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1.

*2.

Solutions 12

EXTENSIONS OF ABSOLUTE VALUES, LOCAL AND GLOBAL FIELDS

Let L/K be a purely inseparable finite extension of degree q. Show that every
absolute value | | on K possesses a unique extension to L, given by the formula
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lyl = [y!7 .

Solution: By assumption, for every y € L we have y? € K. Thus any extension
| || of the absolute value must satisfy ||y||? = ||y?]| = |y?|, so it is given by the
indicated formula. Conversely, since K has characteristic > 0, the given absolute
value on it is non-archimedean, hence | |'/9 is again an absolute value on K, and
so is its pullback under the homomorphism L — K, y > y9.

Let L/K be a finite field extension and let | | be a (nontrivial) absolute value on L.
Show that the restriction of | | to K is nontrivial.

(Hint: Use Newton polygons.)

Solution: Suppose that the restriction of | | to K is trivial. Then |n - 1x| < 1
for all integers n; hence the absolute value is non-archimedean. Write |z| = ¢~
for ¢ > 1 and a valuation v: L — R U {oo}. Choose y € L with |y| # 0,1. Let
f(X) =>"" ,a; X" be its minimal polynomial over K. Then a, = 1, and y # 0
implies that ag # 0. Thus v(a,) = v(ag) = 0, and since v|K is trivial, we have
v(a;) € {0,00} for all 1 < i < n. Thus the Newton polygon of f is a horizontal
straight line segment. By Proposition 7 of §12 of the lecture course (which does not
assume that the absolute value is complete or non-trivial) it follows that v(y) = 0.
Thus |y| = 1, contrary to the assumption.

(a) Determine all the absolute values on Q(+/5).

(b) How many extensions to Q(4/2) does the archimedean absolute value on Q
admit?

Solution: (a) Every absolute value on Q(v/5) is an extension of an absolute value
on Q. The restriction to QQ is nontrivial by exercise 2 above. Up to equivalence, the
absolute values on Q are precisely the | |, for primes p including the archimedean
case p = co. We distinguish the case when X? — 5 splits in Q,[X] and the case
when it is irreducible.

If X2 —5 splits over Q,, then Q(v/5)®0Q, = Q, x Q, and the extensions of | |, are
the pullbacks of the absolute value on Q, under the two embeddings Q(v/5) «— Q,.



Letting +« denote the roots of X? — 5 in @,, the extensions of | |, are therefore
given by |a + bV/5| := |a & bal,.

If X? —5 is irreducible over Q,, then Q(V5) ®q Q, is a field and there is a
unique extension of | |, to Q(v/5), which is the pullback of the unique extension
of the absolute value of Q, to Q,[X]/(X? —5). By §12 Theorem 4, it is given by

la+bv5] = /INmy g, (a + bV5)|, = /o = 57T,.

It remains to determine the p < oo for which X2 — 5 splits. Since v/5 € R, it splits
for p = oco. Since 5 is not a square modulo 23, it follows that X? — 5 does not
split over Z, and hence neither over Q, as Z, is normal. Furthermore X? — 5 is
irreducible over Zs by the Eisenstein criterion and hence it does not split over Q5.

For p ¢ {2,5, 00} it follows from Hensel’s lemma that X2 — 5 splits if and only if it
splits over IF,,. This is so if and only if the Legendre symbol (;TE;) is 1. By quadratic

reciprocity that is equal to (Ig’), which is 1 if and only if p = £1 modulo (5).

(b) The number /2 is a root of the polynomial X™ — 2, which is irreducible over Q
by the Eisenstein criterion for the prime 2. Thus X" —2 is the minimal polynomial

of /2 over Q.
n—2

If n is even, it has 2 roots in R and *5= pairs of complex conjugate roots in C\R.
n—2

In that case we thus have Q({L/Q) ®oR = R? x C2 and hence 2 + ”T—Q — "TJFQ
distinct extensions.

If n is odd, the polynomial X™ — 2 has 1 root in R and ”T’l pairs of complex

conjugate roots in C \ R. In that case thus we have Q(/2) ®g R = R x c*
and hence 1 + ”T’l = ”T“ distinct extensions.

4. Let p be a prime number and Q an algebraic closure of Q.

(a) Show that | |, extends to some absolute value | | on Q.

(b) For any subfield K C Q which is finite over Q let K be the completion of K
with respect to the restriction of | |. Show that for any subfields K C L C Q
which are finite over Q we get a natural inclusion K < L.

(¢) Show that the union @, of all these K is an algebraic closure of Q.

(d) Show that there is a natural isomorphism
Gal(Q,/Q,) — Stabga /g (| 1)-

Solution:

(a) Let Q, be any algebraic closure of @,. Then the p-adic absolute value on
Q, possesses a unique extension to @p. Since @p is algebraically closed, the
embedding Q — @p extends to some embedding Q — @p. The pullback of
the absolute value on @, under this embedding yields the desired extension.
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Aliter: For any finite extension K/Q, there exists an extension of | |, to K.
Construct the desired extension to Q using Zorn’s lemma.

Any Cauchy sequence in K is also a Cauchy sequence in L, as the absolute
value on K is the restriction of the absolute value on L. Hence we obtain
an inclusion of metric spaces K < L. Tt follows directly from the definition
of addition and multiplication for the completion that this inclusion respects
the field structure.

The natural inclusions K < l} are compatible with each other; hence we
can form the union M := lim K. Since each K is finite over Q,, this M is

—
algebraic over Q,. We claim that it is algebraically closed.

For this consider any finite extension K /Q,. Then K is a local field, so by
exercise 6 below it is the completion of a global field K at an absolute value
| |. Since Q C Q, C K, we also have Q C K so K is finite extension of Q.
Also, the restriction of | | to Q is the restriction of the usual absolute value
on @, and hence equal to | |,.

(Aliter: Consider any irreducible monic polynomial f € Q,[X] with roots
T =21,To, ..., Ty, € Qp. As in the solution of exercise 5 of sheet 11, we can
choose a monic polynomial g € Q[X] of degree n that is coefficientwise close
to f and has a root y in M such that |y — z| < min{|z — z;| : 2 <@ < n}.
Krasner’s lemma (exercise 4 of sheet 11) then implies that Q,(z) C Q,(y).
Thus Q,(x) lies in the completion of the number field K = Q(y) at an
absolute value | | extending the p-adic absolute value on Q.)

Let L be a galois closure of K over Q. Then Gal(L/Q) acts transitively on
the set of primes of O above p and hence also on the set of extensions of
| [, to L. Any such extension thus arises from the extension to Q in (a) via
some embedding L — Q. After extending our given absolute value | | on K
to L, this therefore arises from the extension to Q in (a) via some embedding
K < Q. For this embedding we then have K = K c M. Varying K this
proves that M is algebraically closed. In particular we have a natural equality
M =Q,.

First consider any finite extension K C Q which is galois over Q with galois
group G. Then by §13 Proposition 6, the pullback of | |, via K — Q — @,
corresponds to a prime ideal p of Ok above p, and by §13 Proposition 8 the
extension K /Q, is galois with galois group G, = Stabg(p). By the natural
bijection between primes above p and extensions of the absolute value this
subgroup is equal to Stabg(| |,|x)-

For any two finite extensions K C K’ C Q that are galois over Q we have
a natural surjection Gal(K'/Q) — Gal(K/Q). Moreover, if p C Ok and
p’ C Ok are the primes above p associated to the respective pullbacks of | |,
then p’ lies above p, and by the solution of exercise 2 of sheet 2 we obtain a



natural commutative diagram with vertical surjections

Gal(K"/Q,) = Stabgax/g)(p') = Stabcax /o) (| [plx) ¢ Gal(K'/Q)

¢ | Jf i

Gal(K/Q,) = Stabaa(k/o)(p) = Stabgaso)(| [plx) < Gal(K/Q).

1R

As K varies over all finite extensions within Q which are galois over Q, we
thus obtain compatible inverse systems. Since the union of the resulting fields
K is Q, by part (c), in the limit we obtain an isomorphism

Gal<@p/@p> = Stab(}al(@/@)(l |p|@) C Gal(@/@)

5. (Product formula) A non-archimedean absolute value | | on a field K for which
Ok is a discrete valuation ring with finite residue field O /m is called normalized
if |7| = |Ox/m|™! for any element 7 with () = m. The usual absolute value on
Q, is normalized.

(a) Show that for all @ € Q* we have [, [a[, = 1.

(b) For any finite field k, write down all normalized absolute values on k().

(c) For any finite field & and any a € k(t)*, prove that [], |a|, = 1, where the
product is taken over all normalized absolute values on k().

Solution:

(a) For the rational case, see Proposition 2.1 in Section 2 of Chapter II in

Neukirch.
(b) For any monic irreducible polynomial p € k[t] and any f € k(t) we define
|flp := |k[t]/(p)|~ %)), This defines a non-archimedean absolute value with

Oty = k[t](p), which is normalized because |p|, = |k[t]/(p)|™! =[Ok /()|
Varying p, this yields all the normalized absolute values on k(t) associated to
maximal ideals of klt].

An additional normalized absolute value | |, is obtained in the same way from
the maximal ideal (s) C k[s] after the substitution s = 1. For any non-zero
polynomial f € k[t] of degree n € Z the substitution yields f(t) = s™ f(£)-s™"
with [s" - f(1)]e = 1 and hence |f|o = |s|" = |k]|?°8). For arbitrary non-
zero f,g € k[t] we therefore have |§|Oo = |k|des(f)—deslg),

Clearly every absolute value on k(%) is equivalent to a unique normalized one.
Thus by Theorem 4.1 in the following notes by Brian Conrad the above list
of normalized absolute values on k(t) is complete:

http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf


http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf

(c¢) By multiplicativity it suffices to prove this for generators of the group k(t)*,
namely for any monic irreducible polynomial p € k[t] and any element o € k*.
The latter has finite order and hence satisfies |a|, = 1 for all absolute values
| |, and therefore also [], |al, = 1. The former satisfies |p|, = |k[t]/(p)| " =
|k|79e® and |p|,, = |k|9e®) while |p|, = 1 for all monic irreducible poly-
nomials p’ € k[t] that are distinct from p. Thus the product is again 1.

*6. Show that any local field is the completion of a global field at an absolute value.

Solution: By definition the local fields are, up to isomorphism, finite extensions

of R, F,((t)) and Q,.

The archimedean complete fields R and C are the completions of Q and Q(z) with
respect to the usual archimedean absolute value.

Suppose that K is a local field of positive characteristic. Then, the last part of
the proof of Proposition 5.2 in Section 5 of Chapter II of Neukirch states that
K = k((t)), where k is a finite extension of F,. Hence, we have K = F ((¢)) for
some prime power ¢. In this case K is isomorphic to the completion of F,(t) at
the absolute value induced by ord; : Fy(t) — Z U {oo}.

Suppose now that K = Q,(«) is a finite extension of Q,. Let f be the minimal
polynomial of a over Q,. As in the aliter of the solution of exercise 4(c), we can
choose a polynomial g € Q[X] of degree [K : Q,] with a root 3 € Q,, such that
K is the completion of the number field Q(5) with respect to | |,.



