9.1. Elliptic equations in non-divergence form

Apply Hölder's inequality and the Poincaré inequality to verify that

$$B(u,\varphi) = \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial \varphi}{\partial x_i} + \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} \varphi \, dx + \int_{\Omega} cu\varphi \, dx$$

satisfies the conditions for the Lax-Milgram Lemma (Satz 4.3.3) in the space $H_0^1(\Omega)$.

9.2. The reflection Lemma towards boundary regularity

If $\varphi \in C_c^{\infty}(\mathbb{R}^n)$, then $\psi(x', x_n) := \varphi(x', x_n) - \varphi(x', -x_n)$ satisfies $\psi \in C^{\infty} \cap H_0^1(\mathbb{R}^n_+)$.

9.3. Horizontal derivatives

Given $u \in H^2(\mathbb{R}^n_+) \cap H^1_0(\mathbb{R}^n_+)$ and $h \in \mathbb{R} \setminus \{0\}$, let $D_{h,i}u \colon \mathbb{R}^n_+ \to \mathbb{R}$ be given by

$$D_{h,i}u(x) = \frac{u(x+he_i) - u(x)}{h},$$

where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0, 0) \in \mathbb{R}^n$ has the entry 1 at position $i \in \{1, \ldots, n-1\}$. Show $D_{h,i}u \in H^1_0(\mathbb{R}^n_+)$ and prove that there exists a sequence $h_k \xrightarrow{k \to \infty} 0$ such that $D_{h_k,i}u$ converges weakly in $H^1(\mathbb{R}^n_+)$ to some $v \in H^1(\mathbb{R}^n_+)$ as $k \to \infty$. Then show $v \in H^1_0(\mathbb{R}^n_+)$ and argue that $v = \frac{\partial u}{\partial x_i}$.

9.4. Properties of the bilaplacian

(a) Prove $\ker(\Delta^2) = \{0\}$ to conclude injectivity. Apply elliptic regularity twice to conclude surjectivity.

- (b) Explain why the boundary terms vanish when integrating by parts.
- (c) Exploit parts (a) and (b).

9.5. Weak solutions to the bilaplace equation

- (a) By elliptic regularity, $||u||_{H^2(\Omega)} \leq C ||\Delta u||_{L^2}$.
- (b) By definition, $H_0^1(\Omega)$ is a closed subspace of $H^1(\Omega)$.

(c) Apply the Riesz representation theorem in the Hilbert space $(H^2(\Omega) \cap H^1_0(\Omega), \langle \cdot, \cdot \rangle)$ to prove existence and uniqueness. Use problem 9.4 (c) to prove regularity.