Part I. Survival kit

3.1. A closedness property 🗱

Let I :=]a, b[for $-\infty \leq a < b \leq \infty$. Let $u \in L^p(I)$ and let $(u_k)_{k \in \mathbb{N}}$ be a bounded sequence in the Sobolev space $W^{1,p}(I)$ with $||u - u_k||_{L^p(I)} \to 0$ as $k \to \infty$.

(a) If $1 , prove <math>u \in W^{1,p}(I)$.

(b) Is the assumption $p \neq 1$ in part (a) necessary?

3.2. Fundamental solution of Laplace's equation in two dimensions \blacksquare Given a C^1 -function $f: \Omega \subseteq \mathbb{R}^2 \to \mathbb{C}$, we define the functions $\frac{\partial f}{\partial z}, \frac{\partial f}{\partial \overline{z}}: \Omega \to \mathbb{C}$ by

$$\frac{\partial f}{\partial z} := \frac{1}{2} \Big(\frac{\partial f}{\partial x_1} - i \frac{\partial f}{\partial x_2} \Big), \qquad \qquad \frac{\partial f}{\partial \overline{z}} := \frac{1}{2} \Big(\frac{\partial f}{\partial x_1} + i \frac{\partial f}{\partial x_2} \Big).$$

Prove that the function $E: \mathbb{R}^2 \setminus \{0\} \to \mathbb{C}$ given by $E(x) = \frac{1}{2\pi} \log |x|$ satisfies

- (a) $\frac{\partial E}{\partial x_j}(x) = \frac{x_j}{2\pi |x|^2}$ for $j \in \{1, 2\}$ and any $x = (x_1, x_2) \in \mathbb{R}^2 \setminus \{0\}$.
- (b) $E \in L^1_{\text{loc}}(\mathbb{R}^2)$ and $|\nabla E| \in L^1_{\text{loc}}(\mathbb{R}^2)$.
- (c) $\Delta E = \delta_0$ in $\mathcal{D}'(\mathbb{R}^2)$, i.e. $\forall \varphi \in C_c^{\infty}(\mathbb{R}^2)$: $\int_{\mathbb{R}^2} E \Delta \varphi \, dx = \varphi(0)$.

(d)
$$\frac{\partial L}{\partial z}(x) = \frac{1}{4\pi z}$$
 for $z := x_1 + ix_2 \in \mathbb{C} \setminus \{0\}$.

(e) For
$$f \in C^2(\mathbb{R}^2; \mathbb{C})$$
 notice $\Delta f = 4 \frac{\partial^2 f}{\partial z \partial \overline{z}}$. Then prove $\frac{\partial}{\partial \overline{z}} \frac{1}{\pi z} = \delta_0$ in $\mathcal{D}'(\mathbb{R}^2)$.

3.3. Linear ODE with constant coefficients $\boldsymbol{x}_{\mathbf{k}}^{*}$

- Let I :=]a, b[for $-\infty < a < b < \infty$. Given $f \in C^0(\overline{I})$, consider the equation -u'' + u = f in I. (*)
- (a) Show that (*) has a weak solution $u \in H_0^1(I)$ which is unique in $H_0^1(I)$, i.e.

$$\exists ! \, u \in H^1_0(I) \quad \forall \varphi \in H^1_0(I) : \quad \int_I u' \varphi' \, dx + \int_I u \varphi \, dx = \int_I f \varphi \, dx$$

- (b) Prove that the weak solution u from (a) is in fact a classical solution $u \in C^2(\overline{I})$.
- (c) Given $\alpha, \beta \in \mathbb{R}$ and $g \in C^0(\overline{I})$, deduce that the boundary-value problem

$$\begin{cases} -v'' + v = g & \text{in } I, \\ v(a) = \alpha, \quad v(b) = \beta \end{cases}$$

has a unique classical solution $v \in C^2(\overline{I})$.

ETH Zürich	Functional Analysis II	D-MATH
Spring 2018	Problem Set 3	Prof. A. Carlotto

3.4. Linear ODE with variable coefficients 🗱

Let I :=]a, b[for $-\infty < a < b < \infty$. Let $g \in C^1(\overline{I})$ and $h, f \in C^0(\overline{I})$. Assume that $g(x) \ge \lambda > 0$ and $h(x) \ge 0$ for every $x \in \overline{I}$ and consider the differential equation

$$-(g u')' + h u = f \quad \text{in } I, \tag{\dagger}$$

(a) Apply the Riesz representation theorem in a suitable Hilbert space to prove that equation (†) has a weak solution $u \in H_0^1(I)$ which is unique in the space $H_0^1(I)$.

(b) Prove that the weak solution u from (a) is in fact a classical solution $u \in C^2(\overline{I})$.

Part II. Projects on Extension operators

3.5. Extension operators of first and second order \mathscr{D}

Let $1 \leq p \leq \infty$. Recall from the lecture that a continuous linear extension operator $E: W^{1,p}(\mathbb{R}_+) \to W^{1,p}(\mathbb{R})$ can be constructed by "even" reflection on the axis $\{x = 0\}$.

Use "odd" reflection, i.e. point reflection in (0, u(0)), to construct a linear operator $E: W^{2,p}(\mathbb{R}_+) \to W^{2,p}_{\text{loc}}(\mathbb{R})$ satisfying

- $\forall u \in W^{2,p}(\mathbb{R}_+)$: $(Eu)|_{\mathbb{R}_+} = u$ almost everywhere in \mathbb{R}_+ .
- For every compact subset $K \subset \mathbb{R}$ there is a constant C > 0 which is independent of $u \in W^{2,p}(\mathbb{R}_+)$ such that $||Eu||_{W^{2,p}(K)} \leq C||u||_{W^{2,p}(\mathbb{R}_+)}$.

3.6. Extension operators of any order 🅰

(a) Let $k \in \mathbb{N}$. Show that there exist $a_1, \ldots, a_k \in \mathbb{R}$ such that for any polynomial $p: \mathbb{R} \to \mathbb{R}, p(x) = \sum_{\ell=0}^{k-1} p_\ell x^\ell$ of degree k-1 and every x < 0, there holds

$$\sum_{j=1}^{k} a_j p\left(\frac{-x}{j}\right) = p(x).$$

(b) Let $1 \le p \le \infty$ and $k \in \mathbb{N}$. Let $a_1, \ldots, a_k \in \mathbb{R}$ as in (a). Prove that the map

$$E: u \mapsto Eu, \qquad (Eu)(x) := \begin{cases} u(x) & \text{for } x > 0, \\ \sum_{j=1}^{k} a_j u\left(\frac{-x}{j}\right) & \text{for } x < 0. \end{cases}$$

defines a linear operator $E \colon W^{k,p}(\mathbb{R}_+) \to W^{k,p}(\mathbb{R})$ which allows a constant C > 0 such that for every $u \in W^{k,p}(\mathbb{R}_+)$ and any integer $0 \le \alpha \le k$

$$||D^{\alpha}(Eu)||_{L^{p}(\mathbb{R})} \le C ||D^{\alpha}u||_{L^{p}(\mathbb{R}_{+})}.$$

due: 15 March 2018

assignment: 8 March 2018

2/2