2.1. Weak first derivative

Let $\varphi \in C_c^{\infty}(\mathbb{R})$. Then, since $x\varphi(x)$ vanishes for x=0 and for $x\to\infty$, there holds

$$-\int_{\mathbb{R}} |x| \varphi'(x) dx = -\int_{-\infty}^{0} -x \varphi'(x) dx - \int_{0}^{\infty} x \varphi'(x) dx$$
$$= \int_{-\infty}^{0} -1 \varphi(x) dx + \int_{0}^{\infty} 1 \varphi(x) dx = \int_{\mathbb{R}} u'(x) \varphi(x) dx.$$

Since $u' : \mathbb{R} \to \mathbb{R}$ given by u'(x) = 1 for $x \ge 0$ and u'(x) = -1 for x < 0 is in $L^1_{loc}(\mathbb{R})$, the equation above proves that u' is the weak first derivative of u(x) = |x|.

2.2. Weak derivative in $L^p(\Omega)$

(a) Let $u \in L^1_{loc}(\Omega)$. Given $1 , let <math>1 \le q < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. Suppose $D^{\alpha}u$ exists as weak derivative in $L^p(\Omega)$. Let $\varphi \in C^{\infty}_c(\Omega)$ be arbitrary. Then,

$$\left| \int_{\Omega} u D^{\alpha} \varphi \, dx \right| = \left| (-1)^{|\alpha|} \int_{\Omega} (D^{\alpha} u) \varphi \, dx \right| \le \|D^{\alpha} u\|_{L^{p}(\Omega)} \|\varphi\|_{L^{q}(\Omega)}$$

by Hölder's inequality which proves the first claim with constant $C = ||D^{\alpha}u||_{L^{p}(\Omega)}$. Conversely, suppose

$$\forall \varphi \in C_c^{\infty}(\Omega): \left| \int_{\Omega} u \, D^{\alpha} \varphi \, dx \right| \leq C \|\varphi\|_{L^q(\Omega)}.$$

Then, since $C_c^{\infty}(\Omega)$ is dense in $L^q(\Omega)$ for $q < \infty$, the map

$$f \colon \varphi \mapsto (-1)^{|\alpha|} \int_{\Omega} u \, D^{\alpha} \varphi \, dx$$

defines a continuous linear functional $f \in (L^q(\Omega))^*$. Since $(L^q(\Omega))^*$ for $1 \le q < \infty$ is isometrically isomorphic to $L^p(\Omega)$, there exists $g \in L^p(\Omega)$ such that

$$\forall \varphi \in L^q(\Omega) : f(\varphi) = \int_{\Omega} g\varphi \, dx.$$

By definition of f it follows that $g \in L^p(\Omega)$ is the weak derivative $D^{\alpha}u$ of u.

(b) Let $u = \chi_{]0,1[}$ and $\varphi \in C_c^{\infty}(\mathbb{R})$. Then

$$\left| \int_{\mathbb{R}} u \, \varphi' \, dx \right| = \left| \int_{0}^{1} \varphi' \, dx \right| = \left| \varphi(1) - \varphi(0) \right| \le 2 \|\varphi\|_{L^{\infty}(\mathbb{R})}.$$

The function u restricted to $\mathbb{R} \setminus \{0,1\}$ is differentiable with vanishing derivative. In particular, if u had a weak derivative $u' \in L^1_{loc}(\mathbb{R})$, then u' = 0 almost everywhere. A contradiction arises for test functions $\varphi \in C^\infty_c(\mathbb{R})$ with $\varphi(0) \neq \varphi(1)$ via

$$0 = \int_{\mathbb{R}} u' \varphi \, dx = -\int_{\mathbb{R}} u \, \varphi' \, dx = -\int_{0}^{1} \varphi' \, dx = \varphi(0) - \varphi(1).$$

2.3. Cantor function

(a) The set $A_n = \{x \in]0,1[: u'_n(x) \neq 0 \text{ or } u'_n(x) \text{ does not exist classically}\}$ is a union of relatively closed subintervals of equal length. With each iteration $n \rightsquigarrow n+1$ the number of intervals doubles but their length is divided by three. Therefore,

$$\lim_{n\to\infty} |A_n| = \lim_{n\to\infty} \left(\frac{2}{3}\right)^n = 0.$$

By definition of u, we have $\{x \in]0,1[: u'(x) = 0 \text{ exists classically}\} \supset]0,1[\setminus A_n \text{ for every } n \in \mathbb{N}$. Thus, u'(x) = 0 in a set of full measure, i. e. for almost every $x \in]0,1[$.

(b) Given $2 \leq k \in \mathbb{N}$, let $\varphi_k \in C_c^{\infty}(]0,1[)$ be such that

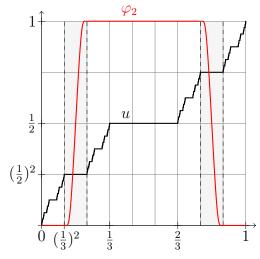
$$\varphi_k(x) = \begin{cases} 0 & \text{for } x \le (\frac{1}{3})^k, \\ 1 & \text{for } 2(\frac{1}{3})^k \le x \le 1 - 2(\frac{1}{3})^k, \\ 0 & \text{for } x \ge 1 - (\frac{1}{3})^k. \end{cases}$$

Then, since

$$u(x) = \begin{cases} (\frac{1}{2})^k & \text{for } (\frac{1}{3})^k < x < 2(\frac{1}{3})^k, \\ 1 - (\frac{1}{2})^k & \text{for } 1 - 2(\frac{1}{3})^k < x < 1 - (\frac{1}{3})^k \end{cases}$$

and since $\varphi'(x)$ vanishes outside this range, there holds

$$-\int_0^1 u(x)\varphi_k'(x) dx = -\left(\frac{1}{2}\right)^k \int_{\left(\frac{1}{3}\right)^k}^{2\left(\frac{1}{3}\right)^k} \varphi'(x) dx - \left(1 - \left(\frac{1}{2}\right)^k\right) \int_{1 - 2\left(\frac{1}{3}\right)^k}^{1 - \left(\frac{1}{3}\right)^k} \varphi'(x) dx$$
$$= -\left(\frac{1}{2}\right)^k + \left(1 - \left(\frac{1}{2}\right)^k\right) \xrightarrow{k \to \infty} 1.$$



(c) Suppose the distributional derivative u' of u vanishes. Then u' = 0 would be the weak first derivative of u in $L^1(]0,1[)$. However, $||u'||_{L^1(]0,1[)} = 0$ is in contradiction to

$$||u'||_{L^1(]0,1[)} \ge \lim_{k \to \infty} \int_0^1 u' \varphi_k \, dx = -\lim_{k \to \infty} \int_0^1 u \varphi_k' \, dx = 1.$$

2.4. Symmetry of Green's function

Let G be Green's function for $\Omega \subset \mathbb{R}^n$ and let $\varphi, \psi \in C_c^{\infty}(\Omega)$ be arbitrary. Consider the functions $u, v \colon \Omega \to \mathbb{R}$ given by

$$u(x) = \int_{\Omega} G(x, y)\varphi(y) dy,$$
 $v(x) = \int_{\Omega} G(x, y)\psi(y) dy.$

According to the Theorem about Green's function, they satisfy

$$\begin{cases} -\Delta u = \varphi & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega. \end{cases} \qquad \begin{cases} -\Delta v = \psi & \text{in } \Omega, \\ v = 0 & \text{on } \partial \Omega. \end{cases}$$

Therefore,

$$\begin{split} &\int_{\Omega} \int_{\Omega} G(x,y) \varphi(y) \psi(x) \, dx \, dy - \int_{\Omega} \int_{\Omega} G(y,x) \varphi(y) \psi(x) \, dx \, dy \\ &= \int_{\Omega} u(x) \psi(x) \, dx - \int_{\Omega} v(y) \varphi(y) \, dy \\ &= -\int_{\Omega} u \Delta v \, dx + \int_{\Omega} v \Delta u \, dx = -\int_{\Omega} u \Delta v \, dx + \int_{\Omega} (\Delta v) u \, dx = 0, \end{split}$$

where we used integration by parts and $v|_{\partial\Omega} = 0 = u|_{\partial\Omega}$ in the last line. Since φ and ψ are arbitrary, symmetry of G follows.

2.5. Green's function for the half-space

Given $x = (x_1, \ldots, x_{n-1}, x_n) \in \mathbb{R}^n_+$, let $\overline{x} = (x_1, \ldots, x_{n-1}, -x_n)$ denote its reflection in the plane $\partial \mathbb{R}^n_+$. Let $\Phi \colon \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ be the fundamental solution of Laplace's equation as given on the problem set. Then the function

$$\phi^{x}(y) := \Phi(y - \overline{x}) = \Phi(y_{1} - x_{1}, \dots, y_{n-1} - x_{n-1}, y_{n} + x_{n})$$

satisfies

$$\begin{cases} \Delta \phi^x = 0 & \text{in } \mathbb{R}^n_+, \\ \phi^x(y) = \Phi(y - x) & \text{for } y \in \partial \mathbb{R}^n_+ \end{cases}$$

because $y - \overline{x} \neq 0$ for every $y \in \mathbb{R}^n_+$ and since by symmetry of Φ

$$\forall y \in \partial \mathbb{R}^n_+: \quad \Phi(y-x) = \Phi(\overline{y-x}) = \Phi(\overline{y}-\overline{x}) = \Phi(y-\overline{x}) = \phi^x(y).$$

Hence, Green's function for the upper half-space is

$$G(x,y) = \Phi(y-x) - \phi^{x}(y) = \Phi(y-x) - \Phi(y-\overline{x})$$

$$= \begin{cases} -\frac{1}{2\pi} \left(\log|y-x| - \log|y-\overline{x}| \right), & (n=2) \\ \frac{1}{n(n-2)|B_{1}|} \left(|y-x|^{2-n} - |y-\overline{x}|^{2-n} \right), & (n \neq 2). \end{cases}$$

Remark. Since the domain \mathbb{R}^n_+ is unbounded, the representation formula (as given on the problem set) for solutions of the equation $-\Delta u = f$ in \mathbb{R}^n_+ with boundary data $u|_{\partial\mathbb{R}^n_+} = g$ has to be checked separately.

2.6. Green's function for an interval

(a) For n = 1, the fundamental solution of Laplace's equation is $\Phi \colon \mathbb{R}^1 \to \mathbb{R}$ given by $\Phi(x) = -\frac{1}{2}|x|$.

Given $x \in [a, b[$, it remains to solve the boundary-value problem

$$\begin{cases} (\phi^x)'' = 0 & \text{in }]a, b[, \\ \phi^x(y) = -\frac{1}{2}|x - y| & \text{for } y \in \{a, b\}. \end{cases}$$

We obtain $\phi^x(y) = c_1 + c_2 y$ with constants $c_1, c_2 \in \mathbb{R}$ determined by the equations

$$-\frac{1}{2}(x-a) = \phi^{x}(a) = c_1 + c_2 a \qquad \Rightarrow c_1 = -\frac{1}{2}(x-a) - c_2 a,$$

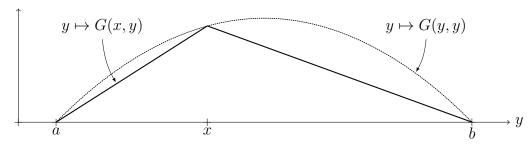
$$\frac{1}{2}(x-b) = \phi^{x}(b) = c_1 + c_2 b \qquad \Rightarrow c_2(-a+b) = \frac{1}{2}(x-a) + \frac{1}{2}(x-b).$$

Hence,

$$c_2 = \frac{(x-a) + (x-b)}{2(b-a)},$$

$$c_1 = -\frac{x-a}{2} - \frac{(x-a)a + (x-b)a}{2(b-a)} = -\frac{(x-a)b + (x-b)a}{2(b-a)},$$

$$G(x,y) = \Phi(y-x) - c_1 - c_2 y = -\frac{|y-x|}{2} + \frac{(x-a)(b-y) + (x-b)(a-y)}{2(b-a)}$$
$$= \begin{cases} \frac{(x-b)(a-y)}{(b-a)} & \text{if } y \le x, \\ \frac{(x-a)(b-y)}{(b-a)} & \text{if } y > x. \end{cases}$$



(b) Let
$$f \in C^0(]a,b[)$$
 and $u(x) = \int_a^b G(x,y)f(y)\,dy$. Then,

$$u'(x) = \int_a^b \frac{\partial G}{\partial x}(x, y) f(y) \, dy = \int_a^x \frac{(a - y)}{(b - a)} f(y) \, dy + \int_x^b \frac{(b - y)}{(b - a)} f(y) \, dy,$$

$$u''(x) = \frac{(a - x)}{(b - a)} f(x) - \frac{(b - x)}{(b - a)} f(x) = \left((a - x) - (b - x) \right) \frac{f(x)}{(b - a)} = -f(x).$$

Since G(a, y) = 0 = G(b, y) for every $y \in]a, b[$, there holds u(a) = 0 = u(b).