2.1. Weak first derivative

Split up the integration domain at x = 0.

2.2. Weak derivative in $L^p(\Omega)$

(a) One implication is based on Hölder's inequality. For the converse implication, recall that $(L^q(\Omega))^*$ for $1 \le q < \infty$ is isometrically isomorphic to $L^p(\Omega)$.

(**b**) Given $\varphi \in C_c^{\infty}(\mathbb{R})$ and $u = \chi_{]0,1[}$, compute $\int_{\mathbb{R}} u \varphi' dx$.

2.3. Cantor function

- (a) Measure the set $A_n = \{x \in [0, 1[| u'_n(x) \neq 0 \text{ or } u'_n(x) \text{ does not exist}\}.$
- (b) Construct φ_k such that u is constant in each component of the support of φ'_k .

(c) If the distributional derivative u' of u vanishes, then u' = 0 would be the weak first derivative of u in $L^1(]0, 1[)$.

2.4. Symmetry of Green's function

If G is Green's function for Ω and $\varphi \in C^0(\Omega)$, then according to the Theorem

$$u(x) = \int_{\Omega} G(x, y)\varphi(y) \, dy \qquad \qquad \Rightarrow \begin{cases} -\Delta u = \varphi & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases}$$

2.5. Green's function for the half-space

Given any fixed $x \in \mathbb{R}^n_+$, solve the boundary-value problem

$$\begin{cases} \Delta \phi^x = 0 & \text{in } \mathbb{R}^n_+, \\ \phi^x(y) = \Phi(y - x) & \text{for } y \in \partial \mathbb{R}^n_+ \end{cases}$$

explicitly by constructing ϕ^x with the help of Φ .

2.6. Green's function for an interval

(a) With Φ for n = 1, solve the boundary-value problem

$$\begin{cases} (\phi^x)'' = 0 & \text{in }]a, b[, \\ \phi^x(y) = \Phi(x - y) & \text{for } y \in \{a, b\}. \end{cases}$$

explicitly.

(b) Use the formula for G(x, y) derived in part (a).

last update: 28 February 2018	Need more hints?	1 /.
	Come to office hours!	1/1