Exercise Sheet 3

1) Details on $SO(1, n)^{\circ} / SO(n)$.

Consider $G = SO(1, n)^{\circ}$ with the involutive Lie group automorphism

$$\sigma: G \to G, g \mapsto J_n g J_n$$

where

$$J_n = \begin{pmatrix} -1 & 0 \\ 0 & I_n \end{pmatrix} \in SO(1, n).$$

Further let

$$K = \begin{pmatrix} 1 & 0 \\ 0 & SO(n) \end{pmatrix} \cong SO(n).$$

We have seen in the lecture that (G, K, σ) is a Riemannian symmetric pair and that G/K is isometric to \mathbb{H}^n . The objective of this exercise is to verify the formulas that we have used in the lecture to study G/K.

a) Show that $\Theta = d\sigma : \mathfrak{g} \to \mathfrak{g}$ takes the form

$$\Theta(X) = \begin{pmatrix} 0 & -x^t \\ -x & D \end{pmatrix}$$

for all

$$X = \begin{pmatrix} 0 & x^t \\ x & D \end{pmatrix} \in \mathfrak{g} = \mathfrak{so}(1, n).$$

Deduce that

$$\mathfrak{p}=E_{-1}(\Theta)=\left\{\begin{pmatrix}0&x^t\\x&0\end{pmatrix}:x\in\mathbb{R}^n\right\}, \mathfrak{k}=E_1(\Theta)=\left\{\begin{pmatrix}0&0\\0&D\end{pmatrix}:D\in\mathfrak{so}(n)\right\}\cong\mathfrak{so}(n),$$

b) Let $\pi: G \to G/K$ denote the usual quotient map and set $\overline{X} := d_e \pi(X) \in T_o(G/K)$ for all $X \in \mathfrak{g}$. Further let $\langle X, Y \rangle := \frac{1}{2} \operatorname{tr}(XY)$ for all $X, Y \in \mathfrak{p}$ as in the lecture.

Show that

$$R_o(\overline{X}, \overline{Y})\overline{Z} = \langle X, Z \rangle \overline{Y} - \langle Y, Z \rangle \overline{X}$$

for all $X, Y, Z \in \mathfrak{p}$. Deduce that G/K has constant sectional curvature -1.

c) Compute that

$$\exp\left(t \cdot \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) = \begin{pmatrix} \cosh t & \sinh t \\ \sinh t & \cosh t \end{pmatrix}$$

for all $t \in \mathbb{R}$.

2) Closed adjoint subgroups of $\mathrm{SL}_n(\mathbb{R})$ and their symmetric spaces.

Consider the Riemannian symmetric pair (G, K, σ) where $G = \mathrm{SL}_n(\mathbb{R}), K = \mathrm{SO}(n, \mathbb{R})$ and $\sigma : \mathrm{SL}_n(\mathbb{R}) \to \mathrm{SL}_n(\mathbb{R}), g \mapsto (g^{-1})^t$. Further let $H \leq G$ be a closed, connected subgroup that is adjoint, i.e. it is closed under transposition $h \mapsto h^t$.

- a) Show that $(H, H \cap K, \sigma|_H)$ is again a Riemannian symmetric pair.
- b) Show that $i: H \hookrightarrow G$ descends to a smooth embedding $\phi: H/H \cap K \hookrightarrow G/K$ such that its image is a totally geodesic submanifold of G/K.

3) The symplectic group $Sp(2n, \mathbb{R})$.

Let $H = \operatorname{Sp}(2n, \mathbb{R}) = \{g \in \operatorname{GL}_{2n}(\mathbb{R}) : g^t Jg = J\}$ be the symplectic group, where

$$J = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.$$

a) Show that $\operatorname{Sp}(2n,\mathbb{R}) \leq \operatorname{SL}(2n,\mathbb{R}) =: G$ is a closed connected *adjoint* subgroup of G.

What can we deduce from exercise 2 about $(H, H \cap K, \sigma|_H)$?

b) Denote by $\omega : \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$ the standard symplectic form given by $\omega(x, y) = x^t J y$.

Show that $B: \mathbb{R}^{2n} \times \mathbb{R}^{2n} \to \mathbb{R}$, $(x, y) \mapsto \omega(Jx, y)$ is a symmetric positive definite bilinear form.

c) An endomorphism $M \in \operatorname{End}(\mathbb{R}^{2n})$ is called a complex structure if $M^2 = -\operatorname{id}$. We say that M is ω -compatible if $(x,y) \mapsto \omega(Mx,y)$ is a symmetric positive definite bilinear form. Denote the set of all ω -compatible complex structures by S_{2n} .

Show that $H = \operatorname{Sp}(2n, \mathbb{R})$ acts on S_{2n} via conjugation and deduce that there is a bijection $S_{2n} \cong H/H \cap K$.