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Solutions 12

Extensions of Absolute Values, Local and Global Fields

1. Let L/K be a purely inseparable finite extension of degree q. Show that every
absolute value | | on K possesses a unique extension to L, given by the formula

|y| := |yq|q−1

.

Solution: By assumption, for every y ∈ L we have yq ∈ K. Thus any extension
∥ ∥ of the absolute value must satisfy ∥y∥q = ∥yq∥ = |yq|, so it is given by the
indicated formula. Conversely, since K has characteristic > 0, the given absolute
value on it is non-archimedean, hence | |1/q is again an absolute value on K, and
so is its pullback under the homomorphism L ↪→ K, y 7→ yq.

*2. Let L/K be a finite field extension and let | | be a (nontrivial) absolute value on L.
Show that the restriction of | | to K is nontrivial.

(Hint: Use Newton polygons.)

Solution: Suppose that the restriction of | | to K is trivial. Then |n · 1K | ⩽ 1
for all integers n; hence the absolute value is non-archimedean. Write |x| = c−v(x)

for c > 1 and a valuation v : L → R ∪ {∞}. Choose y ∈ L with |y| ̸= 0, 1. Let
f(X) =

∑n
i=0 aiX

i be its minimal polynomial over K. Then an = 1, and y ̸= 0
implies that a0 ̸= 0. Thus v(an) = v(a0) = 0, and since v|K is trivial, we have
v(ai) ∈ {0,∞} for all 1 ⩽ i ⩽ n. Thus the Newton polygon of f is a horizontal
straight line segment. By Proposition 7 of §12 of the lecture course (which does not
assume that the absolute value is complete or non-trivial) it follows that v(y) = 0.
Thus |y| = 1, contrary to the assumption.

3. (a) Determine all the absolute values on Q(
√
5 ).

(b) How many extensions to Q( n
√
2 ) does the archimedean absolute value on Q

admit?

Solution: (a) Every absolute value on Q(
√
5 ) is an extension of an absolute value

on Q. The restriction to Q is nontrivial by exercise 2 above. Up to equivalence, the
absolute values on Q are precisely the | |p for primes p including the archimedean
case p = ∞. We distinguish the case when X2 − 5 splits in Qp[X] and the case
when it is irreducible.

If X2−5 splits over Qp, then Q(
√
5 )⊗QQp

∼= Qp×Qp and the extensions of | |p are
the pullbacks of the absolute value on Qp under the two embeddings Q(

√
5 ) ↪→ Qp.
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Letting ±α denote the roots of X2 − 5 in Qp, the extensions of | |p are therefore
given by |a+ b

√
5| := |a± bα|p.

If X2 − 5 is irreducible over Qp, then Q(
√
5 ) ⊗Q Qp is a field and there is a

unique extension of | |p to Q(
√
5 ), which is the pullback of the unique extension

of the absolute value of Qp to Qp[X]/(X2 − 5). By §12 Theorem 4, it is given by

|a+ b
√
5| :=

√
|NmL̂/Qp

(a+ b
√
5)|p =

√
|a2 − 5b2|p.

It remains to determine the p ⩽ ∞ for which X2−5 splits. Since
√
5 ∈ R, it splits

for p = ∞. Since 5 is not a square modulo 23, it follows that X2 − 5 does not
split over Z2 and hence neither over Q2 as Z2 is normal. Furthermore X2 − 5 is
irreducible over Z5 by the Eisenstein criterion and hence it does not split over Q5.

For p /∈ {2, 5,∞} it follows from Hensel’s lemma that X2−5 splits if and only if it
splits over Fp. This is so if and only if the Legendre symbol

(
5
p

)
is 1. By quadratic

reciprocity that is equal to
(
p
5

)
, which is 1 if and only if p ≡ ±1 modulo (5).

(b) The number n
√
2 is a root of the polynomial Xn−2, which is irreducible over Q

by the Eisenstein criterion for the prime 2. Thus Xn−2 is the minimal polynomial
of n

√
2 over Q.

If n is even, it has 2 roots in R and n−2
2

pairs of complex conjugate roots in C∖R.
In that case we thus have Q( n

√
2 ) ⊗Q R ∼= R2 × Cn−2

2 and hence 2 + n−2
2

= n+2
2

distinct extensions.

If n is odd, the polynomial Xn − 2 has 1 root in R and n−1
2

pairs of complex

conjugate roots in C ∖ R. In that case thus we have Q( n
√
2 ) ⊗Q R ∼= R × Cn−1

2

and hence 1 + n−1
2

= n+1
2

distinct extensions.

4. Let p be a prime number and Q̄ an algebraic closure of Q.

(a) Show that | |p extends to some absolute value | | on Q̄.

(b) For any subfield K ⊂ Q̄ which is finite over Q let K̂ be the completion of K
with respect to the restriction of | |. Show that for any subfields K ⊂ L ⊂ Q̄
which are finite over Q we get a natural inclusion K̂ ↪→ L̂.

(c) Show that the union Q̄p of all these K̂ is an algebraic closure of Qp.

(d) Show that there is a natural isomorphism

Gal(Q̄p/Qp)
∼−→ StabGal(Q̄/Q)(| |).

Solution:

(a) Let Q̄p be any algebraic closure of Qp. Then the p-adic absolute value on
Qp possesses a unique extension to Q̄p. Since Q̄p is algebraically closed, the
embedding Q ↪→ Q̄p extends to some embedding Q̄ ↪→ Q̄p. The pullback of
the absolute value on Q̄p under this embedding yields the desired extension.

2



Aliter: For any finite extension K/Q, there exists an extension of | |p to K.
Construct the desired extension to Q̄ using Zorn’s lemma.

(b) Any Cauchy sequence in K is also a Cauchy sequence in L, as the absolute
value on K is the restriction of the absolute value on L. Hence we obtain
an inclusion of metric spaces K̂ ↪→ L̂. It follows directly from the definition
of addition and multiplication for the completion that this inclusion respects
the field structure.

(c) The natural inclusions K̂ ↪→ L̂ are compatible with each other; hence we
can form the union M := lim

−→
K̂. Since each K̂ is finite over Qp, this M is

algebraic over Qp. We claim that it is algebraically closed.

For this consider any finite extension K̃/Qp. Then K̃ is a local field, so by
exercise 6 below it is the completion of a global field K at an absolute value
| |. Since Q ⊂ Qp ⊂ K̃, we also have Q ⊂ K; so K is finite extension of Q.
Also, the restriction of | | to Q is the restriction of the usual absolute value
on Qp and hence equal to | |p.
(Aliter: Consider any irreducible monic polynomial f ∈ Qp[X] with roots
x = x1, x2, . . . , xn ∈ Q̄p. As in the solution of exercise 5 of sheet 11, we can
choose a monic polynomial g ∈ Q[X] of degree n that is coefficientwise close
to f and has a root y in M such that |y − x| < min{|x − xi| : 2 ⩽ i ⩽ n}.
Krasner’s lemma (exercise 4 of sheet 11) then implies that Qp(x) ⊂ Qp(y).
Thus Qp(x) lies in the completion of the number field K := Q(y) at an
absolute value | | extending the p-adic absolute value on Q.)

Let L be a galois closure of K over Q. Then Gal(L/Q) acts transitively on
the set of primes of OL above p and hence also on the set of extensions of
| |p to L. Any such extension thus arises from the extension to Q̄ in (a) via
some embedding L ↪→ Q̄. After extending our given absolute value | | on K
to L, this therefore arises from the extension to Q̄ in (a) via some embedding
K ↪→ Q̄. For this embedding we then have K̃ = K̂ ⊂ M . Varying K̃ this
proves thatM is algebraically closed. In particular we have a natural equality
M = Q̄p.

(d) First consider any finite extension K ⊂ Q̄ which is galois over Q with galois
group G. Then by §13 Proposition 6, the pullback of | |p via K ↪→ Q̄ ↪→ Q̄p

corresponds to a prime ideal p of OK above p, and by §13 Proposition 8 the
extension K̂/Qp is galois with galois group Gp = StabG(p). By the natural
bijection between primes above p and extensions of the absolute value this
subgroup is equal to StabG(| |p|K).
For any two finite extensions K ⊂ K ′ ⊂ Q̄ that are galois over Q we have
a natural surjection Gal(K ′/Q) ↠ Gal(K/Q). Moreover, if p ⊂ OK and
p′ ⊂ OK′ are the primes above p associated to the respective pullbacks of | |p,
then p′ lies above p, and by the solution of exercise 2 of sheet 2 we obtain a
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natural commutative diagram with vertical surjections

Gal(K̂ ′/Qp) ∼=

����

StabGal(K′/Q)(p
′) =

����

StabGal(K′/Q)(| |p|K′) ⊂

����

Gal(K ′/Q)

����
Gal(K̂/Qp) ∼= StabGal(K/Q)(p) = StabGal(K/Q)(| |p|K) ⊂ Gal(K/Q).

As K varies over all finite extensions within Q̄ which are galois over Q, we
thus obtain compatible inverse systems. Since the union of the resulting fields
K̂ is Q̄p by part (c), in the limit we obtain an isomorphism

Gal(Q̄p/Qp) ∼= StabGal(Q̄/Q)(| |p|Q̄) ⊂Gal(Q̄/Q)

5. (Product formula) A non-archimedean absolute value | | on a field K for which
OK is a discrete valuation ring with finite residue field OK/m is called normalized
if |π| = |OK/m|−1 for any element π with (π) = m. The usual absolute value on
Qp is normalized.

(a) Show that for all a ∈ Q× we have
∏

p⩽∞ |a|p = 1.

(b) For any finite field k, write down all normalized absolute values on k(t).

(c) For any finite field k and any a ∈ k(t)×, prove that
∏

v |a|v = 1, where the
product is taken over all normalized absolute values on k(t).

Solution:

(a) For the rational case, see Proposition 2.1 in Section 2 of Chapter II in
Neukirch.

(b) For any monic irreducible polynomial p ∈ k[t] and any f ∈ k(t) we define
|f |p := |k[t]/(p)|− ordp(f). This defines a non-archimedean absolute value with
Ok(t) = k[t](p), which is normalized because |p|p = |k[t]/(p)|−1 = |Ok(t)/(p)|−1.
Varying p, this yields all the normalized absolute values on k(t) associated to
maximal ideals of k[t].

An additional normalized absolute value | |∞ is obtained in the same way from
the maximal ideal (s) ⊂ k[s] after the substitution s = 1

t
. For any non-zero

polynomial f ∈ k[t] of degree n ∈ Z the substitution yields f(t) = sn·f(1
s
)·s−n

with |sn · f(1
s
)|∞ = 1 and hence |f |∞ = |s|−n

∞ = |k|deg(f). For arbitrary non-

zero f, g ∈ k[t] we therefore have |f
g
|∞ = |k|deg(f)−deg(g).

Clearly every absolute value on k(t) is equivalent to a unique normalized one.
Thus by Theorem 4.1 in the following notes by Brian Conrad the above list
of normalized absolute values on k(t) is complete:

http://math.stanford.edu/~conrad/676Page/handouts/ostrowski.pdf
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(c) By multiplicativity it suffices to prove this for generators of the group k(t)×,
namely for any monic irreducible polynomial p ∈ k[t] and any element α ∈ k×.
The latter has finite order and hence satisfies |α|v = 1 for all absolute values
| |v, and therefore also

∏
v |a|v = 1. The former satisfies |p|p = |k[t]/(p)|−1 =

|k|− deg(p) and |p|∞ = |k|deg(p), while |p|p′ = 1 for all monic irreducible poly-
nomials p′ ∈ k[t] that are distinct from p. Thus the product is again 1.

*6. Show that any local field is the completion of a global field at an absolute value.

Solution: By definition the local fields are, up to isomorphism, finite extensions
of R, Fp((t)) and Qp.

The archimedean complete fields R and C are the completions of Q and Q(i) with
respect to the usual archimedean absolute value.

Suppose that K is a local field of positive characteristic. Then, the last part of
the proof of Proposition 5.2 in Section 5 of Chapter II of Neukirch states that
K ∼= k((t)), where k is a finite extension of Fp. Hence, we have K ∼= Fq((t)) for
some prime power q. In this case K is isomorphic to the completion of Fq(t) at
the absolute value induced by ordt : Fq(t) → Z ∪ {∞}.
Suppose now that K = Qp(α) is a finite extension of Qp. Let f be the minimal
polynomial of α over Qp. As in the aliter of the solution of exercise 4(c), we can
choose a polynomial g ∈ Q[X] of degree [K : Qp] with a root β ∈ Q̄p, such that
K is the completion of the number field Q(β) with respect to | |p.
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