6.1. Inextendible

Consider the same function $u \in W^{1,\infty}(\Omega)$ as in the solution to problem 5.1. Towards a contradiction, apply the statement of problem 5.5 (a).

6.2. Zero trace and H_0^1

(a) Via partition of unity, reduce the problem to the following model case: Let

$$Q = \{ x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} \mid |x'| < 1 \text{ and } |x_n| < 1 \},\$$
$$Q_+ = \{ x = (x', x_n) \in Q \mid x_n > 0 \}.$$

Given $u \in H^1(Q)$ satisfying u = 0 in $Q \setminus Q_+$, prove $\alpha u \in H^1_0(Q_+)$ for any $\alpha \in C^\infty_c(Q)$.

(b) Restrict a suitable function $w \in C_c^{\infty}(\mathbb{R}^n)$ to the domain from problem 6.1 and exploit continuity of the trace operator (Lemma 8.4.2).

6.3. Ladyženskaja's inequality

Apply the technique from the proof of Sobolev's inequality (Satz 8.5.1) with u^2 in place of u. Conclude using Fubini's theorem and the Cauchy–Schwarz inequality.

6.4. Non-compactness

Exploit translation-invariance of the $W^{1,p}(\mathbb{R}^n)$ -norm.

6.5. Compactness

(a) Recall that

- any function $u \in W_0^{1,p}(\Omega)$ can be extended by zero to a function $\overline{u} \in W^{1,p}(\mathbb{R}^n)$;
- the space $W^{1,p}(\mathbb{R}^n)$ is reflexive for 1 ;
- the embedding $W^{1,p}(B_R) \hookrightarrow L^p(B_R)$ is compact for any R > 0.

Distinguish the cases p < n and p = n and apply Sobolev's embedding (for functions defined on \mathbb{R}^n).

(b) How can you adapt the counterexample from problem 6.4?