D-MATH Functional Analysis Il ETH Ziirich
Prof. A. Carlotto Solution to Problem Set 1 Spring 2018

1.1. The Dirichlet energy

(a) Since u € C%*(Q) with ulsn = 0 we may integrate by parts with vanishing
boundary terms:

/Q|Vu|2dx:—/QuAudx§/9|u||Au|da:§ </Qu2dx)é</g(Au)2dx>é.

The last estimate is Holder’s inequality.

(b) If u € C*(Q) with u|pq = 0 satisfies Au = 0 in ©, then

/]Vu|2dx: —/ uAudx = 0.
0 0

Since |Vu(z)|* > 0 for every z € Q we conclude |[Vu|* = 0 in Q which means that u
is constant in 2. By continuity, this constant must agree with the value of v on 0€;
hence u = 0.

1.2. The p-energy
Let © C R™ be open, bounded and regular, 2 < p < co and g € C?(92). Consider

Eyu) = [ |Vul’ dr, o= fu e C2@) | ulon = g}
(a) Suppose uy,uy € A both satisfy E,(u;) = E,(us) = inf,eq E,(v). Since for p > 2
the mapping R" 3 v — |v|” is strictly convex, we have

vi v lP o+ Juaf”

2 2

for every vy, v9 € R™ with vy # ve. If Vuy # Vus in a set of positive measure, then

D p p
EP<U1+U2> :/ Vu; + Vug d < / |Vuy|” + |[Vus|
2 Q 2 Q 2

which is a contradiction to u; being a minimiser of E,. Consequently, Vu; = Vuy,
which means that u; — ug is constant. Since (u; — us)|go = 0 we conclude u; = us.

dr = E,(uq),

(b) Suppose, u € 2 is a minimiser of E,. Let ¢ € C?(Q) satisfy ¢|sq = 0. Then
u+ tp € A for every t € R. Moreover,

d
%/QWu—i—tho\pda: :p/Q\Vu+tV<p]p_2(Vu—|—tho) Vda

In particular,

4
dt
for every ¢ € C?(Q) with ¢|sq = 0. Hence, — div(\Vu\p_QVu> = 0.

0=

E,(u+ty) :p/Q|Vu|p72Vu -Vodr = —p/ﬂdiv<|Vu|p72Vu)gpdx

t=0
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(c) For every u € C?(Q2) with u|sq = 0 there holds
/|Vu\pdx :/|Vu]p_2Vu-Vudx = —/ div |Vu]p_2Vu)uda:
0
_ _/( — 2)|Vu" ™ (D*u(Vu, V) + |Vu|p2Au>ud:z:

< (p—2+va) [ IVul’|Dulju] dz,

where (Au)? < n|D?ul” is used. Indeed, with 86—;‘7_ =: u; and 6352} =: u), we have
n % n n 9 %
‘D2 (Vu, Vu) ‘ = Zu] Zu]kuk < (Z u?) (Z(Z ujkuk) >
=1 =1 =1 k=1
1

< Va5 (350)) = 9t (323002, ) = it

j=1 k=1 k=1 j=1k=1
2 2
ujp ..oy

e
Applying Holder’s inequality with 1 = 2= 2 +5 + <, we obtain
/|vu\pdx< (p—2+vn ( |Vu|pdx> </|D2u|pdx)‘1’(/g|u|fodx);,
= (/Q|Vu|pd:v) p 2+\/_ (/|D2u|pd9§> (/|u|pda:) :
= /\vu\pd:c < (p—2+va) g(/|D2u|pda:> </\u|pdx) .

IN

1.3. Laplace’s equation

(a) If u € C*(Q) is of the form u(z,y) = v(z)w(y), then
(Au)(z,y) = v"(z) w(y) + v(z) w(y).

Suppose, Au = 0. At every (z,y) € 2, where v(x)w(y) # 0, we obtain
’U”(.’L‘) _ _w//(y)
v(x) w(y)

Since the left hand side depends only on z and the right hand side only on y, the
equation requires both sides to be constant. More precisely,

Vi) )

v(x) w(y)

(1)
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at every (z,y) € €2, where v(z)w(y) # 0. The resulting equations

o(2) = ro(a), W' (y) = —rw(y)
can be solved separately by distinguishing three cases.

Case 1. k = A\? for some A > 0. Then, with constants C,Cy, C3,Cy € R

v(z) = CreM + Cpe ™, w(y) = Cysin(Ay) + Cy cos(\y).
Case 2. k = 0. Then, with constants C7,Cs, C3,Cy € R
v(z) = Crx + Oy, w(y) = C3y + Cy.
Case 3. Kk = —\? for some A\ > 0. Then, with constants C;,C,,C3,Cy € R
v(x) = Cysin(Az) + Cy cos(Ax), w(y) = C3e™ + Cye™.

For u(z,y) = v(z)w(y) in each of the cases, explicit computation verifies Au = 0
in Q. Are these all harmonic functions of this form? Let u(z,y) = v(z)w(y) in C*(Q)
satisfy Au = 0 in Q. If u is not identically zero, there are open set I C |a,b[ and
J C Je,d| such that v(z) # 0 Vo € I and w(y) # 0 Vy € J. Hence equation (}) is
satisfied in I x J and u|;«; agrees with the restriction of one of the solutions % found
in cases 1-3. Since I x J is open, the unique continuation principle yields v = @ in €.

(b) Let a,b,c,d € R with a < b and ¢ < d and let Q := Ja,b[ x ]¢,d[ C R% Let
ug € C?(0N) be non-constant satisfying

Vo e [(l,b] Uo(I,C> =1, \V/y < [07 d] U’0<b7 y) =1

Then, any function u(z,y) = v(z)w(y) in Q with u|sgq = ue must satisfy

1
w(e)?

Vy e le,d] 1=ug(by) =ulby) =vb)wly) = wly) = ﬁ

Vo € [a,b] 1=ug(x,c) =ul(z,c)=v(z)w(c) = v(r)=

In particular, both v and w must be constant. This however is in contradiction to ug
being non-constant.
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1.4. Mean-value property

(a) Let 2 C R” be open. Let y € Q and R > 0 such that such that Bgr(y) C Q.
Given u € C?(Q), we define ¢: |0, R[ — R by

and compute

d
¢ (r) = ]{)Bl(o) a(u(y + rz)) do(z) = ][831(0) z-Vu(y +rz)do(z)
_ $-v. o) = "
= f s V(&) do(€) = o) Audz, (1)

where the divergence theorem applies because v = E%y is the outward unit normal
vector along 0B,.(y). If u satisfies the mean-value property, ¢ is constant. In particular,

0=2¢(r)= r Audzx. (*)

n B'r'(y)

By assumption, Au is continuous. If Au # 0, there exist y € 2 and r > 0 such that
either Au < 0 in B,(y) or Au > 0 in B,(y) which contradicts () in both cases.

(b) Let u € C?(2) be harmonic. As in (a) let y € Q and R > 0 such that Bg(y) C Q.
Since Au = 0, equation (f) in part (a) yields

¢ (r)=— Audr =0 (1)

n JBr(y)

which implies that the map ¢: |0, R[ — R given by

o(r) = ][aB w udo

is constant in r. In particular,

][ udo = lim udo = u(y)
0B, (y) =0 JoB,(y)

which proves the first part of the mean-value property. Moreover,

1 T 1 T
udr = / (/ uda)d :—/ 0B <][ uda)d
]ér(y) ’B’r‘l 0 (9Bp(y) P |BT| 0 ’ P| 8B,,(y) P

=1 [ 108,l dp = uto)

which proves the second part of the mean-value property.
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1.5. Liouville’s theorem

(a) Let u € C*(R™) be harmonic and v € L*(R™). Let B,(y) C R" be the open ball
of radius r > 0 around y. The mean-value property proven in problem 1.4 (b) implies
—00 0

1
) =| £, wie] < g [l € el S

Since y € R™ is arbitrary, we obtain u = 0.

(b) Let u € C*(R") be harmonic and |u| < ¢y. Let y, 2 € R™ be two arbitrary points
and p := |y — z|. Then, for every r > p, the mean-value property implies

u(y) —u(z) = ][Ty udxr — ]gr(z)udx

W)
1
- udx
| B | /197-<y>\BT-<z> | Br| /B, (2)\Br(v)

2CO 2CO 14 |BRn71| r—00

1B, (y) \ B (2)] < . 0
= 1B, | B

i.e. u(y) < wu(z). By switching the roles of y and z we also obtain u(z) < u(y), i.e.

u(y) = u(z). Since y, z € R™ are arbitrary, we conclude that u is constant.

gt

1.6. Harnack’s inequality

Given the open set 2 C R™ and the connected open subset Q C € such that Q C ©,
let r = 1 dist(Q,99) > 0. Let u € C?(2) be harmonic. According to the mean-value
property proven in problem 1.4 (b) and since u is non-negative,

1 1 1 1
| Bay | B2r(y)u v | By, | Br(z)u ’ 27| B, | Br(z)u v 2"U(Z)

u(y) =

for any y,z € Q with |z — y| < r. Since @ is connected and compact, there exist
finitely many 1, ..., x,, € @ such that Q C U~; B,(x;) and such that |z; — x; 1| <r
for : = 2,...,m. Consequently,

Ve,y e Q  u(x) > 27y (y) = supu < 2"m+D igfu.
Q
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