5.1. Lipschitz vs. bounded weak derivative

The domain Ω must be non-convex.

5.2. A tent for Rudolf L.

Who is Rudolf L.?

5.3. Capacity and Hausdorff measure

(a) Work with the definitions of Hausdorff measure and capacity. You may use that for any r > 0 there exists some $\psi \in C_c^{\infty}(B_{3r})$ satisfying $\psi = 1$ in B_{2r} and $|\nabla \psi| \leq \frac{2}{r}$. The statement of Problem 5.6 (b) may come in handy.

(b) Recall Satz 8.1.1.

5.4. Traceless

Find a sequence of functions $u_k \in C^0(\overline{\Omega})$ satisfying $u_k|_{\partial\Omega} \equiv 1$ and $||u_k||_{L^p(\Omega)} \xrightarrow{k \to \infty} 0$.

5.5. Traces of weak derivatives

(a) For $1 \le p < \infty$ apply Fubini's theorem and for $p = \infty$, argue with Lipschitz continuity (Korollar 8.3.1). Then use the same trick as in Problem 4.5 (a).

(b) Apply part (a) and use Lemma 7.3.1.

5.6. Positive and negative part

(a) For $\varepsilon > 0$ consider the function $G_{\varepsilon} \circ u$, where $G_{\varepsilon} \in C^1(\mathbb{R})$ is given by

$$G_{\varepsilon}(y) = \begin{cases} \sqrt{y^2 + \varepsilon^2} - \varepsilon & \text{ for } y \ge 0, \\ 0 & \text{ for } y < 0. \end{cases}$$

- (b) Use part (a).
- (c) Notice that $u = u_+ u_-$ and use part (a).
- (d) Use part (c) but be careful: unless Ω is bounded, constants are only in $W_{\text{loc}}^{1,p}(\Omega)$.

Need more hints? Come to office hours!