Show that Qp and Qq are not isomorphic for any p ̸= q.
(b) Prove that every automorphism of Qp is trivial.

Hint: Look at which integers are squares in the respective field.

Solution: (a) For any prime number p, the equation x2 = p has a solution in R,
but not in Qp, because every element of Q×

p has the form x = pnu for some n ∈ Z
and u ∈ Z×

p and hence x2 = p2u2 with u2 ∈ Z×
p . Thus Qp ̸∼= R.

For any two prime numbers p ̸= q, without loss of generality we can assume that
q is odd. Choose an integer a with pa ≡ 1mod (q). After replacing a by a + q if
necessary, we can assume that in addition p ∤ a. Then the equation x2 = pa does
not have a solution in Qp for the same reason as above. But we claim that it has
a solution in Qq. Indeed, for every n ⩾ 1 the residue class pa + qnZ lies in the
subgroup 1+ qZ/qnZ of odd order qn−1. Thus the equation x2 = pa has a solution
in 1 + qZ/qnZ, namely (pa)k + qnZ for the integer k := qn−1+1

2
. Varying n, by

§9 Prop. 4 of the lecture course it follows that x2 = pa has a solution in Zq, as
claimed. (Aliter: Use Exercise 6 below.) As the same equation has a solution in
Qp but not in Qq, the fields are not isomorphic.

(b) Let σ be any automorphism of Qp. In each case we exploit the fact that σ
maps the set of squares in Qp bijectively to itself.
In Qp = R the squares are precisely the non-negative real numbers. Thus σ
preserves the sign. Applying this to the difference x − y of two real numbers it
follows that σ preserves the order relation ‘<’. Being order preserving and the
identity on the dense subset Q it must therefore be the identity.
For Qp with p < ∞ we follow Lahtonen:
https://math.stackexchange.com/q/449465 .
For p odd we first prove that an element a ∈ Qp lies in Zp if and only if 1 + pa2 is
a square in Qp. Indeed, if a ∈ Zp, we have X2− 1− pa2 ≡ (X − 1)(X +1)mod (p)
with coprime factors X−1, X+1 ∈ Fp[X]; so by Hensel’s lemma the left hand side
factors in Zp[X] and hence 1 + pa2 is a square in Qp. Conversely, if a ∈ Qp ∖ Zp,
then 0 > ordp(pa

2) = ordp(1+pa2) is odd and so 1+pa2 cannot be a square in Qp.
For p = 2 we show that an element a ∈ Q2 lies in Z2 if and only if 1 + 8a2 is
a square in Q2. Suppose first that a ∈ Z2. Then 1 + 8a2 is a square in Q2 if
and only if X2 − 1 − 8a2 = 0 has a solution in Q2. Substituting X by 2Y + 1
and dividing by 4, we obtain the equivalent equation Y 2 + Y − 2a2 = 0. Since
Y 2 + Y − 2a2 ≡ Y (Y + 1)mod (2) with coprime factors Y , Y + 1 ∈ F2[X], we
can apply Hensel’s lemma and deduce that 1 + 8a2 is a square in Q2. Conversely,
suppose that a ∈ Q2 ∖ Z2, that is ord2(a) < 0. If ord2(a) ⩽ −2, analogously to
the case when p is odd, it follows that ord2(1 + 8a2) is odd and hence 1 + 8a2 is
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not a square in Q2. By contrast, if ord2(a) = −1, then 2a ∈ Z×
2 = 1 + 2Z2 and

hence 1+8a2 ≡ 3mod (4). In particular ord2(1+8a2) = 0, so if 1+8a2 is a square
in Q2, it is already the square of an element in Z×

2 = 1+2Z2. But for every b ∈ Z2

we have (1 + 2b)2 = 1 + 4b + 4b2 ≡ 1mod (4). Thus 1 + 8a2 ≡ 3mod (4) implies
that 1 + 8a2 is not a square in Q2.
In all cases we have thus proved that an element a ∈ Qp lies in Zp if and only if
1 + qa2 is a square in Qp for q := p or 8. Since σ(1 + qa2) = 1 + qσ(a)2 and the
set of squares is preserved by σ, it follows that σ(Zp) = Zp. As σ is the identity
on Q, for all α ∈ Q and all k ∈ Z it follows that σ(α + pkZp) = α + pkZp.
Now consider an arbitrary a ∈ Qp. Since Q is dense in Qp, for any k ∈ Z there
exists an α ∈ Q ∩ (a + pkZp). The strict triangle inequality then implies that
a + pkZp = α + pkZp. Thus it follows that σ(a + pkZp) = a + pkZp. Since∩

k⩾0(α + pkZp) = {a}, we conclude that σ(a) = a, as desired.

*3. Show that there is a canonical isomorphism Z[[X]]/(X − p)
∼−→ Zp.

Solution: See Proposition 2.6 in Section 2 of Chapter 2 of Neukirch.

4. Show that for any absolute value | | on a field K, the maps +, · : K ×K → K and
( )−1 : K ∖ {0} → K ∖ {0} are continuous for the induced topology.
Solution: Since K is a metric space and K × K is endowed with the product
metric, it suffices to check the sequential criterion for continuity in all cases. Let
(xn, yn)n⩾0 be a sequence in K ×K converging to (x, y). Then

|(xn + yn)− (x+ y)| ⩽ |xn − x|+ |yn − y| n→∞−−−→ 0,

because xn → x and yn → y as n → ∞ and hence addition is continuous. Fur-
thermore

|xnyn − xy| = |(xn − x+ x)(yn − y + y)− xy|
= |(xn − x)(yn − y) + (xn − x)y + x(yn − y)|
⩽ |(xn − x)(yn − y)|+ |(xn − x)y|+ |x(yn − y)|
= |xn − x||yn − y|+ |y||xn − x|+ |x||yn − y| n→∞−−−→ 0

and it follows that multiplication is continuous. To show that the inverse is con-
tinuous, suppose that x ̸= 0. Then |xn| → |x| > 0 as | | : K → R is continuous, so
xn ̸= 0 for all n ≫ 0 and |xn|−1 remains bounded for n → ∞. Thus

|x−1
n − x−1| = |x−1

n x−1||x− xn| = |xn|−1|x|−1|x− xn|
n→∞−−−→ 0,

as desired.
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5. Let K be a complete non-archimedean field. Show that a series
∑∞

n=0 an with
summands in K converges if and only if lim

n→∞
an = 0 in K.

Solution: Suppose that an does not converge to 0. Then
∣∣∑m+1

n=0 an −
∑m

n=0 an
∣∣ =

|am+1| ̸→ 0 and it follows that the partial sums do not form a Cauchy sequence
and hence

∑∞
n=0 an does not converge.

Conversely, suppose that lim
n→∞

an = 0. Let m, k be positive integers. Recall that,
by §10 Proposition 5, the metric induced by the norm on the non-archimedean
field K is an ultrametric satisfying the strong triangle inequality. We calculate∣∣∣∣∣

m+k∑
n=0

an −
m∑

n=0

an

∣∣∣∣∣ =
∣∣∣∣∣

m+k∑
n=m+1

an

∣∣∣∣∣ ⩽ max{|am+1|, . . . , |am+k|}
m→∞−−−→ 0

and conclude that the partial sums form a Cauchy sequence and hence the infinite
series converges as K is complete.

6. Let K be a field that is complete with respect to a p-adic absolute value. Consider
x ∈ K with |x| < 1 and α, β ∈ Zp and m,n ∈ Z with n ⩾ 0. Prove:

(a) The binomial coefficient
(
α
n

)
:= α(α−1)···(α−n+1)

n!
lies in Zp.

(b) Fα(x) :=
∑

n⩾0

(
α
n

)
xn ∈ K is well-defined and satisfies |Fα(x)− 1| < 1.

(c) Fα+β(x) = Fα(x) · Fβ(x).
(d) Fmα(x) = Fα(x)

m.
(e) Fm(x) = (1 + x)m.
(f) y := Fm/n(x) is the only solution of the equation yn = (1+x)m with |y−1| <

1, if p ∤ n.

This therefore justifies writing Fα(x) = (1 + x)α.

*(g) Do we then also have ((1 + x)α)β = (1 + x)αβ?

Solution:

(a) Since Z is dense in Zp, we can find a sequence of non-negative integers
(ak)k∈Z⩾1 such that lim

k→∞
ak = α. It follows that lim

k→∞

(
ak
n

)
=

(
α
n

)
, because(

X
n

)
∈ Zp[X] is a polynomial and it follows from exercise 4 that polynomial

functions are continuous. As
(
ak
n

)
∈ Z ⊂ Zp for all k and Zp is closed in Qp

it follows that the limit
(
α
n

)
also lies in Zp.

(b) By (a), we have
(
α
n

)
∈ Zp and hence |

(
α
n

)
| ⩽ 1. Since |x| < 1 and the norm

is multiplicative, it follows that
∣∣(α

n

)
xn

∣∣ ⩽ |x|n → 0 as n → ∞. By exercise
5 the series Fα(x) converges. Choosing m ≫ 0 such that

∣∣∑
n>m

(
α
n

)
xn

∣∣ < 1,
we calculate

|Fα(x)−1| =
∣∣∑

n⩾1

(
α
n

)
xn

∣∣ ⩽ max
{∣∣(α

n

)
xn

∣∣ : 1 ⩽ n ⩽ m
}
∪
{∣∣∑

n>m

(
α
n

)
xn

∣∣} < 1.
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(c) We will use the fact that for convergent series
∑

n⩾0 an and
∑

n⩾0 bn in a non-
archimedean complete field K the product can be calculated as the Cauchy
product

∑
k⩾0

∑
n+m=k ambn. A reference for this fact and many other useful

statements about infinite series can be found for example in the following
expository text by Keith Conrad:
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/infseriespadic.
pdf
We calculate

Fα(x) · Fβ(x) =
∑
n⩾0

xn

n∑
k=0

(
α

k

)(
β

n− k

)
,

and hence the desired equality follows from the following
Claim: We have

∑n
k=0

(
α
k

)(
β

n−k

)
=

(
α+β
n

)
.

Proof. In the case when α, β ∈ Z⩾0, this is just the Vandermonde identity.
For the general case note that the polynomials

∑n
k=0

(
X
k

)(
Y

n−k

)
and

(
X+Y
n

)
in

Zp[X,Y ] agree on the set (Z⩾0)2 which is dense in (Zp)
2. Because polynomial

functions are continuous it follows that they agree everywhere.

(d) For m = 0 this is clear from the definition. For m > 0 it follows by induction
from (c). For m < 0 just observe that by (c) we have Fmα(x) · F−mα(x) =
F0(x) = 1 and therefore Fmα(x) = F−mα(x)

−1 = (Fα(x)
−m)−1 = Fα(x)

m.
(e) For m ⩾ 0 this follows immediately from the binomial theorem. For m < 0

we deduce from (d) that Fm(x) = F−m(x)
−1 = ((1 + x)−m)−1 = (1 + x)m.

(f) We calculate
yn = Fm/n(x)

n (d)
= Fm(x)

(e)
= (1 + x)m.

Moreover |y − 1| < 1 by (a), which is equivalent to saying that y ∈ OK

and y ≡ 1mod (p). It remains to show that y is the only root of f(X) :=
Xn − (1 + x)m ∈ OK [X] that is ≡ 1mod (p). But since n ̸≡ 0mod p, we
have f ′(y) = nyn−1 ̸≡ 0mod (p). Thus ymod p is a simple root of f mod p;
so by Hensel’s lemma f has precisely one root in OK that is ≡ 1mod (p), as
desired.

*(g) Yes, by a similar, though somewhat more elaborate, reasoning as in (c).
Likewise we have ((1 + x)(1 + y))α = (1 + x)α(1 + y)α whenever |x|, |y| < 1.
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*7. (Newton method for finding zeros of a polynomial) Let p be a prime number, let
f ∈ Zp[X] and let α ∈ Zp be a root of f such that f ′(α) ̸= 0. Set

U := {a ∈ Zp | |f(a)| < |f ′(a)|2 and |α− a| < |f ′(a)|},

which is an open neighborhood of α in Zp. Let a1 ∈ U and recursively define
an+1 := an − f(an)

f ′(an)
for n ⩾ 1. Show that for all n:

(a) an ∈ U ,
(b) |f ′(an)| = |f ′(a1)|,
(c) |f(an)| ⩽ |f ′(a1)|2t2

n−1 for t = |f(a1)/f ′(a1)| < 1.

Moreover, show that lim
n→∞

an = α and |f ′(α)| = |f ′(a1)|.

Solution: See the proof of Theorem 4.1 in Section 5 of the following notes by
Keith Conrad:
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/hensel.pdf .
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