Part I. Survival kit

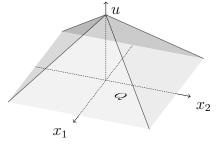
5.1. Lipschitz vs. bounded weak derivative $\boldsymbol{\mathbb{Z}}$

Find an open set $\Omega \subset \mathbb{R}^2$ and a function $u \in W^{1,\infty}(\Omega)$ which is not Lipschitz continuous.

5.2. A tent for Rudolf L. \checkmark

Let $Q = \{(x_1, x_2) \in \mathbb{R}^2 : |x_1| < 1, |x_2| < 1\}$. Let $u \colon Q \to \mathbb{R}$ be given by

 $u(x_1, x_2) = \begin{cases} 1 - x_1, & \text{if } x_1 > 0 \text{ and } |x_2| < x_1, \\ 1 + x_1, & \text{if } x_1 < 0 \text{ and } |x_2| < -x_1, \\ 1 - x_2, & \text{if } x_2 > 0 \text{ and } |x_1| < x_2, \\ 1 + x_2, & \text{if } x_2 < 0 \text{ and } |x_1| < -x_2. \end{cases}$



For which exponents $1 \le p \le \infty$ is $u \in W^{1,p}(Q)$?

5.3. Capacity and Hausdorff measure 🗱

Definition (Hausdorff measure). Let $\alpha \geq 0$. For any $\delta > 0$ we define

$$\mathscr{H}^{\alpha}_{\delta}(A) := \inf \left\{ \sum_{i=1}^{\infty} r_i^{\alpha} : A \subset \bigcup_{i=1}^{\infty} B_{r_i}(x_i), \ 0 < r_i < \delta, \ x_i \in \mathbb{R}^n \right\}.$$

The α -dimensional Hausdorff measure of any subset $A \subseteq \mathbb{R}^n$ is defined by

$$\mathscr{H}^{\alpha}(A) := \lim_{\delta \searrow 0} \mathscr{H}^{\alpha}_{\delta}(A)$$

Suppose, $K \subset \mathbb{R}^n$ is a compact subset with $\mathscr{H}^{n-\alpha}(K) = 0$ for some $1 \leq \alpha < n$.

(a) For all $1 \le p \le \alpha$, prove that K has vanishing $W^{1,p}$ -capacity.

(b) Let $1 \leq p \leq q \leq \infty$ and $\frac{1}{q} + \frac{1}{\alpha} \leq 1$. Let $\Omega \subset \mathbb{R}^n$ be open and bounded and $u \in L^q(\Omega) \cap C^1(\Omega \setminus K)$ with $|\nabla u| \in L^p(\Omega \setminus K)$. Prove that $u \in W^{1,p}(\Omega)$.

assignment: 22 March 2018

due: 29 March 2018

Part II. Projects on Traces and Truncations

5.4. Traceless Z

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with boundary $\partial \Omega$ of class C^1 . Let $1 \leq p < \infty$. Prove that there does not exist a continuous linear operator

 $T\colon L^p(\Omega)\to L^p(\partial\Omega)$

satisfying $Tu = u|_{\partial\Omega}$ for all $u \in C^0(\overline{\Omega})$.

5.5. Traces of weak derivatives **\$\$**

Let $\Omega := [0, 1[\times]0, 1[\subset \mathbb{R}^2]$. Given $1 \le p \le \infty$, let $u \in W^{1,p}(\Omega)$.

(a) Prove $(g: x_1 \mapsto u(x_1, x_2)) \in W^{1,p}(]0, 1[)$ for almost every $x_2 \in]0, 1[$ with weak derivative

$$g' = \frac{\partial u}{\partial x_1}(\cdot, x_2) \in L^p(]0, 1[).$$

(b) Suppose the weak derivatives $\frac{\partial u}{\partial x_1}$ and $\frac{\partial u}{\partial x_2}$ vanish almost everyhwere in Ω . Using part (a), prove that u has a constant representative.

5.6. Positive and negative part 🗱

Let $\Omega \subset \mathbb{R}^n$ be open. Given $1 \leq p < \infty$, let $u \in W^{1,p}(\Omega)$.

(a) Let $u_+(x) = \max\{u(x), 0\}$ and $u_-(x) = -\min\{u(x), 0\}$. Prove $u_+, u_- \in W^{1,p}(\Omega)$ and show that their weak gradients are given by

 $\nabla u_{+}(x) = \begin{cases} \nabla u(x) & \text{for almost all } x \text{ with } u(x) > 0, \\ 0 & \text{for almost all } x \text{ with } u(x) \le 0, \end{cases}$ $\nabla u_{-}(x) = \begin{cases} -\nabla u(x) & \text{for almost all } x \text{ with } u(x) < 0, \\ 0 & \text{for almost all } x \text{ with } u(x) \ge 0. \end{cases}$

(b) Given $u, v \in W^{1,p}(\Omega)$ and $w(x) = \max\{u(x), v(x)\}$ show that $w \in W^{1,p}(\Omega)$.

(c) Prove that $\nabla u(x) = 0$ for almost all $x \in \Omega$ with u(x) = 0, which means that if $Z = \{x \in \Omega : u(x) = 0\}$ and $W = \{x \in \Omega : \nabla u(x) = 0 \text{ classically}\}$, then $Z \setminus W$ has Lebesgue measure zero.

(d) Let $\lambda \in \mathbb{R}$. Conclude that $\nabla u(x) = 0$ for almost all $x \in \Omega$ with $u(x) = \lambda$.