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Solutions 14

Dirichlet Density, Primes in Arithmetic Progressions

1. Does there exist a number field which does not embed into Qp for any p?

Solution: The answer is no. In fact for every number field K, there are infinitely
many prime numbers p such that K embeds into Qp. To show this, let M denote
the galois closure of K/Q. Then by §17 Proposition 5, the set of primes p which
split completely in M has Dirichlet density 1

[M/Q]
and is therefore infinite. For any

such p, let p ⊂ OM be a prime above p. Then the decomposition group of p/p
is trivial; hence by §13 Proposition 8 the corresponding extension of local fields
Mp/Qp is galois with trivial galois group. Thus Mp = Qp, and the composite
K ↪→ M ↪→ Mp = Qp is the desired embedding.

2. Determine the Dirichlet density of the set of primes p ≡ 3mod(4) that split com-
pletely in the field Q( 3

√
2).

Solution: On the one hand put K := Q( 3
√
2), so that M := Q( 3

√
2, e2πi/3) is a

galois closure of K/Q. Then by §6 Proposition 12 a prime number is totally split
in OK if and only if it is totally split in OM . On the other hand put L := Q(i).
Then by exercise 3 of sheet 4 an odd prime number p is non-split in OL if and only
if p ≡ 3mod(4). Thus, we want the set of primes that split totally in OM but not
in OL. By §17 Lemma 6, this means that they split in M but not in ML. By §17
Propositions 1 (f) and 5 the desired Dirichlet density is therefore

1

[M/Q]
− 1

[ML/Q]
=

1

6
− 1

12
=

1

12
.

Aliter: The fields M and L are linearly disjoint galois extensions of Q; hence
ML/Q is galois with Galois group Gal(M/Q) × Gal(L/Q) ∼= S3 × S2. Aside
from finitely many ramified primes, we want the set of rational primes p whose
associated Frobenius element in Gal(ML/Q) is equal to (1, σ) for 1 ̸= σ ∈ S2. This
element is alone in its conjugacy class, hence by the Cebotarev density theorem
the set in question has Dirichlet density 1/|Gal(ML/Q)| = 1/12.

3. Let L/K be an extension of number fields. Prove that L = K if and only if the
set of primes p ⊂ OK which are totally split in L has Dirichlet density > 1

2
.

Solution: If L = K, then all primes of OK are totally split in OL by definition.
Conversely, let M denote the galois closure of L/K. By §6 Proposition 12, a prime
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ideal p of OK is totally split in OL if and only if it is totally split in OM . By §17
Proposition 5 we therefore have

µ(SL/K) = µ(SM/K) =
1

[M/K]
⩽ 1

[L/K]
.

Thus if µ(SL/K) >
1
2
, we have [L/K] < 2 and hence L = K.

4. Let L/K be an extension of number fields. Prove that L/K is galois if and only
if for almost all primes p ⊂ OK , if there exists a prime P|p of OL with fP/p = 1,
then p is totally split in OL.

Solution: As in the lecture, let SL/K be the set of non-zero prime ideals p of OK

which are totally split in OL. Let PL/K be the set of non-zero prime ideals p of
OK for which there exists a prime P|p of OL with fP/p = 1. Then we must show
that L/K is galois if and only if the set XL/K := PL/K ∖ SL/K is finite.

If L/K is galois, for all primes p ⊂ OK we have [L/K] = rpepfp; hence SL/K is
the set of p with epfp = 1, and PL/K is the set of p with fp = 1. Thus XL/K is
contained in the finite set of p with ep > 1 and is therefore itself finite.

Conversely, suppose that L/K is not galois. Let M/K be its galois closure. Then
M/L is a proper galois extension. By §17 Proposition 5 the set SM/L of primes
of OL which are totally split in OM thus has Dirichlet density 1

[M/L]
< 1. Its

complement A therefore has Dirichlet density 1 − 1
[M/L]

> 0, and by §17 Propo-
sition 3 so does the subset of primes in A of absolute degree 1. Thus there exist
infinitely many primes P ⊂ OK of absolute degree 1 which are not totally split
in OM . But any such P has residue degree fP/p = 1, hence the corresponding
prime p := P ∩ OK lies in XL/K . Thus the set XL/K is infinite, as desired.

5. Let a be an integer that is not a third power. Let A be the set of prime numbers
p such that amod (p) is a third power in Fp.

(a) Prove that A and its complement are both infinite.

(b) Prove that there is no integer N such that the property p ∈ A depends only
on the residue class of p modulo (N).

Solution: By assumption the cubic polynomial X3− a does not have a root in Z;
hence by the Gauss lemma also not in Q; so it is irreducible. Thus the field
K := Q( 3

√
a) is isomorphic to Q[X]/(X3−a), and its ring of integers OK contains

the subring O := Z[ 3
√
a] ∼= Z[X]/(X3−a). Since both O ⊂ OK are free Z-modules

of rank 3, the index d := [OK : O] is finite. Thus for any prime p ∤ d we obtain a
natural isomorphism

Fp[X]/(X3 − a) ∼= O/pO ∼−→ OK/pOK .
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For any such p it follows that p ∈ A if and only if there exists a homomorphism
OK/pOK → Fp, that is, if and only if there exists a prime p|p of OK with fp/p = 1.

Next, the ratio of two distinct roots of X3− a is a primitive third root of unity ζ3,
hence the galois closure of K/Q is K̃ := KL with the imaginary quadratic field
L := Q(ζ3). Moreover Gal(K̃/Q) ∼= S3 with the normal subgroup Gal(K̃/L) ∼= A3.

(a) Since K̃/Q is galois of degree 6, by §17 Proposition 5 the set of rational primes
that are totally split in OK̃ has Dirichlet density 1

6
; in particular it is infinite.

These primes are also totally split in the intermediate field K; hence by the above
remarks almost all of them lie in A. Thus A is infinite.

On the other hand, since L/Q is galois of degree 2, the same proposition shows
that the set of rational primes that split in OL has Dirichlet density 1

2
. As this

set contains the set of primes that are totally split in OK̃ , it follows that the set
of rational primes that are totally split in OL but not in OK̃ has Dirichlet density
1
2
− 1

6
= 1

3
. In particular there are infinitely many such p. For each of these

the decomposition group at any prime p̃ ⊂ OK̃ above p is non-trivial, but acts
trivially on L; hence it is equal to Gal(K̃/L) ∼= A3. Since Gal(K̃/K) ∼= S2 < S3

and S3 = S2 · A3, by §6 Proposition 11 (c) it follows that there is only one prime
p ⊂ OK above p. As only finitely many primes are ramified in OK , for all the
other such p we must have fp/p = 3. By the above remarks almost all of these p
thus lie in the complement of A, which is therefore also infinite.

(b) If there is such an N , we can without loss of generality assume that 3|N ,
so that L is contained in the cyclotomic field L̂ := Q(µN). Then K̂ := KL̂ is
galois of degree 3 over L̂. Since L̂/Q is galois of degree φ(N), the extension K̂/Q
is galois of degree 3φ(N). By the same arguments as in (a) applied to K̂/L̂/Q
instead of K̃/L/Q we find that of the rational primes which are totally split in OL̂,
infinitely many lie in A and infinitely many in the complement of A. But by §8
Proposition 5 the rational primes which are totally split in OL̂ are precisely those
that are congruent to 1 modulo (N). Thus the congruence class pmod (N) does
not determine whether p ∈ A or not; hence such N cannot exist.
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