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Prof. Richard Pink

Solutions 11
Extensions of Complete Absolute Values

1. (a) Show that X3 −X2 − 2X − 8 is irreducible in Q[X] but splits completely in
Q2[X].

(b) Find two monic polynomials of degree 3 in Q5[X] with the same Newton
polygons, but one irreducible and the other not.

(c) Hensel’s lemma concerns a polynomial f with a factorization (f mod p) =
ḡh̄ such that ḡ and h̄ are coprime. Show by a counterexample that the
assumption ‘coprime’ is necessary.

Solution:

(a) The polynomial is irreducible in Z[X], as any integer root would have to
divide the constant coefficient 8, but ±1,±2,±4,±8 are no roots. By the
Gauss lemma the polynomial is irreducible in Q[X].
The Newton polygon with respect to ord2 has the three distinct slopes 2, 1, 0.
By §12 Corollary 8 it splits completely over Q2. The following drawing shows
the Newton polygon of the given polynomial:
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(b) The Newton polygon of both polynomials f(X) := X3 + X2 + X + 1 and
g(X) := X3 +X2 +X − 1 is the horizontal straight line between (0, 0) and
(3, 0). The first polynomial is reducible as f(−1) = 0, while g is irreducible
in Q5[X], as its reduction modulo 5 has degree 3 and is irreducible in F5[X].

(c) Let K be a complete non-archimedean field such that OK is a discrete valua-
tion ring, for example K = Qp for any prime number p < ∞. Let π ∈ OK be
a uniformizer. Then f(X) := X2−π is irreducible by the Eisenstein criterion
and ḡ(X) = h̄(X) = X with (f mod (π)) = ḡh̄ is a factorization modulo (π).
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2. Prove that every finite extension of C((t)) of degree n is isomorphic to C((s))
where sn = t.
Solution: Note that C((t)) is a complete non-archimedean field with respect to
the discrete valuation defined by v(akt

k + ak+1t
k+1 + . . . ) := k if ak ̸= 0 and

v(0) = +∞, and its valuation ring is OC((t)) = C[[t]]. Let L be a finite extension
of C((t)) of degree n. Since the residue field C of C[[t]] is algebraically closed,
the extension of residue fields is trivial. Thus L is totally ramified over C((t)).
For any uniformizer π ∈ OL, that is, any generator of the maximal ideal of OL,
we therefore have (π)n = tOL and hence πn/t ∈ O×

L . Consider the polynomial
f(X) := Xn − πn

t
∈ OL[X]. Since πn/t is a unit, it is nonzero mod (π). As the

residue field C of OL is algebraically closed of characteristic zero, it follows that
f mod (π) has a simple root. By Hensel’s lemma this root can be lifted to a root
u ∈ OL of f . This u is a unit, because un = πn/t is a unit. Setting s := π/u ∈ OL,
we deduce that sn = t. Finally observe that s is a root of the polynomial Xn − t
over C[[t]], which is irreducible by the Eisenstein criterion. Thus C((s)) ⊂ L is a
subfield of degree n over C((t)), and therefore C((s)) = L, as desired.

3. Let K be a non-archimedean complete field such that OK is a discrete valua-
tion ring. Prove that for every finite extension L/K with separable residue field
extension there exists α ∈ L such that OL = OK [α].
Solution: See Lemma 10.4 in Chapter II of Neukirch (page 178) or Theorem
10.15 in the following notes by Sutherland:
http://math.mit.edu/classes/18.785/2016fa/LectureNotes10.pdf

4. (Krasner’s lemma) Let K be a field that is complete for a non-archimedean abso-
lute value | |. Let | | also denote the unique extension to an algebraic closure K̄.
Consider an element α ∈ K̄ that is separable over K, and let α = α1, . . . , αn be
its Galois conjugates over K. Consider an element β ∈ K̄ such that

|α− β| < |α− αi|

for all 2 ⩽ i ⩽ n. Show that K(α) ⊆ K(β).
Hint: Let M be the Galois closure of the extension K(α, β)/K(β) and consider
the action of Gal(M/K(β)) on α.
Solution: See Lemma 8.1.6 on page 429 of [J. Neukirch, A. Schmidt, K. Wingberg:
Cohomology of number fields. Second edition. Grundlehren der Mathematischen
Wissenschaften. Springer-Verlag, Berlin, 2008].

*5. Consider an integer n ⩾ 1 and a finite set S of rational primes p ⩽ ∞ (allowing
Q∞ = R). For each p ∈ S consider field extensions Lp,i/Qp for 1 ⩽ i ⩽ rp such
that

∑rp
i=1[Lp,i/Qp] = n. Show that there exists a number field L of degree n over

Q such that for every p ∈ S we have L⊗Q Qp
∼=

∏rp
i=1 Lp,i.

Hint: Use Krasner’s lemma (exercise 4) or adapt it suitably.
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Solution: As a preparation consider an arbitrary field K with absolute value | |.
We extend this absolute value to polynomials by defining |

∑′ bjX
j| := max{|bj|}.

This induces a metric on K[X]. Convergence of polynomials of a fixed degree is
equivalent to convergence of the coefficients.

Lemma 1. Assume that K is algebraically closed. Let f ∈ K[X] be a monic
polynomial of degree n with roots α1, . . . , αn ∈ K. Then for any ε > 0 there exists
δ > 0 such that for any monic polynomial g ∈ K[X] of degree n with |g − f | < δ,
the roots βi ∈ K of g can be numbered in such a way that |αi − βi| < ε for all i.

Proof. The assertion is equivalent to saying that for any sequence (fk) of monic
polynomials of degree n in K[X] with lim

k→∞
fk = f , the roots αk,i ∈ K of the fk can

be numbered in such a way that lim
k→∞

αk,i = αi for all i. In the archimedean case,
this is for example Proposition 5.2.1 on page 138 in [M. Artin: Algebra. Second
edition. Pearson Education, Harlow, 2011]. The proof for the non-archimedean
case works analogously.

Lemma 2. Assume that K is complete. Let f ∈ K[X] be a monic separable
polynomial of degree n. Then there exists δ > 0 such that for any monic polynomial
g ∈ K[X] of degree n with |g − f | < δ we have K[X]/(g) ∼= K[X]/(f).

Proof. Let K̄ be an algebraic closure of K, endowed with the unique extension of
the absolute value. Let α1, . . . , αn ∈ K̄ denote the roots of f . Let δ > 0 be the
constant obtained from Lemma 1 for f ∈ K̄[X] and ε := min{|αi − αj| : i ̸= j}/2.
Let g ∈ K[X] be any monic polynomial of degree n with |g − f | < δ and let
β1, . . . , βn ∈ K̄ be the roots of g ordered in such a way that |αi − βi| < ε for all i.
Then for all i ̸= j we have |αi−βj| ⩾ |αi−αj| − |αj −βj| > 2ε− ε = ε > |αi−βi|
and hence βj ̸= βi. Therefore g is also separable. Moreover, any automor-
phism σ ∈ AutK(K̄) preserves the absolute value on K̄ and permutes the αi

and independently the βi. Thus for any indices i, j, k with σ(αi) = αj and
σ(βi) = βk, we have |αj − βk| = |σ(αi) − σ(βi)| = |αi − βi| < ε and hence
|αj − αk| ⩽ |αj − βk|+ |αk − βk| < 2ε. By the choice of ε this implies that j = k.
Thus AutK(K̄) permutes the αi in the same way as the βi. Since all αi and βi are
separable over K, it follows in particular that K(αi) = K(βi) for all i. (Remark:
One can also deduce this from Krasner’s lemma, but this direct proof, inspired by
the proof of Krasner’s lemma, is more efficient.)
Let f =

∏r
ν=1 fν be the factorization of f into distinct monic irreducible poly-

nomials. Then the roots of the different fν are precisely the AutK(K̄)-orbits in
{α1, . . . , αn}. The corresponding orbits in {β1, . . . , βn} are thus the roots of the
different gν for the factorization of g into distinct monic irreducible polynomials
g =

∏r
ν=1 gν . For each ν choose iν such that αiν is a root of fν . Then fν is the
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minimal polynomial of αiν over K, and gν is the minimal polynomial of βiν over K.
Using the Chinese Remainder Theorem we now conclude that

K[X]/(f) ∼ ∏r
ν=1K[X]/(fν)

∼ ∏r
ν=1K(αiν )

≀

K[X]/(g) ∼ ∏r
ν=1K[X]/(gν)

∼ ∏r
ν=1 K(βiν )

as desired.

In the given situation let us first fix p ∈ S. As each extension Lp,i/Qp is finite
separable, we can write Lp,i = Qp(αp,i) for some αp,i ∈ Lp,i. Let fp,i denote the
minimal polynomial of αp,i over Qp. After possibly replacing αp,i by αp,i + γp,i
for some γp,i ∈ Qp we may assume that the fp,i are pairwise inequivalent. Then
fp :=

∏rp
i=1 fp,i ∈ Qp[X] is separable monic of degree n, and by the Chinese

remainder theorem we have Qp[X]/(fp) ∼=
∏rp

i=1 Lp,i.
Let δ > 0 be the constant given by Lemma 2 for the polynomial fp ∈ Qp[X]. Since
S is finite, we can choose δ independent of p ∈ S. As Q is dense in Qp, we can take
a polynomial gp ∈ Q[X] with |gp − fp|p < δ/2. By applying the approximation
theorem in §10 Proposition 7 of the lecture course coefficientwise, we can then find
a monic polynomial f ∈ Q[X] of degree n such that |f − gp|p < δ/2 for all p ∈ S.
By the triangle inequality we then have |f − fp|p < δ for all p ∈ S.
Set L := Q[X]/(f), which is a Q-algebra of dimension n. By construction and
Lemma 2, for every p ∈ S we then have

L⊗Q Qp
∼= Qp[X]/(f) ∼= Qp[X]/(fp) ∼=

∏rp
i=1 Lp,i.

Thus we are done if L is a field. This is the case if rp = 1 for some p ∈ S, because
then L embeds into the field Lp,1. In general we can always add a new prime
number ℓ to S with rℓ = 1 and a field extension Lℓ,1/Qℓ of degree n; achieving
again that L is a field.
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