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EXTENSIONS OF COMPLETE ABSOLUTE VALUES

1. (a) Show that X® — X% — 2X — 8 is irreducible in Q[X] but splits completely in

Qu[X].

(b) Find two monic polynomials of degree 3 in Q5[X] with the same Newton

(c)

polygons, but one irreducible and the other not.

Hensel’s lemma concerns a polynomial f with a factorization (fmodp) =
gh such that g and h are coprime. Show by a counterexample that the
assumption ‘coprime’ is necessary.

Solution:

(a) The polynomial is irreducible in Z[X], as any integer root would have to

divide the constant coefficient 8, but +1,+2, +4, +8 are no roots. By the
Gauss lemma the polynomial is irreducible in Q[X].

The Newton polygon with respect to ords has the three distinct slopes 2, 1, 0.
By §12 Corollary 8 it splits completely over Q;. The following drawing shows
the Newton polygon of the given polynomial:
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The Newton polygon of both polynomials f(X) := X3+ X? + X + 1 and
g(X) :== X® + X? + X — 1 is the horizontal straight line between (0,0) and
(3,0). The first polynomial is reducible as f(—1) = 0, while g is irreducible
in Q5[X], as its reduction modulo 5 has degree 3 and is irreducible in F5[X].

Let K be a complete non-archimedean field such that Ok is a discrete valua-
tion ring, for example K = Q, for any prime number p < co. Let m € Ok be
a uniformizer. Then f(X) := X? —7 is irreducible by the Eisenstein criterion
and g(X) = h(X) = X with (f mod (7)) = gh is a factorization modulo (7).



2.

*5.

Prove that every finite extension of C((¢)) of degree n is isomorphic to C((s))
where s" = t.

Solution: Note that C((¢)) is a complete non-archimedean field with respect to
the discrete valuation defined by v(aktk + gttt + ...) =k if ar # 0 and
v(0) = 400, and its valuation ring is O¢(r)) = C[[t]]. Let L be a finite extension
of C((t)) of degree n. Since the residue field C of C[[t]] is algebraically closed,
the extension of residue fields is trivial. Thus L is totally ramified over C((t)).
For any uniformizer 7 € Oy, that is, any generator of the maximal ideal of Oy,
we therefore have (7)" = tO and hence 7"/t € Of. Consider the polynomial
f(X) = X" — " € O,[X]. Since 7"/t is a unit, it is nonzero mod (). As the
residue field C of O is algebraically closed of characteristic zero, it follows that
fmod (7) has a simple root. By Hensel’s lemma this root can be lifted to a root
u € Or, of f. This u is a unit, because u™ = 7"/t is a unit. Setting s := 7/u € Oy,
we deduce that s” = t. Finally observe that s is a root of the polynomial X" — ¢
over C|[t]], which is irreducible by the Eisenstein criterion. Thus C((s)) C L is a
subfield of degree n over C((t)), and therefore C((s)) = L, as desired.

Let K be a non-archimedean complete field such that Ok is a discrete valua-
tion ring. Prove that for every finite extension L/K with separable residue field
extension there exists o € L such that Oy = Okla].

Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem
10.15 in the following notes by Sutherland:
http://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf

(Krasner’s lemma) Let K be a field that is complete for a non-archimedean abso-
lute value | |. Let | | also denote the unique extension to an algebraic closure K.
Consider an element o € K that is separable over K, and let a = oy, ..., a, be
its Galois conjugates over K. Consider an element 3 € K such that

o = Bl < |a —

for all 2 < ¢ < n. Show that K(a) C K(p).

Hint: Let M be the Galois closure of the extension K(«, 3)/K () and consider
the action of Gal(M/K(5)) on «a.

Solution: See Lemma 8.1.6 on page 429 of [J. Neukirch, A. Schmidt, K. Wingberg:
Cohomology of number fields. Second edition. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 2008].

Consider an integer n > 1 and a finite set S of rational primes p < oo (allowing
Qx = R). For each p € S consider field extensions L, ;/Q, for 1 < i < r, such
that >°1",[L,:/Q,] = n. Show that there exists a number field L of degree n over
Q such that for every p € S we have L ®g Q, = [[:2y Lp.-

Hint: Use Krasner’s lemma (exercise 4) or adapt it suitably.
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Solution: As a preparation consider an arbitrary field K with absolute value | |.
We extend this absolute value to polynomials by defining | =" b, X7| := max{|b;|}.
This induces a metric on K[X]. Convergence of polynomials of a fixed degree is
equivalent to convergence of the coefficients.

Lemma 1. Assume that K is algebraically closed. Let f € K[X] be a monic
polynomial of degree n with roots ay,...,a, € K. Then for any € > 0 there exists
d > 0 such that for any monic polynomial g € K[X] of degree n with |g — f| < 0,
the roots 5; € K of g can be numbered in such a way that |a; — B;| < e for all i.

Proof. The assertion is equivalent to saying that for any sequence (f;) of monic
polynomials of degree n in K[X] with klim fr = f, the roots ay,; € K of the fj can
—00

be numbered in such a way that klim ay; = a; for all 4. In the archimedean case,
—00

this is for example Proposition 5.2.1 on page 138 in [M. Artin: Algebra. Second
edition. Pearson Education, Harlow, 2011]. The proof for the non-archimedean
case works analogously. [

Lemma 2. Assume that K is complete. Let f € K[X]| be a monic separable
polynomial of degree n. Then there exists d > 0 such that for any monic polynomial
g € K[X] of degree n with |g — f| < 6 we have K[X]/(g9) = K[X]/(f)-

Proof. Let K be an algebraic closure of K, endowed with the unique extension of
the absolute value. Let oy, ...,q, € K denote the roots of f. Let 6 > 0 be the
constant obtained from Lemma 1 for f € K[X] and € := min{|oy — o] : i # j}/2.
Let ¢ € K[X] be any monic polynomial of degree n with |¢ — f| < § and let
Bi,...,Bn € K be the roots of g ordered in such a way that |o; — 3| < ¢ for all 4.

Then for all i # j we have |a; — §;| > |a; —ay| — |oj — 8] > 2e —e =€ > |a; — 4]
and hence B; # B;. Therefore g is also separable. Moreover, any automor-
phism ¢ € Autgx(K) preserves the absolute value on K and permutes the o
and independently the ;. Thus for any indices i, j, k with o(a;) = «; and
o(8;) = Pk, we have |a; — Bi| = |o(ow) — o(Bi)| = |y — Bi] < € and hence
laj — ag| < |aj — Bi| + |ax — Bi| < 2e. By the choice of ¢ this implies that j = k.
Thus Autg (K) permutes the o; in the same way as the 3;. Since all o; and f3; are
separable over K, it follows in particular that K(«;) = K(3;) for all i. (Remark:
One can also deduce this from Krasner’s lemma, but this direct proof, inspired by
the proof of Krasner’s lemma, is more efficient.)

Let f = [[,_, f» be the factorization of f into distinct monic irreducible poly-
nomials. Then the roots of the different f, are precisely the Auty (K )-orbits in
{ai,...,a,}. The corresponding orbits in {f,...,3,} are thus the roots of the
different g, for the factorization of g into distinct monic irreducible polynomials

g =11 _, g». For each v choose i, such that «;, is a root of f,. Then f, is the



minimal polynomial of «;, over K, and g, is the minimal polynomial of 3; over K.
Using the Chinese Remainder Theorem we now conclude that

KXJ/(f) = L= KIX)/(F) = Toey Klaw,)

d

K[X1/(9) = L K[X]/(9v) = L= K(B:,)
as desired. O

In the given situation let us first fix p € S. As each extension L,;/Q, is finite
separable, we can write L,; = Q,(a,;) for some «,; € L,;. Let f,; denote the
minimal polynomial of «,,; over Q,. After possibly replacing a,; by a,; + Vp
for some 7,,;, € Q, we may assume that the f,; are pairwise inequivalent. Then
fo = 1%, foi € Qp[X] is separable monic of degree n, and by the Chinese
remainder theorem we have Q,[X]/(f,) = [1:%1 Lp.

Let 0 > 0 be the constant given by Lemma 2 for the polynomial f,, € Q,[X]. Since
S is finite, we can choose J independent of p € S. As Q is dense in QQ,,, we can take
a polynomial g, € Q[X] with |g, — f»|, < d/2. By applying the approximation
theorem in §10 Proposition 7 of the lecture course coefficientwise, we can then find
a monic polynomial f € Q[X] of degree n such that |f — g,|, < /2 forall p € S.
By the triangle inequality we then have |f — f,|, < 0 for all p € S.

Set L := Q[X]/(f), which is a Q-algebra of dimension n. By construction and
Lemma 2, for every p € S we then have

L®@ Qp = @p[X]/<f) = QP[X]/(fP) = H:ile,i-

Thus we are done if L is a field. This is the case if r, = 1 for some p € S, because
then L embeds into the field L,;. In general we can always add a new prime
number £ to S with r, = 1 and a field extension L;;/Q, of degree n; achieving
again that L is a field.



