Exercise Sheet 3

1) Details on $\mathrm{SO}(1, n)^{\circ} / \mathrm{SO}(n)$.

Consider $G=\mathrm{SO}(1, n)^{\circ}$ with the involutive Lie group automorphism

$$
\sigma: G \rightarrow G, g \mapsto J_{n} g J_{n}
$$

where

$$
J_{n}=\left(\begin{array}{cc}
-1 & 0 \\
0 & I_{n}
\end{array}\right) \in \mathrm{SO}(1, n)
$$

Further let

$$
K=\left(\begin{array}{cc}
1 & 0 \\
0 & \mathrm{SO}(n)
\end{array}\right) \cong \mathrm{SO}(n)
$$

We have seen in the lecture that (G, K, σ) is a Riemannian symmetric pair and that G / K is isometric to \mathbb{H}^{n}. The objective of this exercise is to verify the formulas that we have used in the lecture to study G / K.
a) Show that $\Theta=d \sigma: \mathfrak{g} \rightarrow \mathfrak{g}$ takes the form

$$
\Theta(X)=\left(\begin{array}{cc}
0 & -x^{t} \\
-x & D
\end{array}\right)
$$

for all

$$
X=\left(\begin{array}{ll}
0 & x^{t} \\
x & D
\end{array}\right) \in \mathfrak{g}=\mathfrak{s o}(1, n)
$$

Deduce that
$\mathfrak{p}=E_{-1}(\Theta)=\left\{\left(\begin{array}{cc}0 & x^{t} \\ x & 0\end{array}\right): x \in \mathbb{R}^{n}\right\}, \mathfrak{f}=E_{1}(\Theta)=\left\{\left(\begin{array}{cc}0 & 0 \\ 0 & D\end{array}\right): D \in \mathfrak{s v}(n)\right\} \cong \mathfrak{s v}(n)$,
b) Let $\pi: G \rightarrow G / K$ denote the usual quotient map and set $\bar{X}:=d_{e} \pi(X) \in$ $T_{o}(G / K)$ for all $X \in \mathfrak{g}$. Further let $\langle X, Y\rangle:=\frac{1}{2} \operatorname{tr}(X Y)$ for all $X, Y \in \mathfrak{p}$ as in the lecture.

Show that

$$
R_{o}(\bar{X}, \bar{Y}) \bar{Z}=\langle X, Z\rangle \bar{Y}-\langle Y, Z\rangle \bar{X}
$$

for all $X, Y, Z \in \mathfrak{p}$. Deduce that G / K has constant sectional curvature -1 .
c) Compute that

$$
\exp \left(t \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right)=\left(\begin{array}{ll}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right)
$$

for all $t \in \mathbb{R}$.

2) Closed adjoint subgroups of $\mathrm{SL}_{n}(\mathbb{R})$ and their symmetric spaces.

Consider the Riemannian symmetric pair (G, K, σ) where $G=\mathrm{SL}_{n}(\mathbb{R}), K=\mathrm{SO}(n, \mathbb{R})$ and $\sigma: \mathrm{SL}_{n}(\mathbb{R}) \rightarrow \mathrm{SL}_{n}(\mathbb{R}), g \mapsto\left(g^{-1}\right)^{t}$. Further let $H \leq G$ be a closed, connected subgroup that is adjoint, i.e. it is closed under transposition $h \mapsto h^{t}$.
a) Show that $\left(H, H \cap K,\left.\sigma\right|_{H}\right)$ is again a Riemannian symmetric pair.
b) Show that $i: H \hookrightarrow G$ descends to a smooth embedding $\phi: H / H \cap K \hookrightarrow G / K$ such that its image is a totally geodesic submanifold of G / K.
3) The symplectic group $\operatorname{Sp}(2 n, \mathbb{R})$.

Let $H=\operatorname{Sp}(2 n, \mathbb{R})=\left\{g \in \mathrm{GL}_{2 n}(\mathbb{R}): g^{t} J g=J\right\}$ be the symplectic group, where

$$
J=\left(\begin{array}{cc}
0 & I_{n} \\
-I_{n} & 0
\end{array}\right)
$$

a) Show that $\operatorname{Sp}(2 n, \mathbb{R}) \leq \operatorname{SL}(2 n, \mathbb{R})=$: G is a closed connected adjoint subgroup of G.
What can we deduce from exercise 2 about $\left(H, H \cap K,\left.\sigma\right|_{H}\right)$?
b) Denote by $\omega: \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R}$ the standard symplectic form given by $\omega(x, y)=$ $x^{t} J y$.
Show that $B: \mathbb{R}^{2 n} \times \mathbb{R}^{2 n} \rightarrow \mathbb{R},(x, y) \mapsto \omega(J x, y)$ is a symmetric positive definite bilinear form.
c) An endomorphism $M \in \operatorname{End}\left(\mathbb{R}^{2 n}\right)$ is called a complex structure if $M^{2}=-\mathrm{id}$. We say that M is ω-compatible if $(x, y) \mapsto \omega(M x, y)$ is a symmetric positive definite bilinear form. Denote the set of all ω-compatible complex structures by $S_{2 n}$.
Show that $H=\operatorname{Sp}(2 n, \mathbb{R})$ acts on $S_{2 n}$ via conjugation and deduce that there is a bijection $S_{2 n} \cong H / H \cap K$.

