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2.1. Weak first derivative
Let ¢ € C2°(R). Then, since x¢(x) vanishes for x = 0 and for # — oo, there holds

- [l @i =~ [ —ef@)de [~ @)

—oo 0
0 0o
:/ —1p(x)dz +/ Lo(x)de = / u'(z)p(x) dx.
—00 0 R
Since v’': R — R given by u/(z) =1 for x > 0 and «/(z) = —1 for z < 0 is in L} (R),

the equation above proves that ' is the weak first derivative of u(z) = |z|.

2.2. Weak derivative in LP(2)

(a) Let u € L .(Q). Given 1 < p < 00, let 1 < ¢ < oo such that % + é = 1. Suppose
D exists as weak derivative in LP(Q2). Let ¢ € C2°(Q2) be arbitrary. Then,

‘/QuDagoda:’ = ‘(—1)"“ /Q(Dau)wdx

by Holder’s inequality which proves the first claim with constant C' = [[Du[ 1, q)-
Conversely, suppose

< D%l ooy 10l ooy

Vo e C°(9) : ’/QuDo‘apdx

< CH‘PHLq(Q)-
Then, since C2°(2) is dense in L?(S2) for ¢ < oo, the map
from— (—1)|a|/ uD%pdx
0

defines a continuous linear functional f € (L9(2))*. Since (L4(2))* for 1 < g < oo is
isometrically isomorphic to LP()), there exists g € LP(Q2) such that

Vo e LUQ): flp) = /Qgsoda:-
By definition of f it follows that g € LP(Q) is the weak derivative D*u of w.
(b) Let u = xj01; and ¢ € C*(R). Then

1
‘/Wp’dm :’/ o' dw
R 0

The function u restricted to R\ {0,1} is differentiable with vanishing derivative.
In particular, if u had a weak derivative ' € L (R), then «/ = 0 almost everywhere.

A contradiction arises for test functions ¢ € C°(R) with ¢(0) # (1) via

= [o(1) = (0)] < 2l e

1
o= [t [t [ e 0 - )
R R 0
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2.3. Cantor function

(a) The set A, = {z € ]0,1] : u/ (z) # 0 or w,(z) does not exist classically} is a
union of relatively closed subintervals of equal length. With each iteration n ~» n + 1
the number of intervals doubles but their length is divided by three. Therefore,

. T 2\n __

A A = lim (3)" = 0.
By definition of u, we have {x € |0, 1] : u/(z) = 0 exists classically} D ]0,1[\ A, for
every n € N. Thus, v/(x) = 0 in a set of full measure, i.e. for almost every x € |0, 1[.

(b) Given 2 <k € N, let ¢, € C°(]0, 1[) be such that

Then, since
(2) ()" for (5)F <z <2(3),
u(z) =
1—(3)F for1—-2(3)f<z<1—-(3)"
and since ¢'(x) vanishes outside this range, there holds

- [fws =0 [ dode- (1= 0r) [ Hde

1-2(3)¢

D=

(3? \
| |

0 (1)2 1

2
3 3 3

1

(c) Suppose the distributional derivative v’ of u vanishes. Then v’ = 0 would be the
weak first derivative of w in L'(]0, 1[). However, |[«/|;. qoap = 0 is in contradiction to

1 1
||u/||L1(]o,1[) 2 kll—>rgo/0 u'op dr = _klggo/o u) dr = 1.
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2.4. Symmetry of Green’s function

Let G be Green’s function for Q C R™ and let ¢, € C°(2) be arbitrary. Consider
the functions u,v: 0 — R given by

/ G(z,y)e(y) dy, v(z) = /QG(%?J)@/)(?J) dy
According to the Theorem about Green’s function, they satisfy
—Au=¢ in ), —Av=1 in €,
u=0 on Jf. v=0 on JN.

Therefore,

//Ga:y x)drdy — //Gy, Y (x) de dy
= | ule dw-—jg )pv) dy

:—/uAvdaJ—i-/UAudx:—/uAvdac—i—/(Av)ud:E:O,
Q Q Q Q

where we used integration by parts and v|sg = 0 = u|gq in the last line. Since ¢ and
1 are arbitrary, symmetry of G follows.

2.5. Green’s function for the half-space
Given x = (21, ...,%p-1,2,) € R}, let T = (21,..., 2,1, —2,) denote its reflection
in the plane OR%. Let ®: R™\ {0} — R be the fundamental solution of Laplace’s
equation as given on the problem set. Then the function
¢"(y) =Py —7) = Py — 21, ..., Yno1 — Tne1, Yn + Tn)
satisfies
A¢p* =0 in R,
{cbz(y) =®(y —x) forye IR
because y — 7 # 0 for every y € R} and since by symmetry of ®
VyedRY: B(y—x)=2(y—z)=2@F—7)=2(y—7)=9¢"(y)
Hence, Green’s function for the upper half-space is
G(z,y) =0y —x) —¢"(y) = P(y —x) — 2(y — T)
_{—1O%W—w%4%w—mm (n=2)
N m(w ? n—|y—f|2_n>a (n #2).
Remark. Since the domain R} is unbounded, the representation formula (as given on

the problem set) for solutions of the equation —Au = f in R? with boundary data
ul orn = g has to be checked separately.
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2.6. Green’s function for an interval
(a) For n = 1, the fundamental solution of Laplace’s equation is ®: R — R given by
®(z) = —1|z|.
Given z € a, b[, it remains to solve the boundary-value problem
(¢")" =0 in Ja, b,
{éﬂwz—&x—m for y € {a, b}.

We obtain ¢*(y) = ¢; + coy with constants c1, co € R determined by the equations

—3(x —a) =¢"(a) =1 + ca = o =—1i(r—a)— ea,
Nz —b)=¢"(b) = c1 + c2b = o(—a+0b)=i(x—a)+ 3(z—0).
Hence,
o (x —a)+ (z—b)
2T 2(b—a) ’
o _Ta (x—a)at+(z—bla  (x—a)b+ (z—bla
T 2(b— a) B 2(b — a) ’
ly—zf  (z—a)b—y)+ (z-b)(a—y)
— @ — — — —
G(x7y) (y x) Cl CQCU 2 + 2(()— CL)
e
L0y iy > .

y—=Gry) T Y= Glyy)

S
S

(b) Let f € C°(Ja, b)) andzdaﬁ::‘/bezgy)f(y)dy.’Then,

a

i) = [ e = [ G0+ [ 70 )y
b-=)

e Clk) x) — r)=\(a—x)—(b—2x /() =—f(z
W'@) = G f @~ g /@ = (a-2) = b-2)) =5 = ~f(@).

Since G(a,y) = 0 = G(b,y) for every y € ]a, b, there holds u(a) =0

I
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~—
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