D-MATH
Prof. Richard Pink

Solutions 11

Extensions of Complete Absolute Values

1. (a) Show that $X^{3}-X^{2}-2 X-8$ is irreducible in $\mathbb{Q}[X]$ but splits completely in $\mathbb{Q}_{2}[X]$.
(b) Find two monic polynomials of degree 3 in $\mathbb{Q}_{5}[X]$ with the same Newton polygons, but one irreducible and the other not.
(c) Hensel's lemma concerns a polynomial f with a factorization $(f \bmod \mathfrak{p})=$ $\bar{g} \bar{h}$ such that \bar{g} and \bar{h} are coprime. Show by a counterexample that the assumption 'coprime' is necessary.

Solution:

(a) The polynomial is irreducible in $\mathbb{Z}[X]$, as any integer root would have to divide the constant coefficient 8 , but $\pm 1, \pm 2, \pm 4, \pm 8$ are no roots. By the Gauss lemma the polynomial is irreducible in $\mathbb{Q}[X]$.
The Newton polygon with respect to ord $_{2}$ has the three distinct slopes $2,1,0$. By $\S 12$ Corollary 8 it splits completely over \mathbb{Q}_{2}. The following drawing shows the Newton polygon of the given polynomial:

(b) The Newton polygon of both polynomials $f(X):=X^{3}+X^{2}+X+1$ and $g(X):=X^{3}+X^{2}+X-1$ is the horizontal straight line between $(0,0)$ and $(3,0)$. The first polynomial is reducible as $f(-1)=0$, while g is irreducible in $\mathbb{Q}_{5}[X]$, as its reduction modulo 5 has degree 3 and is irreducible in $\mathbb{F}_{5}[X]$.
(c) Let K be a complete non-archimedean field such that \mathcal{O}_{K} is a discrete valuation ring, for example $K=\mathbb{Q}_{p}$ for any prime number $p<\infty$. Let $\pi \in \mathcal{O}_{K}$ be a uniformizer. Then $f(X):=X^{2}-\pi$ is irreducible by the Eisenstein criterion and $\bar{g}(X)=\bar{h}(X)=X$ with $(f \bmod (\pi))=\bar{g} \bar{h}$ is a factorization modulo (π).
2. Prove that every finite extension of $\mathbb{C}((t))$ of degree n is isomorphic to $\mathbb{C}((s))$ where $s^{n}=t$.
Solution: Note that $\mathbb{C}((t))$ is a complete non-archimedean field with respect to the discrete valuation defined by $v\left(a_{k} t^{k}+a_{k+1} t^{k+1}+\ldots\right):=k$ if $a_{k} \neq 0$ and $v(0)=+\infty$, and its valuation ring is $\mathcal{O}_{\mathbb{C}((t))}=\mathbb{C}[[t]]$. Let L be a finite extension of $\mathbb{C}((t))$ of degree n. Since the residue field \mathbb{C} of $\mathbb{C}[[t]]$ is algebraically closed, the extension of residue fields is trivial. Thus L is totally ramified over $\mathbb{C}((t))$. For any uniformizer $\pi \in \mathcal{O}_{L}$, that is, any generator of the maximal ideal of \mathcal{O}_{L}, we therefore have $(\pi)^{n}=t \mathcal{O}_{L}$ and hence $\pi^{n} / t \in \mathcal{O}_{L}^{\times}$. Consider the polynomial $f(X):=X^{n}-\frac{\pi^{n}}{t} \in \mathcal{O}_{L}[X]$. Since π^{n} / t is a unit, it is nonzero $\bmod (\pi)$. As the residue field \mathbb{C} of \mathcal{O}_{L} is algebraically closed of characteristic zero, it follows that $f \bmod (\pi)$ has a simple root. By Hensel's lemma this root can be lifted to a root $u \in \mathcal{O}_{L}$ of f. This u is a unit, because $u^{n}=\pi^{n} / t$ is a unit. Setting $s:=\pi / u \in \mathcal{O}_{L}$, we deduce that $s^{n}=t$. Finally observe that s is a root of the polynomial $X^{n}-t$ over $\mathbb{C}[t t]$, which is irreducible by the Eisenstein criterion. Thus $\mathbb{C}((s)) \subset L$ is a subfield of degree n over $\mathbb{C}((t))$, and therefore $\mathbb{C}((s))=L$, as desired.
3. Let K be a non-archimedean complete field such that \mathcal{O}_{K} is a discrete valuation ring. Prove that for every finite extension L / K with separable residue field extension there exists $\alpha \in L$ such that $\mathcal{O}_{L}=\mathcal{O}_{K}[\alpha]$.
Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem 10.15 in the following notes by Sutherland:
http://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf
4. (Krasner's lemma) Let K be a field that is complete for a non-archimedean absolute value $|\mid$. Let $| \mid$ also denote the unique extension to an algebraic closure \bar{K}. Consider an element $\alpha \in \bar{K}$ that is separable over K, and let $\alpha=\alpha_{1}, \ldots, \alpha_{n}$ be its Galois conjugates over K. Consider an element $\beta \in \bar{K}$ such that

$$
|\alpha-\beta|<\left|\alpha-\alpha_{i}\right|
$$

for all $2 \leqslant i \leqslant n$. Show that $K(\alpha) \subseteq K(\beta)$.
Hint: Let M be the Galois closure of the extension $K(\alpha, \beta) / K(\beta)$ and consider the action of $\operatorname{Gal}(M / K(\beta))$ on α.
Solution: See Lemma 8.1.6 on page 429 of [J. Neukirch, A. Schmidt, K. Wingberg: Cohomology of number fields. Second edition. Grundlehren der Mathematischen Wissenschaften. Springer-Verlag, Berlin, 2008].
${ }^{*} 5$. Consider an integer $n \geqslant 1$ and a finite set S of rational primes $p \leqslant \infty$ (allowing $\mathbb{Q}_{\infty}=\mathbb{R}$). For each $p \in S$ consider field extensions $L_{p, i} / \mathbb{Q}_{p}$ for $1 \leqslant i \leqslant r_{p}$ such that $\sum_{i=1}^{r_{p}}\left[L_{p, i} / \mathbb{Q}_{p}\right]=n$. Show that there exists a number field L of degree n over \mathbb{Q} such that for every $p \in S$ we have $L \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \prod_{i=1}^{r_{p}} L_{p, i}$.
Hint: Use Krasner's lemma (exercise 4) or adapt it suitably.

Solution: As a preparation consider an arbitrary field K with absolute value ||. We extend this absolute value to polynomials by defining $\left|\sum^{\prime} b_{j} X^{j}\right|:=\max \left\{\left|b_{j}\right|\right\}$. This induces a metric on $K[X]$. Convergence of polynomials of a fixed degree is equivalent to convergence of the coefficients.

Lemma 1. Assume that K is algebraically closed. Let $f \in K[X]$ be a monic polynomial of degree n with roots $\alpha_{1}, \ldots, \alpha_{n} \in K$. Then for any $\varepsilon>0$ there exists $\delta>0$ such that for any monic polynomial $g \in K[X]$ of degree n with $|g-f|<\delta$, the roots $\beta_{i} \in K$ of g can be numbered in such a way that $\left|\alpha_{i}-\beta_{i}\right|<\varepsilon$ for all i.

Proof. The assertion is equivalent to saying that for any sequence $\left(f_{k}\right)$ of monic polynomials of degree n in $K[X]$ with $\lim _{k \rightarrow \infty} f_{k}=f$, the roots $\alpha_{k, i} \in K$ of the f_{k} can be numbered in such a way that $\lim _{k \rightarrow \infty} \alpha_{k, i}=\alpha_{i}$ for all i. In the archimedean case, this is for example Proposition 5.2.1 on page 138 in [M. Artin: Algebra. Second edition. Pearson Education, Harlow, 2011]. The proof for the non-archimedean case works analogously.

Lemma 2. Assume that K is complete. Let $f \in K[X]$ be a monic separable polynomial of degree n. Then there exists $\delta>0$ such that for any monic polynomial $g \in K[X]$ of degree n with $|g-f|<\delta$ we have $K[X] /(g) \cong K[X] /(f)$.

Proof. Let \bar{K} be an algebraic closure of K, endowed with the unique extension of the absolute value. Let $\alpha_{1}, \ldots, \alpha_{n} \in \bar{K}$ denote the roots of f. Let $\delta>0$ be the constant obtained from Lemma 1 for $f \in \bar{K}[X]$ and $\varepsilon:=\min \left\{\left|\alpha_{i}-\alpha_{j}\right|: i \neq j\right\} / 2$. Let $g \in K[X]$ be any monic polynomial of degree n with $|g-f|<\delta$ and let $\beta_{1}, \ldots, \beta_{n} \in \bar{K}$ be the roots of g ordered in such a way that $\left|\alpha_{i}-\beta_{i}\right|<\varepsilon$ for all i.
Then for all $i \neq j$ we have $\left|\alpha_{i}-\beta_{j}\right| \geqslant\left|\alpha_{i}-\alpha_{j}\right|-\left|\alpha_{j}-\beta_{j}\right|>2 \varepsilon-\varepsilon=\varepsilon>\left|\alpha_{i}-\beta_{i}\right|$ and hence $\beta_{j} \neq \beta_{i}$. Therefore g is also separable. Moreover, any automorphism $\sigma \in \operatorname{Aut}_{K}(\bar{K})$ preserves the absolute value on \bar{K} and permutes the α_{i} and independently the β_{i}. Thus for any indices i, j, k with $\sigma\left(\alpha_{i}\right)=\alpha_{j}$ and $\sigma\left(\beta_{i}\right)=\beta_{k}$, we have $\left|\alpha_{j}-\beta_{k}\right|=\left|\sigma\left(\alpha_{i}\right)-\sigma\left(\beta_{i}\right)\right|=\left|\alpha_{i}-\beta_{i}\right|<\varepsilon$ and hence $\left|\alpha_{j}-\alpha_{k}\right| \leqslant\left|\alpha_{j}-\beta_{k}\right|+\left|\alpha_{k}-\beta_{k}\right|<2 \varepsilon$. By the choice of ε this implies that $j=k$. Thus $\operatorname{Aut}_{K}(\bar{K})$ permutes the α_{i} in the same way as the β_{i}. Since all α_{i} and β_{i} are separable over K, it follows in particular that $K\left(\alpha_{i}\right)=K\left(\beta_{i}\right)$ for all i. (Remark: One can also deduce this from Krasner's lemma, but this direct proof, inspired by the proof of Krasner's lemma, is more efficient.)
Let $f=\prod_{\nu=1}^{r} f_{\nu}$ be the factorization of f into distinct monic irreducible polynomials. Then the roots of the different f_{ν} are precisely the $\operatorname{Aut}_{K}(\bar{K})$-orbits in $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$. The corresponding orbits in $\left\{\beta_{1}, \ldots, \beta_{n}\right\}$ are thus the roots of the different g_{ν} for the factorization of g into distinct monic irreducible polynomials $g=\prod_{\nu=1}^{r} g_{\nu}$. For each ν choose i_{ν} such that $\alpha_{i_{\nu}}$ is a root of f_{ν}. Then f_{ν} is the
minimal polynomial of $\alpha_{i_{\nu}}$ over K, and g_{ν} is the minimal polynomial of $\beta_{i_{\nu}}$ over K. Using the Chinese Remainder Theorem we now conclude that

$$
\begin{aligned}
& K[X] /(f) \cong \prod_{\nu=1}^{r} K[X] /\left(f_{\nu}\right) \cong \prod_{\nu=1}^{r} K\left(\alpha_{i_{\nu}}\right) \\
& K[X] /(g) \cong \prod_{\nu=1}^{r} K[X] /\left(g_{\nu}\right) \cong \prod_{\nu=1}^{r} K\left(\beta_{i_{\nu}}\right)
\end{aligned}
$$

as desired.
In the given situation let us first fix $p \in S$. As each extension $L_{p, i} / \mathbb{Q}_{p}$ is finite separable, we can write $L_{p, i}=\mathbb{Q}_{p}\left(\alpha_{p, i}\right)$ for some $\alpha_{p, i} \in L_{p, i}$. Let $f_{p, i}$ denote the minimal polynomial of $\alpha_{p, i}$ over \mathbb{Q}_{p}. After possibly replacing $\alpha_{p, i}$ by $\alpha_{p, i}+\gamma_{p, i}$ for some $\gamma_{p, i} \in \mathbb{Q}_{p}$ we may assume that the $f_{p, i}$ are pairwise inequivalent. Then $f_{p}:=\prod_{i=1}^{r_{p}} f_{p, i} \in \mathbb{Q}_{p}[X]$ is separable monic of degree n, and by the Chinese remainder theorem we have $\mathbb{Q}_{p}[X] /\left(f_{p}\right) \cong \prod_{i=1}^{r_{p}} L_{p, i}$.
Let $\delta>0$ be the constant given by Lemma 2 for the polynomial $f_{p} \in \mathbb{Q}_{p}[X]$. Since S is finite, we can choose δ independent of $p \in S$. As \mathbb{Q} is dense in \mathbb{Q}_{p}, we can take a polynomial $g_{p} \in \mathbb{Q}[X]$ with $\left|g_{p}-f_{p}\right|_{p}<\delta / 2$. By applying the approximation theorem in $\S 10$ Proposition 7 of the lecture course coefficientwise, we can then find a monic polynomial $f \in \mathbb{Q}[X]$ of degree n such that $\left|f-g_{p}\right|_{p}<\delta / 2$ for all $p \in S$. By the triangle inequality we then have $\left|f-f_{p}\right|_{p}<\delta$ for all $p \in S$.
Set $L:=\mathbb{Q}[X] /(f)$, which is a \mathbb{Q}-algebra of dimension n. By construction and Lemma 2, for every $p \in S$ we then have

$$
L \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \mathbb{Q}_{p}[X] /(f) \cong \mathbb{Q}_{p}[X] /\left(f_{p}\right) \cong \prod_{i=1}^{r_{p}} L_{p, i} .
$$

Thus we are done if L is a field. This is the case if $r_{p}=1$ for some $p \in S$, because then L embeds into the field $L_{p, 1}$. In general we can always add a new prime number ℓ to S with $r_{\ell}=1$ and a field extension $L_{\ell, 1} / \mathbb{Q}_{\ell}$ of degree n; achieving again that L is a field.

