Algebraic Geometry

Exercise Sheet 2

CLASSICAL VARIETES, RATIONAL MAPS, BLOWUPS, SPECTRUM

Let K be an algebraically closed field. All algebraic sets and varieties below are defined over K, unless specified otherwise.

- 1. Consider the set $M := \operatorname{Mat}_{m,n}(K)$ of $m \times n$ -matrices. It can be identified with the affine algebraic variety \mathbb{A}^{nm} . Determine if S is open/closed/dense in M:
 - (a) $S := \{A \in M \mid A^t A \text{ has an eigenvalue } 1\}$
 - (b) $S := \{A \in M \mid \operatorname{rank}(A) = \min\{m, n\}\}$
 - (c) for $m = n, S := \{A \in M \mid A \text{ is diagonalisable}\}$
- 2. Construct a morphism $f : \mathbb{A}^2 \to \mathbb{A}^1$ and a closed subvariety $Z \subset \mathbb{A}^2$ such that f(Z) is not closed.
- 3. Recall the quadric surface Q given by xy zw in \mathbb{P}^3 of exercise 10, sheet 1. Prove that Q is birationally equivalent to \mathbb{P}^2 .
- 4. A birational map of \mathbb{P}^2 into itself is called a *plane Cremona transformation*. Define the rational map $\varphi : \mathbb{P}^2 \to \mathbb{P}^2$ as $[a_0 : a_1 : a_2] \mapsto [a_1a_2 : a_0a_2 : a_0a_1]$.
 - (a) Show that φ is birational, and its own inverse.
 - (b) Find open sets $U, V \subset \mathbb{P}^2$ such that $\varphi : U \to V$ is an isomorphism.
 - (c) Find the open sets where φ and φ^{-1} are defined, and describe the corresponding morphisms.
- 5. Blowing-up. We define the Blowing-up of \mathbb{A}^2 at the point 0 to be the subset $B := \{((x, y), [t : u]) \mid xu = ty\} \subset \mathbb{A}^2 \times \mathbb{P}^1$. Let $\varphi : B \to \mathbb{A}^2$ be the restriction to B of the projection onto the first component (see Figure 1). Prove that:
 - (a) The map φ is birational and restricts to an isomorphism $B \smallsetminus \varphi^{-1}(0) \cong \mathbb{A}^2 \diagdown 0$.
 - (b) We have $\varphi^{-1}(0) \cong \mathbb{P}^1$.
 - (c) The points in $\varphi^{-1}(0)$ are in 1-to-1-correspondence with lines ℓ in \mathbb{A}^2 through the point 0. [Hint: Look at $\varphi^{-1}(\ell < 0)$ and its closure.]
- 6. Use the same notation as in the previous exercise. Let C be the curve in \mathbb{A}^2 defined by the equation $y^2 = x^2(x+1)$. Prove that C is singular at the point 0. We define the blowing-up of C to be the closure $\tilde{C} := \overline{\varphi^{-1}(C \setminus 0)}$, see Figure 1. Prove that \tilde{C} is a nonsingular curve. We have thus removed the singularity of C by replacing it with a birationally equivalent curve \tilde{C} .

Figure 1: Blowing-up, figure taken from Hartshorne.

- 7. Define the curve $C := V(Y^2 X^3 X) \subset \mathbb{A}^2$.
 - (a) Find a generator α such that $K(C) \cong K(X)(\alpha)$.
 - (b) Consider the injection $K(X^2) \hookrightarrow K(C)$. Compute the corresponding dominant rational map.
- 8. Compute the Zariski cotangent space $\mathfrak{m}_{C,x}/\mathfrak{m}_{C,x}^2$ at x = (0,0) for the following curves:

(a)
$$C := V(Y^2 - X^3) \subset \mathbb{A}^2$$
.

(b)
$$C := V(Y^2 - X^3 - X) \subset \mathbb{A}^2.$$

9. Let A, B be integral domains. Show that a ring homomorphism $f : A \to B$ is injective if and only if the corresponding morphism $f^* : \operatorname{spec}(B) \to \operatorname{spec}(A)$ has dense image.