D-MATH
Prof. Richard Pink

Solutions 12

Extensions of Absolute Values, Local and Global Fields

1. Let L / K be a purely inseparable finite extension of degree q. Show that every absolute value || on K possesses a unique extension to L, given by the formula

$$
|y|:=\left|y^{q}\right|^{q^{-1}} .
$$

Solution: By assumption, for every $y \in L$ we have $y^{q} \in K$. Thus any extension $\|\|$ of the absolute value must satisfy $\| y\left\|^{q}=\right\| y^{q} \|=\left|y^{q}\right|$, so it is given by the indicated formula. Conversely, since K has characteristic >0, the given absolute value on it is non-archimedean, hence $\left|\left.\right|^{1 / q}\right.$ is again an absolute value on K, and so is its pullback under the homomorphism $L \hookrightarrow K, y \mapsto y^{q}$.
*2. Let L / K be a finite field extension and let | | be a (nontrivial) absolute value on L. Show that the restriction of $\|$ to K is nontrivial.
(Hint: Use Newton polygons.)
Solution: Suppose that the restriction of $|\mid$ to K is trivial. Then $| n \cdot 1_{K} \mid \leqslant 1$ for all integers n; hence the absolute value is non-archimedean. Write $|x|=c^{-v(x)}$ for $c>1$ and a valuation $v: L \rightarrow \mathbb{R} \cup\{\infty\}$. Choose $y \in L$ with $|y| \neq 0,1$. Let $f(X)=\sum_{i=0}^{n} a_{i} X^{i}$ be its minimal polynomial over K. Then $a_{n}=1$, and $y \neq 0$ implies that $a_{0} \neq 0$. Thus $v\left(a_{n}\right)=v\left(a_{0}\right)=0$, and since $v \mid K$ is trivial, we have $v\left(a_{i}\right) \in\{0, \infty\}$ for all $1 \leqslant i \leqslant n$. Thus the Newton polygon of f is a horizontal straight line segment. By Proposition 7 of $\S 12$ of the lecture course (which does not assume that the absolute value is complete or non-trivial) it follows that $v(y)=0$. Thus $|y|=1$, contrary to the assumption.
3. (a) Determine all the absolute values on $\mathbb{Q}(\sqrt{5})$.
(b) How many extensions to $\mathbb{Q}(\sqrt[n]{2})$ does the archimedean absolute value on \mathbb{Q} admit?
Solution: (a) Every absolute value on $\mathbb{Q}(\sqrt{5})$ is an extension of an absolute value on \mathbb{Q}. The restriction to \mathbb{Q} is nontrivial by exercise 2 above. Up to equivalence, the absolute values on \mathbb{Q} are precisely the $\left|\left.\right|_{p}\right.$ for primes p including the archimedean case $p=\infty$. We distinguish the case when $X^{2}-5$ splits in $\mathbb{Q}_{p}[X]$ and the case when it is irreducible.
If $X^{2}-5$ splits over \mathbb{Q}_{p}, then $\mathbb{Q}(\sqrt{5}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p} \cong \mathbb{Q}_{p} \times \mathbb{Q}_{p}$ and the extensions of $\left|\left.\right|_{p}\right.$ are the pullbacks of the absolute value on \mathbb{Q}_{p} under the two embeddings $\mathbb{Q}(\sqrt{5}) \hookrightarrow \mathbb{Q}_{p}$.

Letting $\pm \alpha$ denote the roots of $X^{2}-5$ in \mathbb{Q}_{p}, the extensions of $\left|\left.\right|_{p}\right.$ are therefore given by $|a+b \sqrt{5}|:=|a \pm b \alpha|_{p}$.
If $X^{2}-5$ is irreducible over \mathbb{Q}_{p}, then $\mathbb{Q}(\sqrt{5}) \otimes_{\mathbb{Q}} \mathbb{Q}_{p}$ is a field and there is a unique extension of $\left|\left.\right|_{p}\right.$ to $\mathbb{Q}(\sqrt{5})$, which is the pullback of the unique extension of the absolute value of \mathbb{Q}_{p} to $\mathbb{Q}_{p}[X] /\left(X^{2}-5\right)$. By $\S 12$ Theorem 4 , it is given by $|a+b \sqrt{5}|:=\sqrt{\left|\operatorname{Nm}_{\hat{L} / \mathbb{Q}_{p}}(a+b \sqrt{5})\right|_{p}}=\sqrt{\left|a^{2}-5 b^{2}\right|_{p}}$.
It remains to determine the $p \leqslant \infty$ for which $X^{2}-5$ splits. Since $\sqrt{5} \in \mathbb{R}$, it splits for $p=\infty$. Since 5 is not a square modulo 2^{3}, it follows that $X^{2}-5$ does not split over \mathbb{Z}_{2} and hence neither over \mathbb{Q}_{2} as \mathbb{Z}_{2} is normal. Furthermore $X^{2}-5$ is irreducible over \mathbb{Z}_{5} by the Eisenstein criterion and hence it does not split over \mathbb{Q}_{5}. For $p \notin\{2,5, \infty\}$ it follows from Hensel's lemma that $X^{2}-5$ splits if and only if it splits over \mathbb{F}_{p}. This is so if and only if the Legendre symbol $\left(\frac{5}{p}\right)$ is 1 . By quadratic reciprocity that is equal to $\left(\frac{p}{5}\right)$, which is 1 if and only if $p \equiv \pm 1$ modulo (5).
(b) The number $\sqrt[n]{2}$ is a root of the polynomial $X^{n}-2$, which is irreducible over \mathbb{Q} by the Eisenstein criterion for the prime 2. Thus $X^{n}-2$ is the minimal polynomial of $\sqrt[n]{2}$ over \mathbb{Q}.
If n is even, it has 2 roots in \mathbb{R} and $\frac{n-2}{2}$ pairs of complex conjugate roots in $\mathbb{C} \backslash \mathbb{R}$. In that case we thus have $\mathbb{Q}(\sqrt[n]{2}) \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R}^{2} \times \mathbb{C}^{\frac{n-2}{2}}$ and hence $2+\frac{n-2}{2}=\frac{n+2}{2}$ distinct extensions.
If n is odd, the polynomial $X^{n}-2$ has 1 root in \mathbb{R} and $\frac{n-1}{2}$ pairs of complex conjugate roots in $\mathbb{C} \backslash \mathbb{R}$. In that case thus we have $\mathbb{Q}(\sqrt[n]{2}) \otimes_{\mathbb{Q}} \mathbb{R} \cong \mathbb{R} \times \mathbb{C}^{\frac{n-1}{2}}$ and hence $1+\frac{n-1}{2}=\frac{n+1}{2}$ distinct extensions.
4. Let p be a prime number and $\overline{\mathbb{Q}}$ an algebraic closure of \mathbb{Q}.
(a) Show that $\left|\left.\right|_{p}\right.$ extends to some absolute value $| \mid$ on $\overline{\mathbb{Q}}$.
(b) For any subfield $K \subset \overline{\mathbb{Q}}$ which is finite over \mathbb{Q} let \hat{K} be the completion of K with respect to the restriction of $|\mid$. Show that for any subfields $K \subset L \subset \overline{\mathbb{Q}}$ which are finite over \mathbb{Q} we get a natural inclusion $\hat{K} \hookrightarrow \hat{L}$.
(c) Show that the union $\overline{\mathbb{Q}}_{p}$ of all these \hat{K} is an algebraic closure of \mathbb{Q}_{p}.
(d) Show that there is a natural isomorphism

$$
\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \xrightarrow{\sim} \operatorname{Stab}_{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}(| |) .
$$

Solution:

(a) Let $\overline{\mathbb{Q}}_{p}$ be any algebraic closure of \mathbb{Q}_{p}. Then the p-adic absolute value on \mathbb{Q}_{p} possesses a unique extension to $\overline{\mathbb{Q}}_{p}$. Since $\overline{\mathbb{Q}}_{p}$ is algebraically closed, the embedding $\mathbb{Q} \hookrightarrow \overline{\mathbb{Q}}_{p}$ extends to some embedding $\overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$. The pullback of the absolute value on $\overline{\mathbb{Q}}_{p}$ under this embedding yields the desired extension.

Aliter: For any finite extension K / \mathbb{Q}, there exists an extension of $\left|\left.\right|_{p}\right.$ to K. Construct the desired extension to $\overline{\mathbb{Q}}$ using Zorn's lemma.
(b) Any Cauchy sequence in K is also a Cauchy sequence in L, as the absolute value on K is the restriction of the absolute value on L. Hence we obtain an inclusion of metric spaces $\hat{K} \hookrightarrow \hat{L}$. It follows directly from the definition of addition and multiplication for the completion that this inclusion respects the field structure.
(c) The natural inclusions $\hat{K} \hookrightarrow \hat{L}$ are compatible with each other; hence we can form the union $M:=\underset{\longrightarrow}{\lim } \hat{K}$. Since each \hat{K} is finite over \mathbb{Q}_{p}, this M is algebraic over \mathbb{Q}_{p}. We claim that it is algebraically closed.
For this consider any finite extension $\tilde{K} / \mathbb{Q}_{p}$. Then \tilde{K} is a local field, so by exercise 6 below it is the completion of a global field K at an absolute value $\left|\mid\right.$. Since $\mathbb{Q} \subset \mathbb{Q}_{p} \subset \tilde{K}$, we also have $\mathbb{Q} \subset K$; so K is finite extension of \mathbb{Q}. Also, the restriction of $\|$ to \mathbb{Q} is the restriction of the usual absolute value on \mathbb{Q}_{p} and hence equal to $\left|\left.\right|_{p}\right.$.
(Aliter: Consider any irreducible monic polynomial $f \in \mathbb{Q}_{p}[X]$ with roots $x=x_{1}, x_{2}, \ldots, x_{n} \in \overline{\mathbb{Q}}_{p}$. As in the solution of exercise 5 of sheet 11 , we can choose a monic polynomial $g \in \mathbb{Q}[X]$ of degree n that is coefficientwise close to f and has a root y in M such that $|y-x|<\min \left\{\left|x-x_{i}\right|: 2 \leqslant i \leqslant n\right\}$. Krasner's lemma (exercise 4 of sheet 11) then implies that $\mathbb{Q}_{p}(x) \subset \mathbb{Q}_{p}(y)$. Thus $\mathbb{Q}_{p}(x)$ lies in the completion of the number field $K:=\mathbb{Q}(y)$ at an absolute value $|\mid$ extending the p-adic absolute value on \mathbb{Q}.)
Let L be a galois closure of K over \mathbb{Q}. Then $\operatorname{Gal}(L / \mathbb{Q})$ acts transitively on the set of primes of \mathcal{O}_{L} above p and hence also on the set of extensions of $\left|\left.\right|_{p}\right.$ to L. Any such extension thus arises from the extension to $\overline{\mathbb{Q}}$ in (a) via some embedding $L \hookrightarrow \overline{\mathbb{Q}}$. After extending our given absolute value || on K to L, this therefore arises from the extension to $\overline{\mathbb{Q}}$ in (a) via some embedding $K \hookrightarrow \overline{\mathbb{Q}}$. For this embedding we then have $\tilde{K}=\hat{K} \subset M$. Varying \tilde{K} this proves that M is algebraically closed. In particular we have a natural equality $M=\overline{\mathbb{Q}}_{p}$.
(d) First consider any finite extension $K \subset \overline{\mathbb{Q}}$ which is galois over \mathbb{Q} with galois group G. Then by $\S 13$ Proposition 6 , the pullback of $\left|\left.\right|_{p}\right.$ via $K \hookrightarrow \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_{p}$ corresponds to a prime ideal \mathfrak{p} of \mathcal{O}_{K} above p, and by $\S 13$ Proposition 8 the extension \hat{K} / \mathbb{Q}_{p} is galois with galois group $G_{\mathfrak{p}}=\operatorname{Stab}_{G}(\mathfrak{p})$. By the natural bijection between primes above p and extensions of the absolute value this subgroup is equal to $\operatorname{Stab}_{G}\left(\left.| |_{p}\right|_{K}\right)$.
For any two finite extensions $K \subset K^{\prime} \subset \overline{\mathbb{Q}}$ that are galois over \mathbb{Q} we have a natural surjection $\operatorname{Gal}\left(K^{\prime} / \mathbb{Q}\right) \rightarrow \operatorname{Gal}(K / \mathbb{Q})$. Moreover, if $\mathfrak{p} \subset \mathcal{O}_{K}$ and $\mathfrak{p}^{\prime} \subset \mathcal{O}_{K^{\prime}}$ are the primes above p associated to the respective pullbacks of $\left|\left.\right|_{p}\right.$, then \mathfrak{p}^{\prime} lies above \mathfrak{p}, and by the solution of exercise 2 of sheet 2 we obtain a
natural commutative diagram with vertical surjections

As K varies over all finite extensions within $\overline{\mathbb{Q}}$ which are galois over \mathbb{Q}, we thus obtain compatible inverse systems. Since the union of the resulting fields \hat{K} is $\overline{\mathbb{Q}}_{p}$ by part (c), in the limit we obtain an isomorphism

$$
\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right) \cong \operatorname{Stab}_{\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})}\left(| |_{p} \mid \overline{\mathbb{Q}}\right) \subset \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})
$$

5. (Product formula) A non-archimedean absolute value || on a field K for which \mathcal{O}_{K} is a discrete valuation ring with finite residue field $\mathcal{O}_{K} / \mathfrak{m}$ is called normalized if $|\pi|=\left|\mathcal{O}_{K} / \mathfrak{m}\right|^{-1}$ for any element π with $(\pi)=\mathfrak{m}$. The usual absolute value on \mathbb{Q}_{p} is normalized.
(a) Show that for all $a \in \mathbb{Q}^{\times}$we have $\prod_{p \leqslant \infty}|a|_{p}=1$.
(b) For any finite field k, write down all normalized absolute values on $k(t)$.
(c) For any finite field k and any $a \in k(t)^{\times}$, prove that $\prod_{v}|a|_{v}=1$, where the product is taken over all normalized absolute values on $k(t)$.

Solution:

(a) For the rational case, see Proposition 2.1 in Section 2 of Chapter II in Neukirch.
(b) For any monic irreducible polynomial $p \in k[t]$ and any $f \in k(t)$ we define $|f|_{p}:=|k[t] /(p)|^{-\operatorname{ord}_{p}(f)}$. This defines a non-archimedean absolute value with $\mathcal{O}_{k(t)}=k[t]_{(p)}$, which is normalized because $|p|_{p}=|k[t] /(p)|^{-1}=\left|\mathcal{O}_{k(t)} /(p)\right|^{-1}$. Varying p, this yields all the normalized absolute values on $k(t)$ associated to maximal ideals of $k[t]$.
An additional normalized absolute value $\|\left.\right|_{\infty}$ is obtained in the same way from the maximal ideal $(s) \subset k[s]$ after the substitution $s=\frac{1}{t}$. For any non-zero polynomial $f \in k[t]$ of degree $n \in \mathbb{Z}$ the substitution yields $f(t)=s^{n} \cdot f\left(\frac{1}{s}\right) \cdot s^{-n}$ with $\left|s^{n} \cdot f\left(\frac{1}{s}\right)\right|_{\infty}=1$ and hence $|f|_{\infty}=|s|_{\infty}^{-n}=|k|^{\operatorname{deg}(f)}$. For arbitrary nonzero $f, g \in k[t]$ we therefore have $\left|\frac{f}{g}\right|_{\infty}=|k|^{\operatorname{deg}(f)-\operatorname{deg}(g)}$.
Clearly every absolute value on $k(t)$ is equivalent to a unique normalized one. Thus by Theorem 4.1 in the following notes by Brian Conrad the above list of normalized absolute values on $k(t)$ is complete:
http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf
(c) By multiplicativity it suffices to prove this for generators of the group $k(t)^{\times}$, namely for any monic irreducible polynomial $p \in k[t]$ and any element $\alpha \in k^{\times}$. The latter has finite order and hence satisfies $|\alpha|_{v}=1$ for all absolute values $\left.\left|\left.\right|_{v}\right.$, and therefore also $\left.\prod_{v}\right| a\right|_{v}=1$. The former satisfies $|p|_{p}=|k[t] /(p)|^{-1}=$ $|k|^{-\operatorname{deg}(p)}$ and $|p|_{\infty}=|k|^{\operatorname{deg}(p)}$, while $|p|_{p^{\prime}}=1$ for all monic irreducible polynomials $p^{\prime} \in k[t]$ that are distinct from p. Thus the product is again 1 .
*6. Show that any local field is the completion of a global field at an absolute value.
Solution: By definition the local fields are, up to isomorphism, finite extensions of $\mathbb{R}, \mathbb{F}_{p}((t))$ and \mathbb{Q}_{p}.
The archimedean complete fields \mathbb{R} and \mathbb{C} are the completions of \mathbb{Q} and $\mathbb{Q}(i)$ with respect to the usual archimedean absolute value.
Suppose that K is a local field of positive characteristic. Then, the last part of the proof of Proposition 5.2 in Section 5 of Chapter II of Neukirch states that $K \cong k((t))$, where k is a finite extension of \mathbb{F}_{p}. Hence, we have $K \cong \mathbb{F}_{q}((t))$ for some prime power q. In this case K is isomorphic to the completion of $\mathbb{F}_{q}(t)$ at the absolute value induced by $\operatorname{ord}_{t}: \mathbb{F}_{q}(t) \rightarrow \mathbb{Z} \cup\{\infty\}$.
Suppose now that $K=\mathbb{Q}_{p}(\alpha)$ is a finite extension of \mathbb{Q}_{p}. Let f be the minimal polynomial of α over \mathbb{Q}_{p}. As in the aliter of the solution of exercise $4(\mathrm{c})$, we can choose a polynomial $g \in \mathbb{Q}[X]$ of degree $\left[K: \mathbb{Q}_{p}\right]$ with a root $\beta \in \overline{\mathbb{Q}}_{p}$, such that K is the completion of the number field $\mathbb{Q}(\beta)$ with respect to $\left|\left.\right|_{p}\right.$.

