
ON THE “BANANA”-TRICK OF MARGULIS

ANDREAS WIESER

Abstract. In this short note we would like to present a thickening technique

of G.A. Margulis [Mar04] and how it can be used to prove certain equidistri-

bution statements. The reader is assumed to be familiar with the theorem of
Howe-Moore, with basic notions concerning linear groups, Haar measures and

Haar measures on quotients by lattices and with the hyperbolic plane.
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1. Equidistribution of long horocycle orbits on the modular surface

In this section we would like to examine the asymptotic distribution of the horo-
cycle orbits on

X2 = SL2(Z)

∖
SL2(R)

which one can essentially think of as the “unit tangent bundle” of the modular
surface SL2(Z) \H. Since the latter is not really a manifold (but rather an orbifold),
the precise identification is X2 =̂ SL2(Z) \T1H.

1.1. Horocycles and their parametrization. Recall that a horocycle through
a point (z, v) ∈ T1H is the set of points in T1H, whose orbits under the geodesic
flow are asymptotic. The analogous set in SL2(R) is given for g ∈ SL2(R) by the
set of h ∈ SL2(R) with

d(ga−1t , ha−1t )→ 0

as t→∞ where

at =

(
e−t/2 0

0 et/2

)
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and d denotes the left-invariant Riemannian metric on SL2(R) (c.f. [EW11]).

Lemma 1.1. Let g ∈ SL2(R). Any h ∈ SL2(R) with d(ga−1t , ha−1t )→ 0 as t→∞
is of the form gus where

us =

(
1 s
0 1

)
for some s ∈ R. Conversely, we have d(ga−1t , gusa

−1
t ) → 0 as t → ∞ for any

s ∈ R.

The lemma shows that the horocycle orbit through g.i ∈ T1H as the orbit
U−.(g.i) where

U− = {us | s ∈ R}

is the subgroup of unipotent upper triangular matrices.

Proof of the lemma. By using left-invariance of d and replacing h with g−1h we
may assume without loss of generality that g = id. Again by left-invariance one
sees that

d(a−1t , ha−1t ) = d(id, atha
−1
t ) = d(atha

−1
t , id)

for any t ∈ R. Writing

h =

(
a11 a12
a21 a22

)
we compute

atha
−1
t =

(
e−t/2 0

0 et/2

)(
a11 a12
a21 a22

)(
et/2 0
0 e−t/2

)
=

(
a11 a12e−t

a21et a22.

)
(1.1)

Therefore, atha
−1
t → id as t→∞ if and only if a11 = a22 = 1 and a21 = 0, that is,

if and only if h lies in U−. �

The computation in (1.1) also suggest that one might be interested in considering
the group

U+ =

{(
1 0
s 1

)
: s ∈ R

}
,

which (by (1.1)) consists of those h ∈ SL2(R) with atha
−1
t → id as t → −∞. The

directions given by U− resp. U+ are usually referred to as the stable resp. unstable
directions for the geodesic flow. Correspondingly one calls U− (resp. U+) the
stable horocycle subgroup (resp. unstable horocycle subgroup). Note that (by
(1.1)) both these subgroups are normalized by the diagonal subgroup

A = {at | t ∈ R} .

Furthermore, the Borel subgroup

B = U+A = AU+ =

{(
a 0
b a−1

)
: a ∈ R×, b ∈ R

}
< SL2(R).

admits a similar interpretation as U+, U−. In fact, in analogy to Lemma 1.1 one
can think of B as the set of elements g of SL2(R) for which d(ga−1t , gusa

−1
t ) stays

bounded as t→ −∞.
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1.2. Local coordinates and Haar measures. The stable and unstable directions
provide local coordinates on SL2(R) which we record here as they will be of great
use to us later.

1.2.1. Interpretation in terms of Lie-algebras. Consider the Lie algebras

u− =

{(
0 s
0 0

)
: s ∈ R

}
, u+ =

{(
0 0
s 0

)
: s ∈ R

}
a =

{(
t 0
0 −t

)
: t ∈ R

}
of U−, U+ and A respectively and observe that u− ⊕ u+ ⊕ a = sl2(R). This is
exactly the decomposition of sl2(R) into eigenspaces for the action of A on sl2(R)
via the adjoint representation. For instance,

Adat

(
0 s
0 0

)
=

(
0 se−t

0 0

)
= e−t

(
0 s
0 0

)
by (1.1). Note that the Lie algebra b of B is simply the direct product u+⊕ a. The
behaviour of the adjoint representation reflects the asymptotic property of points
on the same horocycle and in fact yields a quantitative approaching speed. We will
mainly use the Lie-algebras in order to parametrize SL2(R) in a neighborhood of
the identity as follows.

Lemma 1.2 (Local coordinates). The map

u− ⊕ b→ SL2(R), (X,Y ) 7→ exp(X) exp(Y )

is a local diffeomorphism around 0.

Note that the map in the lemma is just a slightly adapted version of the ex-
ponential map, which respects the decomposition of sl2(R) into expanding and
non-expanding directions (as t → −∞). For the definition and properties of the
exponential map

exp : sl2(R) = {X ∈ Mat2(R) : Tr(X) = 0} → SL2(R)

we refer to [EW11, Section 9.3.1].

Proof. Let Φ be the map in the lemma. The differential of Φ at zero is the identity.
Thus, there is a neighborhood O′ of zero so that Φ|O′ is a diffeomorphism. �

The lemma and its proof allows one to consider neighborhoods of the identity in
SL2(R) and other groups which satisfy certain natural properties for the conjugation
action. For instance, the map

b = a⊕ u+ → B, (X,Y ) 7→ exp(X) exp(Y )

is also a local diffeomorphism around 0. Given two small enough neighborhoods Oa

resp. Ou+ of 0 in a resp. u+ the image under the above map yields a “rectangular”
neighborhood OB of the identity in B, which satisfies that

atOBa−t ⊂ OB
for any t ≤ 0.

Exercise 1.3. Give an explicit construction of such a neighborhood in B.
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1.2.2. Haar measures. We will need to relate the Haar measure on SL2(R) to the
Haar measures on B and U−. When talking about a Haar measure of B one needs
some amount of caution:

Exercise 1.4. Show that the Borel subgroup B is not unimodular and compute
its modular function.

For this, we recall that the following lemma, which is a corollary of [EW11,
Lemma 11.31] since by Lemma 1.2 the product U−B contains an open neighborhood
of the identity in SL2(R).

Lemma 1.5 (Decomposition of the Haar measure). Let m
(r)
B be a right Haar mea-

sure on B and let mU− be a left Haar measure on U−. Then any left Haar measure

on SL2(R) restricted to U−B is proportional to the pushforward φ∗(mU− ×m
(r)
B )

where φ : U− ×B → SL2(R), (u, b) 7→ ub.

The Haar measure we will use on U− is the pushforward of the Lebesgue-measure
under s ∈ R 7→ us ∈ U−. Furthermore, we will choose the Haar measure mSL2(R)
on SL2(R) so that the fundamental domain for SL2(Z) < SL2(R) has volume 1 i.e.
so that the natural measure mX2

on the quotient space X2 is a probability measure.

We then choose a right Haar measure m
(r)
B on B so that equality in Lemma 1.5 is

satisfied.

1.3. Parametrization of periodic horocycle orbits. In this section we would
like to understand the periodic orbits of stable horocycle subgroup U on X2. Here,
a point x ∈ X2 is called periodic if there is s ∈ R so that us.x = x. In this case,
the smallest such s is called the period and the orbit U.x is also called periodic.

Lemma 1.6 (A collection of periodic orbits). For any t ∈ R the orbit

U−.(SL2(Z)at) = SL2(Z)atU
− = SL2(Z)U−at

is periodic with period et.

Proof. We first note that the orbit of the identity coset U.(SL2(Z) id) = SL2(Z)U
in X2 is periodic of period 1. Indeed, the point SL2(Z)us is SL2(Z) id if and only if
us ∈ SL2(Z) or in other words if and only if s ∈ Z.

Now let t ∈ R. Then SL2(Z)atus = SL2(Z)at if and only if (see (1.1))

atusa
−1
t =

(
1 se−t

0 1

)
= use−t ∈ SL2(Z).

This shows that the point SL2(Z)at is periodic with period et as desired. �

One can show that the periodic orbits of U are in fact all of the form as in the
lemma above.

Proposition 1.7 (One-parameter family of periodic orbits). Let x ∈ X2 be a
periodic point for U−. Then there is some t ∈ R so that U−.x = U−.(SL2(Z)at).

Proof. We first claim that at.x → ∞ as t → ∞. By this we mean that for any
compact set K ⊂ X2 there is some TK > 0 so that at.x 6∈ K for all t ≥ TK . Let S
be the period of x. Then at.x is also periodic for U− and has period Se−t as

usat.x = atuset .x = at.x

if and only if set is a multiple of S.
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Now suppose that at.x 6→ ∞ as t → ∞. Then there is a compact set K and
a sequence (tn) with tn → ∞ for n → ∞ so that atn .x ∈ K for all n ∈ N. Let
r > 0 be a uniform injectivity radius on K (c.f. [EW11, Prop.9.14]). For any
us ∈ U− ∩Br(id) and any n ∈ N we therefore have

us.(atn .x) = atn .x =⇒ s = 0.

However, since the period of the elements atn .x goes to zero, we know that arbitrar-
ily small, non-zero sn ∈ R with usn .(atn .x) = atn .x exist. A contradiction, which
proves the claim.

To see how the claim implies the proposition, recall that orbits of the geodesic
flow (i.e. geodesics) are either vertical lines or circles centered on the real axis. Let
(zt, vt) ∈ F be the point corresponding to at.x, where F ⊂ T1H is the standard
fundamental domain. Let K ′ be the set of points in F with imaginary part ≤ 1 and
note that the image K of K ′ in SL2(Z) \T1H is compact. Therefore, let TK > 0 so
that at.x 6∈ K for all t ≥ TK by the claim. This implies that vTK

is a multiple of i.
Indeed, if this were not the case, the geodesic through (zTK

, vTK
) would be a half

circle and would therefore zt would reach imaginary part ≤ 1 for some t > TK .
Applying some u ∈ U− we obtain that the point in F corresponding to u.(aTK

.x)
lies on the imaginary axis and has a vector pointing north. Therefore, there is some
t′ ∈ R so that at′ .(uaTK

.x) = SL2(Z) id (i.e. transporting back to (i, i) ∈ F ). In
particular,

U.x = U.(SL2(Z)at′uaTK
) = U.(SL2(Z)at′+TK

)

as in the proposition. �

1.4. Equidistribution of long periodic horocycle orbits. Notice that any pe-
riodic U−-orbit gives rise to a natural probability measure on the orbit. Indeed, if
x ∈ X2 is periodic of period T then

1

T

∫ T

0

f(us.x) ds

for f ∈ Cc(X2) defines a linear functional (and hence a measure) with the required
properties. Alternatively, the periodic orbit measure on U.x is given by the push-
forward of the normalized Lebesgue measure on [0, T ] under the map s 7→ us.x.

We would like to know the behaviour of these periodic orbit measures (for the
orbits from Lemma 1.6) as the period goes to infinity.1

Theorem 1.8 (Sarnak [Sar81]). Let xn be a sequence of U−-periodic points whose
period goes to infinity as n → ∞. Then the periodic orbit measures on U−.xn
equidistribute to the normalized Haar measure mX2

on X2 as n→∞.

At this point we should remark that Sarnak’s result from [Sar81] is in fact much
stronger than what is stated above. In fact, Sarnak shows that there is some positive
exponent α > 0, a constant C > 0 and an L2-Sobolev Norm S on C∞c (X2) so that∣∣∣e−t ∫ et

0

f(SL2(Z)atus) ds−
∫
X2

f dmX2

∣∣∣ ≤ Ce−αtS(f)

1When the period goes to zero, the periodic orbit measures converge to the zero measure as is
quite directly seen.
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for any t ∈ R and any function f ∈ C∞c (X2). It is remarkable that obtaining the
optimal exponent in the above estimate is equivalent to the Riemann Hypothesis –
this is a result of Zagier [Zag81].

The argument for Theorem 1.8 we will present here does not follow Sarnak’s
methods but will be based on more soft arguments, namely on mixing properties
of the geodesic flow. The idea of this proof presumably dates back to the thesis of
Margulis. As we will see, the trick will be to thicken the periodic orbits along the
unstable and the geodesic direction so as to apply mixing, which is why this trick
is referred to (by Margulis and others) as the “banana” trick.

Proof of Theorem 1.8. Let f ∈ Cc(X2) and let ε > 0. As the function f has
compact support, it is uniformly continuous. As the projection SL2(R) → X2 is
1-Lipschitz, there is a δ > 0 so that

d(g, id) < δ =⇒ |f(xg)− f(x)| < ε

for any g ∈ SL2(R) and x ∈ X2. Denote by P0 = SL2(Z)U− the periodic orbit
of period 1. As P0 is compact, there is a uniform injectivity radius on P0. By
shrinking δ if necessary we may assume that δ itself is an injectivity radius on P0.

Definition of the thickening: Let OB ⊂ B ∩ BSL2(R)
δ (id) be a rectangular

neighborhood of the identity as in Section 1.2.1 so that

a−tOBat ⊂ OB

for all t ≥ 0. Moreover, let P̃0 = OB .P0 be the thickening of the orbit P0 given by
OB and denote by Pt the orbit of period et and by

P̃t = a−t.P̃0 = (a−tOBat).Pt

the induced thickening. Notice that the neighborhoods a−tOBat get thiner in the
unstable direction as t→∞ and do not get thicker in any direction. For convenience
we also define

St =
{
usb | s ∈ [0, et), b ∈ a−tOBat

}
.

Note that St = a−tS1at and that

P̃t = {SL2(Z)atg | g ∈ St} = {SL2(Z)gat | g ∈ S1} .

Integral over thickened neighborhood in the group. First, we would
like to replace the integral of f along the orbit Pt by the integral over a larger
neighborhood in SL2(R). Observe first that∣∣∣∣e−t ∫ et

0

f(SL2(Z)atus) ds

− 1

m
(r)
B (a−tOBat)

e−t
∫
a−tOBat

∫ et

0

f(SL2(Z)atusb) dsdm
(r)
B (b)

∣∣∣∣
≤ e−t

m
(r)
B (a−tOBat)

∫
a−tOBat

∫ et

0

|f(SL2(Z)atus)− f(SL2(Z)atusb)|dsdm(r)
B (b)

< ε
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since a−tOBat ⊂ OB for any t > 0 by the choice of the neighborhood OB (according
to the uniform continuity). By Lemma 1.5 the normalized integral

1

m
(r)
B (a−tOBat)

e−t
∫
a−tOBat

∫ et

0

f(SL2(Z)atusb) dsdm
(r)
B (b).(1.2)

is equal to

1

mSL2(R)(St)

∫
St

f(SL2(Z)atg) dmSL2(R)(g).

Since SL2(R) is unimodular, mSL2(R)(St) = mSL2(R)(S0) and by replacing atga
−1
t

with g the integral in (1.2) is equal to

1

mSL2(R)(S0)

∫
S0

f(SL2(Z)gat) dmSL2(R)(g).(1.3)

Integral over thickened orbit: Note that the image {SL2(Z)g | g ∈ S0}
under the projection of S0 to X2 is simply P̃0. Therefore, the Haar measure on S0

is equal to the Haar measure on P̃0 if we assume the following claim.

Claim 1.9. If δ is small enough, the set S0 = {usb | s ∈ [0, 1), b ∈ OB} is injective.

Let us postpone the proof for the moment. Then the integral in (1.3) is equal to

1

mX2
(P̃0)

∫
P̃0

f(xat) dmX2
(x) = 〈a−t.f, f0〉

where f0 = 1
mX2

(P̃0)
χP̃0

.

Applying the mixing property Recall that the geodesic flow X2 is mixing
on X2. That is, for any f1, f2 ∈ L2(X2) we have

〈at.f1, f2〉 →
∫
X2

f1 dmX2

∫
X2

f1 dmX2

as t→ ±∞. In particular,

〈a−t.f, f0〉 →
∫
X2

f dmX2

∫
X2

f0 dmX2
=

∫
X2

f dmX2

as t→∞. Tracing back our arguments, we can deduce that the integral

e−t
∫ et

0

f(SL2(Z)atus) ds

over the orbit P0 is always within ε of a convergent expression with limit
∫
X2
f dmX2

and therefore for large enough t within 2ε of the limit itself. Thus

e−t
∫ et

0

f(SL2(Z)atus) ds→
∫
X2

f dmX2

as t→∞ as claimed in the proposition.

Proof of Claim 1.9. Assume that there are s1, s2 ∈ [0, 1) and b1, b2 ∈ OB with

SL2(Z)us1b1 = SL2(Z)us2b2.

Setting b = b1b
−1
2 and rearranging we have

us1bu
−1
s2 ∈ SL2(Z).
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Write b =

(
α 0
β α−1

)
. Then

us1bu
−1
s2 =

(
α+ βs1 α−1s1

β α−1

)(
1 −s2
0 1

)
=

(
α+ βs1 α−1s1 − αs2 − βs1s2

β α−1 + βs2.

)
However, if δ is small enough, b ∈ OB must be close to the identity. Since β is by
the above an integer, it must be zero. Hence, α, α−1 ∈ Z and they are both close
to the identity. We conclude that b = id. This shows that s1 − s2 ∈ Z and thus
s1 = s2 as s1, s2 ∈ [0, 1). �

�

2. Equidistribution of large hyperbolic circles

2.1. Hyperbolic circles.

Proposition 2.1. Every hyperbolic circle (i.e. a boundary of a ball in the hyperbolic
plane) is a Euclidean circle.

Note that also the converse is true, which we will not prove here.

Proof. Note first that for any (z, v) ∈ T1H the hyperbolic ball of radius t > 0
around z is given by the projection onto the base points of the set gt(K.(z, v)),
where K < SL2(R) is the stabilizer of z under the action of SL2(R) on H by Möbius
transformations and where gt denotes the geodesic flow for time t. If g ∈ SL2(R)
satisfies g.(i, i) = (z, v) then

gt(K.(z, v)) = g SO(2)a−t.(i, i).

In particular, the stabilizer of a point z acts transitively on every circle around the
point.

For simplicity we will assume for now that z = i and since v above is arbitrary
that v = i. Then K = SO(2) and the circle C = πbase(Kat.(i, i)) intersects the
y-axis at exactly the points eti, e−ti so that by symmetry the natural candidate for
a Euclidean center of C is

eti + e−ti

2
= cosh(t)i

and the Euclidean radius is et−e−t

2 = sinh(t). Denote this Euclidean circle by Ceucl.
To see that in fact C = Ceucl a computation shows that for any k ∈ K

| k.(eti)− cosh(t)i |= sinh(t).

This proves that C ⊂ Ceucl by transitivity of the K-action on C. But in this case
the reverse inclusion also has to hold so we conclude equality.

To see the proposition for an arbitrary center observe that we may consider any
g with g.i = z (v was arbitrary). The Iwasawa decomposition and the fact that
SL2(R) acts by isometries on H then show that we only need to prove that the
image of a Euclidean circle under transformations of the form

z 7→ z + a, z 7→ αz

for a ∈ R and α > 0 is a Euclidean circle. This is indeed the case. �
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2.2. Equidistribution of large circles.

Theorem 2.2. Let Γ be a lattice in SL2(R) and let X = SL2(R) /Γ. Denote by
mY any Haar measure on the orbit Y = SO(2)Γ and by mX any Haar measure on
X. Then for any f ∈ Cc(X) we have

1

mY (Y )

∫
Y

f(at.y) dmY (y)→ 1

mX(X)

∫
X

f(x) dmX(x)

as t→ ±∞.

Note that up to a switch from left- to right-quotients the theorem essentially
states that the circle of radius t with arrows pointing outwards folded up under Γ
equidistributes as t→∞. The statement for t→ −∞ is the same just with arrows
pointing inwards.

Proof. We restrict our attention to the case t → ∞ as the case t → −∞ is anal-
ogous2. Let f ∈ Cc(X) and let ε > 0. Denote G = SL2(R) and K = SO(2). Let
O ⊂ U−A be an open (rectangular) neighborhood of the identity with atOa−t ⊂ O
for any t > 0 (a contracted neighborhood) so that f(g.x) is ε-close to f(x) for any
g ∈ O and any x ∈ X. By these choices the integral 1

mY (Y )

∫
Y
f(at.y) dmY (y) is

ε-close to

It =
1

mUA(O)

1

mY (Y )

∫
O

∫
Y

f(at.g.y) dmY (y) dmU−A(g)

If F is a fundamental domain for K → Y then the above is equal to

1

mUA(O)

1

mK(k)

∫
O

∫
F

f(at.gkΓ) dmK(k) dmU−A(g)

by definition of the Haar measure on Y . By Lemma 1.5 applied to the Iwasawa
decomposition (with U−A and K)

It =
1

mG(OF )

∫
OF

f(at.gΓ) dmG(g),

which converges by the mixing property of the geodesic flow to the desired limit as
t→∞. �
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