## Solutions 14

Dirichlet Density, Primes in Arithmetic Progressions

1. Does there exist a number field which does not embed into $\mathbb{Q}_{p}$ for any $p$ ?

Solution: The answer is no. In fact for every number field $K$, there are infinitely many prime numbers $p$ such that $K$ embeds into $\mathbb{Q}_{p}$. To show this, let $M$ denote the galois closure of $K / \mathbb{Q}$. Then by $\S 17$ Proposition 5 , the set of primes $p$ which split completely in $M$ has Dirichlet density $\frac{1}{[M / \mathbb{Q}]}$ and is therefore infinite. For any such $p$, let $\mathfrak{p} \subset \mathcal{O}_{M}$ be a prime above $p$. Then the decomposition group of $\mathfrak{p} / p$ is trivial; hence by $\S 13$ Proposition 8 the corresponding extension of local fields $M_{\mathfrak{p}} / \mathbb{Q}_{p}$ is galois with trivial galois group. Thus $M_{\mathfrak{p}}=\mathbb{Q}_{p}$, and the composite $K \hookrightarrow M \hookrightarrow M_{\mathfrak{p}}=\mathbb{Q}_{p}$ is the desired embedding.
2. Determine the Dirichlet density of the set of primes $p \equiv 3 \bmod (4)$ that split completely in the field $\mathbb{Q}(\sqrt[3]{2})$.
Solution: On the one hand put $K:=\mathbb{Q}(\sqrt[3]{2})$, so that $M:=\mathbb{Q}\left(\sqrt[3]{2}, e^{2 \pi i / 3}\right)$ is a galois closure of $K / \mathbb{Q}$. Then by $\S 6$ Proposition 12 a prime number is totally split in $\mathcal{O}_{K}$ if and only if it is totally split in $\mathcal{O}_{M}$. On the other hand put $L:=\mathbb{Q}(i)$. Then by exercise 3 of sheet 4 an odd prime number $p$ is non-split in $\mathcal{O}_{L}$ if and only if $p \equiv 3 \bmod (4)$. Thus, we want the set of primes that split totally in $\mathcal{O}_{M}$ but not in $\mathcal{O}_{L}$. By $\S 17$ Lemma 6 , this means that they split in $M$ but not in $M L$. By $\S 17$ Propositions 1 (f) and 5 the desired Dirichlet density is therefore

$$
\frac{1}{[M / \mathbb{Q}]}-\frac{1}{[M L / \mathbb{Q}]}=\frac{1}{6}-\frac{1}{12}=\frac{1}{12} .
$$

Aliter: The fields $M$ and $L$ are linearly disjoint galois extensions of $\mathbb{Q}$; hence $M L / \mathbb{Q}$ is galois with Galois $\operatorname{group} \operatorname{Gal}(M / \mathbb{Q}) \times \operatorname{Gal}(L / \mathbb{Q}) \cong S_{3} \times S_{2}$. Aside from finitely many ramified primes, we want the set of rational primes $p$ whose associated Frobenius element in $\operatorname{Gal}(M L / \mathbb{Q})$ is equal to $(1, \sigma)$ for $1 \neq \sigma \in S_{2}$. This element is alone in its conjugacy class, hence by the Cebotarev density theorem the set in question has Dirichlet density $1 /|\operatorname{Gal}(M L / \mathbb{Q})|=1 / 12$.
3. Let $L / K$ be an extension of number fields. Prove that $L=K$ if and only if the set of primes $\mathfrak{p} \subset \mathcal{O}_{K}$ which are totally split in $L$ has Dirichlet density $>\frac{1}{2}$.
Solution: If $L=K$, then all primes of $\mathcal{O}_{K}$ are totally split in $\mathcal{O}_{L}$ by definition. Conversely, let $M$ denote the galois closure of $L / K$. By $\S 6$ Proposition 12, a prime
ideal $\mathfrak{p}$ of $\mathcal{O}_{K}$ is totally split in $\mathcal{O}_{L}$ if and only if it is totally split in $\mathcal{O}_{M}$. By $\S 17$ Proposition 5 we therefore have

$$
\mu\left(S_{L / K}\right)=\mu\left(S_{M / K}\right)=\frac{1}{[M / K]} \leqslant \frac{1}{[L / K]} .
$$

Thus if $\mu\left(S_{L / K}\right)>\frac{1}{2}$, we have $[L / K]<2$ and hence $L=K$.
4. Let $L / K$ be an extension of number fields. Prove that $L / K$ is galois if and only if for almost all primes $\mathfrak{p} \subset \mathcal{O}_{K}$, if there exists a prime $\mathfrak{P} \mid \mathfrak{p}$ of $\mathcal{O}_{L}$ with $f_{\mathfrak{P} / \mathfrak{p}}=1$, then $\mathfrak{p}$ is totally split in $\mathcal{O}_{L}$.
Solution: As in the lecture, let $S_{L / K}$ be the set of non-zero prime ideals $\mathfrak{p}$ of $\mathcal{O}_{K}$ which are totally split in $\mathcal{O}_{L}$. Let $P_{L / K}$ be the set of non-zero prime ideals $\mathfrak{p}$ of $\mathcal{O}_{K}$ for which there exists a prime $\mathfrak{P} \mid \mathfrak{p}$ of $\mathcal{O}_{L}$ with $f_{\mathfrak{F} / \mathfrak{p}}=1$. Then we must show that $L / K$ is galois if and only if the set $X_{L / K}:=P_{L / K} \backslash S_{L / K}$ is finite.
If $L / K$ is galois, for all primes $\mathfrak{p} \subset \mathcal{O}_{K}$ we have $[L / K]=r_{\mathfrak{p}} e_{\mathfrak{p}} f_{\mathfrak{p}}$; hence $S_{L / K}$ is the set of $\mathfrak{p}$ with $e_{\mathfrak{p}} f_{\mathfrak{p}}=1$, and $P_{L / K}$ is the set of $\mathfrak{p}$ with $f_{\mathfrak{p}}=1$. Thus $X_{L / K}$ is contained in the finite set of $\mathfrak{p}$ with $e_{\mathfrak{p}}>1$ and is therefore itself finite.
Conversely, suppose that $L / K$ is not galois. Let $M / K$ be its galois closure. Then $M / L$ is a proper galois extension. By $\S 17$ Proposition 5 the set $S_{M / L}$ of primes of $\mathcal{O}_{L}$ which are totally split in $\mathcal{O}_{M}$ thus has Dirichlet density $\frac{1}{[M / L]}<1$. Its complement $A$ therefore has Dirichlet density $1-\frac{1}{\mid M / L]}>0$, and by $\S 17$ Proposition 3 so does the subset of primes in $A$ of absolute degree 1. Thus there exist infinitely many primes $\mathfrak{P} \subset \mathcal{O}_{K}$ of absolute degree 1 which are not totally split in $\mathcal{O}_{M}$. But any such $\mathfrak{P}$ has residue degree $f_{\mathfrak{F} / \mathfrak{p}}=1$, hence the corresponding prime $\mathfrak{p}:=\mathfrak{P} \cap \mathcal{O}_{K}$ lies in $X_{L / K}$. Thus the set $X_{L / K}$ is infinite, as desired.
5. Let $a$ be an integer that is not a third power. Let $A$ be the set of prime numbers $p$ such that $a \bmod (p)$ is a third power in $\mathbb{F}_{p}$.
(a) Prove that $A$ and its complement are both infinite.
(b) Prove that there is no integer $N$ such that the property $p \in A$ depends only on the residue class of $p$ modulo $(N)$.

Solution: By assumption the cubic polynomial $X^{3}-a$ does not have a root in $\mathbb{Z}$; hence by the Gauss lemma also not in $\mathbb{Q}$; so it is irreducible. Thus the field $K:=\mathbb{Q}(\sqrt[3]{a})$ is isomorphic to $\mathbb{Q}[X] /\left(X^{3}-a\right)$, and its ring of integers $\mathcal{O}_{K}$ contains the subring $\mathcal{O}:=\mathbb{Z}[\sqrt[3]{a}] \cong \mathbb{Z}[X] /\left(X^{3}-a\right)$. Since both $\mathcal{O} \subset \mathcal{O}_{K}$ are free $\mathbb{Z}$-modules of rank 3, the index $d:=\left[\mathcal{O}_{K}: \mathcal{O}\right]$ is finite. Thus for any prime $p \nmid d$ we obtain a natural isomorphism

$$
\mathbb{F}_{p}[X] /\left(X^{3}-a\right) \cong \mathcal{O} / p \mathcal{O} \xrightarrow{\sim} \mathcal{O}_{K} / p \mathcal{O}_{K}
$$

For any such $p$ it follows that $p \in A$ if and only if there exists a homomorphism $\mathcal{O}_{K} / p \mathcal{O}_{K} \rightarrow \mathbb{F}_{p}$, that is, if and only if there exists a prime $\mathfrak{p} \mid p$ of $\mathcal{O}_{K}$ with $f_{\mathfrak{p} / p}=1$.
Next, the ratio of two distinct roots of $X^{3}-a$ is a primitive third root of unity $\zeta_{3}$, hence the galois closure of $K / \mathbb{Q}$ is $\tilde{K}:=K L$ with the imaginary quadratic field $L:=\mathbb{Q}\left(\zeta_{3}\right)$. Moreover $\operatorname{Gal}(\tilde{K} / \mathbb{Q}) \cong S_{3}$ with the normal subgroup $\operatorname{Gal}(\tilde{K} / L) \cong A_{3}$.
(a) Since $\tilde{K} / \mathbb{Q}$ is galois of degree 6 , by $\S 17$ Proposition 5 the set of rational primes that are totally split in $\mathcal{O}_{\tilde{K}}$ has Dirichlet density $\frac{1}{6}$; in particular it is infinite. These primes are also totally split in the intermediate field $K$; hence by the above remarks almost all of them lie in $A$. Thus $A$ is infinite.
On the other hand, since $L / \mathbb{Q}$ is galois of degree 2 , the same proposition shows that the set of rational primes that split in $\mathcal{O}_{L}$ has Dirichlet density $\frac{1}{2}$. As this set contains the set of primes that are totally split in $\mathcal{O}_{\tilde{K}}$, it follows that the set of rational primes that are totally split in $\mathcal{O}_{L}$ but not in $\mathcal{O}_{\tilde{K}}$ has Dirichlet density $\frac{1}{2}-\frac{1}{6}=\frac{1}{3}$. In particular there are infinitely many such $p$. For each of these the decomposition group at any prime $\tilde{\mathfrak{p}} \subset \mathcal{O}_{\tilde{K}}$ above $p$ is non-trivial, but acts trivially on $L$; hence it is equal to $\operatorname{Gal}(\tilde{K} / L) \cong A_{3}$. Since $\operatorname{Gal}(\tilde{K} / K) \cong S_{2}<S_{3}$ and $S_{3}=S_{2} \cdot A_{3}$, by $\S 6$ Proposition 11 (c) it follows that there is only one prime $\mathfrak{p} \subset \mathcal{O}_{K}$ above $p$. As only finitely many primes are ramified in $\mathcal{O}_{K}$, for all the other such $p$ we must have $f_{\mathfrak{p} / p}=3$. By the above remarks almost all of these $p$ thus lie in the complement of $A$, which is therefore also infinite.
(b) If there is such an $N$, we can without loss of generality assume that $3 \mid N$, so that $L$ is contained in the cyclotomic field $\hat{L}:=\mathbb{Q}\left(\mu_{N}\right)$. Then $\hat{K}:=K \hat{L}$ is galois of degree 3 over $\hat{L}$. Since $\hat{L} / \mathbb{Q}$ is galois of degree $\varphi(N)$, the extension $\hat{K} / \mathbb{Q}$ is galois of degree $3 \varphi(N)$. By the same arguments as in (a) applied to $\hat{K} / \hat{L} / \mathbb{Q}$ instead of $\tilde{K} / L / \mathbb{Q}$ we find that of the rational primes which are totally split in $\mathcal{O}_{\hat{L}}$, infinitely many lie in $A$ and infinitely many in the complement of $A$. But by $\S 8$ Proposition 5 the rational primes which are totally split in $\mathcal{O}_{\hat{L}}$ are precisely those that are congruent to 1 modulo $(N)$. Thus the congruence class $p \bmod (N)$ does not determine whether $p \in A$ or not; hence such $N$ cannot exist.

