D-MATH
Prof. Richard Pink

Solutions 10

p-adic Numbers, Absolute Values, Completion

1. Let p be a prime number.
(a) Show that the sequence $\frac{1}{10}, \frac{1}{10^{2}}, \frac{1}{10^{3}}, \ldots$ does not converge in \mathbb{Q}_{p}.
(b) For any $a \in \mathbb{Z}$ coprime to p show that the sequence $\left(a^{p^{n}}\right)_{n \geqslant 1}$ converges in \mathbb{Q}_{p}.
(c) Determine this limit.

Solution:

(a) Note that $10^{-n}-10^{-n-1}=9 \cdot 10^{-n-1}$ and the latter does not converge to 0 because no prime factor appears with increasing positive multiplicity. Therefore the sequence $\frac{1}{10}, \frac{1}{10^{2}}, \frac{1}{10^{3}}, \ldots$ is not a Cauchy sequence in \mathbb{Q}_{p} and thus does not converge.
(b) Let n be a positive integer. Then $a^{p^{n+k}-p^{n+k-1}} \equiv 1 \bmod p^{n}$ for $k \geqslant 0$, because a is a unit $\bmod p^{n}$ and $\left|\left(\mathbb{Z} / p^{n} \mathbb{Z}\right)^{\times}\right|=p^{n}-p^{n-1}$ divides $p^{n+k}-p^{n+k-1}$. Hence $a^{p^{n+k}} \equiv a^{p^{n+k-1}} \bmod p^{n}$ and inductively, we obtain $a^{p^{n+k}} \equiv a^{p^{n-1}} \bmod p^{n}$. It follows that $\left|a^{p^{n-1}}-a^{p^{n+k}}\right| \leqslant p^{-n}$ and we deduce that $\left\{a^{p^{n}}\right\}_{n \in \mathbb{Z} \geqslant 1}$ is a Cauchy sequence. As \mathbb{Q}_{p} is complete, the sequence converges to some element $\alpha \in \mathbb{Q}_{p}$.
(c) The above congruences include the fact that $a^{p^{n}} \in a+p \mathbb{Z} \subset a+p \mathbb{Z}_{p}$ for all n. In the limit we therefore find that $\alpha \in a+p \mathbb{Z}_{p}$. On the other hand the Cauchy sequence also means that $\left(a^{p^{n}}\right)^{p}-a^{p^{n}}=a^{p^{n+1}}-a^{p^{n}}$ goes to 0 for $n \rightarrow \infty$. In the limit we therefore find that $\alpha^{p}-\alpha=0$. Thus α is either 0 or a $(p-1)^{\text {st }}$ root of unity. As this leaves at most p different possibilities for α, and we already know that $\alpha \equiv a \bmod p$ runs through p distinct residue classes, we deduce that this residue class alone determines α. In conclusion we find that α is zero if $p \mid a$, and otherwise it is the unique $(p-1)^{\text {st }}$ root of unity in \mathbb{Z}_{p}^{\times}which is congruent to a modulo (p).
Note: This $\alpha \in \mathbb{Z}_{p}$ is called the Teichmüller representative of the residue class $a \bmod p$.
2. Here we consider \mathbb{Q}_{p} as an abstract field and include $\mathbb{Q}_{\infty}:=\mathbb{R}$.
(a) Show that \mathbb{Q}_{p} and \mathbb{Q}_{q} are not isomorphic for any $p \neq q$.
(b) Prove that every automorphism of \mathbb{Q}_{p} is trivial.

Hint: Look at which integers are squares in the respective field.
Solution: (a) For any prime number p, the equation $x^{2}=p$ has a solution in \mathbb{R}, but not in \mathbb{Q}_{p}, because every element of \mathbb{Q}_{p}^{\times}has the form $x=p^{n} u$ for some $n \in \mathbb{Z}$ and $u \in \mathbb{Z}_{p}^{\times}$and hence $x^{2}=p^{2} u^{2}$ with $u^{2} \in \mathbb{Z}_{p}^{\times}$. Thus $\mathbb{Q}_{p} \not \approx \mathbb{R}$.
For any two prime numbers $p \neq q$, without loss of generality we can assume that q is odd. Choose an integer a with $p a \equiv 1 \bmod (q)$. After replacing a by $a+q$ if necessary, we can assume that in addition $p \nmid a$. Then the equation $x^{2}=p a$ does not have a solution in \mathbb{Q}_{p} for the same reason as above. But we claim that it has a solution in \mathbb{Q}_{q}. Indeed, for every $n \geqslant 1$ the residue class $p a+q^{n} \mathbb{Z}$ lies in the subgroup $1+q \mathbb{Z} / q^{n} \mathbb{Z}$ of odd order q^{n-1}. Thus the equation $x^{2}=p a$ has a solution in $1+q \mathbb{Z} / q^{n} \mathbb{Z}$, namely $(p a)^{k}+q^{n} \mathbb{Z}$ for the integer $k:=\frac{q^{n-1}+1}{2}$. Varying n, by $\S 9$ Prop. 4 of the lecture course it follows that $x^{2}=p a$ has a solution in \mathbb{Z}_{q}, as claimed. (Aliter: Use Exercise 6 below.) As the same equation has a solution in \mathbb{Q}_{p} but not in \mathbb{Q}_{q}, the fields are not isomorphic.
(b) Let σ be any automorphism of \mathbb{Q}_{p}. In each case we exploit the fact that σ maps the set of squares in \mathbb{Q}_{p} bijectively to itself.
In $\mathbb{Q}_{p}=\mathbb{R}$ the squares are precisely the non-negative real numbers. Thus σ preserves the sign. Applying this to the difference $x-y$ of two real numbers it follows that σ preserves the order relation ' $<$ '. Being order preserving and the identity on the dense subset \mathbb{Q} it must therefore be the identity.
For \mathbb{Q}_{p} with $p<\infty$ we follow Lahtonen:
https://math.stackexchange.com/q/449465.
For p odd we first prove that an element $a \in \mathbb{Q}_{p}$ lies in \mathbb{Z}_{p} if and only if $1+p a^{2}$ is a square in \mathbb{Q}_{p}. Indeed, if $a \in \mathbb{Z}_{p}$, we have $X^{2}-1-p a^{2} \equiv(X-1)(X+1) \bmod (p)$ with coprime factors $X-1, X+1 \in \mathbb{F}_{p}[X]$; so by Hensel's lemma the left hand side factors in $\mathbb{Z}_{p}[X]$ and hence $1+p a^{2}$ is a square in \mathbb{Q}_{p}. Conversely, if $a \in \mathbb{Q}_{p} \backslash \mathbb{Z}_{p}$, then $0>\operatorname{ord}_{p}\left(p a^{2}\right)=\operatorname{ord}_{p}\left(1+p a^{2}\right)$ is odd and so $1+p a^{2}$ cannot be a square in \mathbb{Q}_{p}. For $p=2$ we show that an element $a \in \mathbb{Q}_{2}$ lies in \mathbb{Z}_{2} if and only if $1+8 a^{2}$ is a square in \mathbb{Q}_{2}. Suppose first that $a \in \mathbb{Z}_{2}$. Then $1+8 a^{2}$ is a square in \mathbb{Q}_{2} if and only if $X^{2}-1-8 a^{2}=0$ has a solution in \mathbb{Q}_{2}. Substituting X by $2 Y+1$ and dividing by 4 , we obtain the equivalent equation $Y^{2}+Y-2 a^{2}=0$. Since $Y^{2}+Y-2 a^{2} \equiv Y(Y+1) \bmod (2)$ with coprime factors $Y, Y+1 \in \mathbb{F}_{2}[X]$, we can apply Hensel's lemma and deduce that $1+8 a^{2}$ is a square in \mathbb{Q}_{2}. Conversely, suppose that $a \in \mathbb{Q}_{2} \backslash \mathbb{Z}_{2}$, that is $\operatorname{ord}_{2}(a)<0$. If $\operatorname{ord}_{2}(a) \leqslant-2$, analogously to the case when p is odd, it follows that $\operatorname{ord}_{2}\left(1+8 a^{2}\right)$ is odd and hence $1+8 a^{2}$ is
not a square in \mathbb{Q}_{2}. By contrast, if $\operatorname{ord}_{2}(a)=-1$, then $2 a \in \mathbb{Z}_{2}^{\times}=1+2 \mathbb{Z}_{2}$ and hence $1+8 a^{2} \equiv 3 \bmod (4)$. In particular $\operatorname{ord}_{2}\left(1+8 a^{2}\right)=0$, so if $1+8 a^{2}$ is a square in \mathbb{Q}_{2}, it is already the square of an element in $\mathbb{Z}_{2}^{\times}=1+2 \mathbb{Z}_{2}$. But for every $b \in \mathbb{Z}_{2}$ we have $(1+2 b)^{2}=1+4 b+4 b^{2} \equiv 1 \bmod (4)$. Thus $1+8 a^{2} \equiv 3 \bmod (4)$ implies that $1+8 a^{2}$ is not a square in \mathbb{Q}_{2}.
In all cases we have thus proved that an element $a \in \mathbb{Q}_{p}$ lies in \mathbb{Z}_{p} if and only if $1+q a^{2}$ is a square in \mathbb{Q}_{p} for $q:=p$ or 8 . Since $\sigma\left(1+q a^{2}\right)=1+q \sigma(a)^{2}$ and the set of squares is preserved by σ, it follows that $\sigma\left(\mathbb{Z}_{p}\right)=\mathbb{Z}_{p}$. As σ is the identity on \mathbb{Q}, for all $\alpha \in \mathbb{Q}$ and all $k \in \mathbb{Z}$ it follows that $\sigma\left(\alpha+p^{k} \mathbb{Z}_{p}\right)=\alpha+p^{k} \mathbb{Z}_{p}$.
Now consider an arbitrary $a \in \mathbb{Q}_{p}$. Since \mathbb{Q} is dense in \mathbb{Q}_{p}, for any $k \in \mathbb{Z}$ there exists an $\alpha \in \mathbb{Q} \cap\left(a+p^{k} \mathbb{Z}_{p}\right)$. The strict triangle inequality then implies that $a+p^{k} \mathbb{Z}_{p}=\alpha+p^{k} \mathbb{Z}_{p}$. Thus it follows that $\sigma\left(a+p^{k} \mathbb{Z}_{p}\right)=a+p^{k} \mathbb{Z}_{p}$. Since $\bigcap_{k \geqslant 0}\left(\alpha+p^{k} \mathbb{Z}_{p}\right)=\{a\}$, we conclude that $\sigma(a)=a$, as desired.
*3. Show that there is a canonical isomorphism $\mathbb{Z}[[X]] /(X-p) \xrightarrow{\sim} \mathbb{Z}_{p}$.
Solution: See Proposition 2.6 in Section 2 of Chapter 2 of Neukirch.
4. Show that for any absolute value || on a field K, the maps $+, \cdot: K \times K \rightarrow K$ and ()$^{-1}: K \backslash\{0\} \rightarrow K \backslash\{0\}$ are continuous for the induced topology.

Solution: Since K is a metric space and $K \times K$ is endowed with the product metric, it suffices to check the sequential criterion for continuity in all cases. Let $\left(x_{n}, y_{n}\right)_{n \geqslant 0}$ be a sequence in $K \times K$ converging to (x, y). Then

$$
\left|\left(x_{n}+y_{n}\right)-(x+y)\right| \leqslant\left|x_{n}-x\right|+\left|y_{n}-y\right| \xrightarrow{n \rightarrow \infty} 0
$$

because $x_{n} \rightarrow x$ and $y_{n} \rightarrow y$ as $n \rightarrow \infty$ and hence addition is continuous. Furthermore

$$
\begin{aligned}
\left|x_{n} y_{n}-x y\right| & =\left|\left(x_{n}-x+x\right)\left(y_{n}-y+y\right)-x y\right| \\
& =\left|\left(x_{n}-x\right)\left(y_{n}-y\right)+\left(x_{n}-x\right) y+x\left(y_{n}-y\right)\right| \\
& \leqslant\left|\left(x_{n}-x\right)\left(y_{n}-y\right)\right|+\left|\left(x_{n}-x\right) y\right|+\left|x\left(y_{n}-y\right)\right| \\
& =\left|x_{n}-x\right|\left|y_{n}-y\right|+|y|\left|x_{n}-x\right|+|x|\left|y_{n}-y\right| \xrightarrow{n \rightarrow \infty} 0
\end{aligned}
$$

and it follows that multiplication is continuous. To show that the inverse is continuous, suppose that $x \neq 0$. Then $\left|x_{n}\right| \rightarrow|x|>0$ as $|\mid: K \rightarrow \mathbb{R}$ is continuous, so $x_{n} \neq 0$ for all $n \gg 0$ and $\left|x_{n}\right|^{-1}$ remains bounded for $n \rightarrow \infty$. Thus

$$
\left|x_{n}^{-1}-x^{-1}\right|=\left|x_{n}^{-1} x^{-1}\right|\left|x-x_{n}\right|=\left|x_{n}\right|^{-1}|x|^{-1}\left|x-x_{n}\right| \xrightarrow{n \rightarrow \infty} 0
$$

as desired.
5. Let K be a complete non-archimedean field. Show that a series $\sum_{n=0}^{\infty} a_{n}$ with summands in K converges if and only if $\lim _{n \rightarrow \infty} a_{n}=0$ in K.
Solution: Suppose that a_{n} does not converge to 0 . Then $\left|\sum_{n=0}^{m+1} a_{n}-\sum_{n=0}^{m} a_{n}\right|=$ $\left|a_{m+1}\right| \nrightarrow 0$ and it follows that the partial sums do not form a Cauchy sequence and hence $\sum_{n=0}^{\infty} a_{n}$ does not converge.
Conversely, suppose that $\lim _{n \rightarrow \infty} a_{n}=0$. Let m, k be positive integers. Recall that, by $\S 10$ Proposition 5, the metric induced by the norm on the non-archimedean field K is an ultrametric satisfying the strong triangle inequality. We calculate

$$
\left|\sum_{n=0}^{m+k} a_{n}-\sum_{n=0}^{m} a_{n}\right|=\left|\sum_{n=m+1}^{m+k} a_{n}\right| \leqslant \max \left\{\left|a_{m+1}\right|, \ldots,\left|a_{m+k}\right|\right\} \xrightarrow{m \rightarrow \infty} 0
$$

and conclude that the partial sums form a Cauchy sequence and hence the infinite series converges as K is complete.
6. Let K be a field that is complete with respect to a p-adic absolute value. Consider $x \in K$ with $|x|<1$ and $\alpha, \beta \in \mathbb{Z}_{p}$ and $m, n \in \mathbb{Z}$ with $n \geqslant 0$. Prove:
(a) The binomial coefficient $\binom{\alpha}{n}:=\frac{\alpha(\alpha-1) \cdots(\alpha-n+1)}{n!}$ lies in \mathbb{Z}_{p}.
(b) $F_{\alpha}(x):=\sum_{n \geqslant 0}\binom{\alpha}{n} x^{n} \in K$ is well-defined and satisfies $\left|F_{\alpha}(x)-1\right|<1$.
(c) $F_{\alpha+\beta}(x)=F_{\alpha}(x) \cdot F_{\beta}(x)$.
(d) $F_{m \alpha}(x)=F_{\alpha}(x)^{m}$.
(e) $F_{m}(x)=(1+x)^{m}$.
(f) $y:=F_{m / n}(x)$ is the only solution of the equation $y^{n}=(1+x)^{m}$ with $|y-1|<$ 1 , if $p \nmid n$.
This therefore justifies writing $F_{\alpha}(x)=(1+x)^{\alpha}$.

* (g) Do we then also have $\left((1+x)^{\alpha}\right)^{\beta}=(1+x)^{\alpha \beta}$?

Solution:

(a) Since \mathbb{Z} is dense in \mathbb{Z}_{p}, we can find a sequence of non-negative integers $\left(a_{k}\right)_{k \in \mathbb{Z} \geqslant 1}$ such that $\lim _{k \rightarrow \infty} a_{k}=\alpha$. It follows that $\lim _{k \rightarrow \infty}\binom{a_{k}}{n}=\binom{\alpha}{n}$, because $\binom{X}{n} \in \mathbb{Z}_{p}[X]$ is a polynomial and it follows from exercise 4 that polynomial functions are continuous. As $\binom{a_{k}}{n} \in \mathbb{Z} \subset \mathbb{Z}_{p}$ for all k and \mathbb{Z}_{p} is closed in \mathbb{Q}_{p} it follows that the limit $\binom{\alpha}{n}$ also lies in \mathbb{Z}_{p}.
(b) By (a), we have $\binom{\alpha}{n} \in \mathbb{Z}_{p}$ and hence $\left|\binom{\alpha}{n}\right| \leqslant 1$. Since $|x|<1$ and the norm is multiplicative, it follows that $\left|\binom{\alpha}{n} x^{n}\right| \leqslant|x|^{n} \rightarrow 0$ as $n \rightarrow \infty$. By exercise 5 the series $F_{\alpha}(x)$ converges. Choosing $m \gg 0$ such that $\left|\sum_{n>m}\binom{\alpha}{n} x^{n}\right|<1$, we calculate

$$
\left|F_{\alpha}(x)-1\right|=\left|\sum_{n \geqslant 1}\binom{\alpha}{n} x^{n}\right| \leqslant \max \left\{\left|\binom{\alpha}{n} x^{n}\right|: 1 \leqslant n \leqslant m\right\} \cup\left\{\left|\sum_{n>m}\binom{\alpha}{n} x^{n}\right|\right\}<1 .
$$

(c) We will use the fact that for convergent series $\sum_{n \geqslant 0} a_{n}$ and $\sum_{n \geqslant 0} b_{n}$ in a nonarchimedean complete field K the product can be calculated as the Cauchy product $\sum_{k \geqslant 0} \sum_{n+m=k} a_{m} b_{n}$. A reference for this fact and many other useful statements about infinite series can be found for example in the following expository text by Keith Conrad:
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/infseriespadic. pdf
We calculate

$$
F_{\alpha}(x) \cdot F_{\beta}(x)=\sum_{n \geqslant 0} x^{n} \sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k},
$$

and hence the desired equality follows from the following
Claim: We have $\sum_{k=0}^{n}\binom{\alpha}{k}\binom{\beta}{n-k}=\binom{\alpha+\beta}{n}$.
Proof. In the case when $\alpha, \beta \in \mathbb{Z}^{\geqslant 0}$, this is just the Vandermonde identity. For the general case note that the polynomials $\sum_{k=0}^{n}\binom{X}{k}\binom{Y}{n-k}$ and $\binom{X+Y}{n}$ in $\mathbb{Z}_{p}[X, Y]$ agree on the set $\left(\mathbb{Z}^{\geqslant 0}\right)^{2}$ which is dense in $\left(\mathbb{Z}_{p}\right)^{2}$. Because polynomial functions are continuous it follows that they agree everywhere.
(d) For $m=0$ this is clear from the definition. For $m>0$ it follows by induction from (c). For $m<0$ just observe that by (c) we have $F_{m \alpha}(x) \cdot F_{-m \alpha}(x)=$ $F_{0}(x)=1$ and therefore $F_{m \alpha}(x)=F_{-m \alpha}(x)^{-1}=\left(F_{\alpha}(x)^{-m}\right)^{-1}=F_{\alpha}(x)^{m}$.
(e) For $m \geqslant 0$ this follows immediately from the binomial theorem. For $m<0$ we deduce from (d) that $F_{m}(x)=F_{-m}(x)^{-1}=\left((1+x)^{-m}\right)^{-1}=(1+x)^{m}$.
(f) We calculate

$$
y^{n}=F_{m / n}(x)^{n} \stackrel{(d)}{=} F_{m}(x) \stackrel{(e)}{=}(1+x)^{m} .
$$

Moreover $|y-1|<1$ by (a), which is equivalent to saying that $y \in \mathcal{O}_{K}$ and $y \equiv 1 \bmod (p)$. It remains to show that y is the only root of $f(X):=$ $X^{n}-(1+x)^{m} \in \mathcal{O}_{K}[X]$ that is $\equiv 1 \bmod (p)$. But since $n \not \equiv 0 \bmod p$, we have $f^{\prime}(y)=n y^{n-1} \not \equiv 0 \bmod (p)$. Thus $y \bmod p$ is a simple root of $f \bmod p$; so by Hensel's lemma f has precisely one root in \mathcal{O}_{K} that is $\equiv 1 \bmod (p)$, as desired.
*(g) Yes, by a similar, though somewhat more elaborate, reasoning as in (c). Likewise we have $((1+x)(1+y))^{\alpha}=(1+x)^{\alpha}(1+y)^{\alpha}$ whenever $|x|,|y|<1$.
*7. (Newton method for finding zeros of a polynomial) Let p be a prime number, let $f \in \mathbb{Z}_{p}[X]$ and let $\alpha \in \mathbb{Z}_{p}$ be a root of f such that $f^{\prime}(\alpha) \neq 0$. Set

$$
U:=\left\{a \in \mathbb{Z}_{p}| | f(a)\left|<\left|f^{\prime}(a)\right|^{2} \text { and }\right| \alpha-a\left|<\left|f^{\prime}(a)\right|\right\},\right.
$$

which is an open neighborhood of α in \mathbb{Z}_{p}. Let $a_{1} \in U$ and recursively define $a_{n+1}:=a_{n}-\frac{f\left(a_{n}\right)}{f^{\prime}\left(a_{n}\right)}$ for $n \geqslant 1$. Show that for all n :
(a) $a_{n} \in U$,
(b) $\left|f^{\prime}\left(a_{n}\right)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$,
(c) $\left|f\left(a_{n}\right)\right| \leqslant\left|f^{\prime}\left(a_{1}\right)\right|^{2} t^{2^{n-1}}$ for $t=\left|f\left(a_{1}\right) / f^{\prime}\left(a_{1}\right)\right|<1$.

Moreover, show that $\lim _{n \rightarrow \infty} a_{n}=\alpha$ and $\left|f^{\prime}(\alpha)\right|=\left|f^{\prime}\left(a_{1}\right)\right|$.
Solution: See the proof of Theorem 4.1 in Section 5 of the following notes by Keith Conrad:
http://www.math.uconn.edu/~kconrad/blurbs/gradnumthy/hensel.pdf.

