3.1. A closedness property

- (a) Distinguish the cases $1 and <math>p = \infty$. In the first case apply the Eberlein-Šmulyan Theorem. In the second case, apply the Banach-Alaoglu Theorem.
- (b) Is there a bounded sequence $(u_k)_{k\in\mathbb{N}}$ in $W^{1,1}(]-1,1[)$ such that $u_k\to\chi_{]0,1[}$ in L^1 ?

3.2. Fundamental solution of Laplace's equation in two dimensions

- (a) Compute the partial derivatives classically using the chain rule.
- (b) Argue that it suffices to compute $\int_{B_1(0)} |E| dx$ and $\int_{B_1(0)} |\nabla E| dx$.
- (c) Integrate $E\Delta\varphi$ by parts over $\mathbb{R}^2 \setminus B_{\varepsilon}(0)$ and let $\varepsilon \to 0$.
- (d) Recall $|x|^2 = z\overline{z}$.
- **(e)** Use part (d).

3.3. Linear ODE with constant coefficients

- (a) Apply the Riesz representation Theorem in the Hilbert space $(H_0^1(I), (\cdot, \cdot)_{H^1})$.
- (b) If $u \in H_0^1(I)$ is a weak solution, conclude that the function $u' \in L^2(I)$ has the weak derivative $(u f) \in L^2(I)$.
- (c) Solve for $v = u + v_0$, where u is the solution from part (b) with a suitable right and side f and v_0 satisfies $v_0'' = 0$ and $v_0(a) = \alpha$, $v_0(b) = \beta$.

3.4. Linear ODE with variable coefficients

- (a) To apply the Riesz representation Theorem, define a new scalar $\langle \cdot, \cdot \rangle$ product on $H_0^1(I)$ and prove that it is equivalent to the standard scalar product $(\cdot, \cdot)_{H_0^1}$
- (b) If $u \in H_0^1(I)$ is a weak solution, conclude that the function $gu' \in L^2(I)$ has the weak derivative $(hu f) \in L^2(I)$.

3.5. Extension operator of first and second order

Define (Eu)(x) by odd reflection and candidates $g, h \in L^p_{loc}(\mathbb{R})$ for the weak first and second derivatives of Eu. Then prove (Eu)' = g and (Eu)'' = h in the weak sense.

For the estimate, use $|u(0)| \leq ||u||_{L^{\infty}(\mathbb{R}_+)} \leq C||u||_{W^{1,p}(\mathbb{R}_+)}$ which is Sobolev's inequality.

3.6. Extension operator of any order

- (a) Find a linear system for (a_1, \ldots, a_k) involving a Vandermonde matrix.
- (b) Proceed as in Problem 3.5. Notice that $\sum_{j=1}^{k} \left(-\frac{1}{j}\right)^{\alpha} a_j = 1$.