3.1. A closedness property

(a) Given $I:=] a, b\left[\right.$ for $-\infty \leq a<b \leq \infty$ and $1<p \leq \infty$, let $u \in L^{p}(I)$ and let $\left(u_{k}\right)_{k \in \mathbb{N}}$ be a bounded sequence in $W^{1, p}(I)$ satisfying $\left\|u_{k}-u\right\|_{L^{p}(I)} \rightarrow 0$ as $k \rightarrow \infty$. Let u_{k}^{\prime} be the weak first derivative of u_{k}. By assumption, the sequence $\left(u_{k}^{\prime}\right)_{k \in \mathbb{N}}$ is bounded in $L^{p}(I)$.

Case $1<p<\infty$. In this case, the space $L^{p}(I)$ is reflexive and the Eberlein-Šmulyan Theorem applies: $\left(u_{k}^{\prime}\right)_{k \in \mathbb{N}}$ has a subsequence which converges weakly in $L^{p}(I)$. Let $g \in L^{p}(I)$ be the corresponding weak limit and $\Lambda \subset \mathbb{N}$ the subsequence's indices. Since for any $\varphi \in C_{c}^{\infty}(I)$, the maps $L^{p}(I) \rightarrow \mathbb{R}$ given by $f \mapsto \int_{I} f \varphi d x$ or by $f \mapsto-\int_{I} f \varphi^{\prime} d x$ are elements of $\left(L^{p}(I)\right)^{*}$ and since $\left\|u_{k}-u\right\|_{L^{p}} \rightarrow 0$ implies $u_{k} \xrightarrow{\text { w }} u$, we have by definition of weak convergence

$$
-\int_{I} u \varphi^{\prime} d x=\lim _{\Lambda \ni k \rightarrow \infty}\left(-\int_{I} u_{k} \varphi^{\prime} d x\right)=\lim _{\Lambda \ni k \rightarrow \infty}\left(\int_{I} u_{k}^{\prime} \varphi d x\right)=\int_{I} g \varphi d x
$$

for any $\varphi \in C_{c}^{\infty}(I)$. Hence, $g \in L^{p}(I)$ is indeed the weak derivative of $u \in L^{p}(I)$ and $u \in W^{1, p}(I)$ follows.

Case $p=\infty$. Since $L^{1}(I)$ is separable, the Banach-Alaoglu Theorem applies: $\left(u_{k}^{\prime}\right)_{k \in \mathbb{N}}$ being bounded in $L^{\infty}(I) \cong\left(L^{1}(I)\right)^{*}$ has a subsequence (given by $\Lambda \subset \mathbb{N}$) which weak*-converges to some $g \in\left(L^{1}(I)\right)^{*}$. For any $\varphi \in C_{c}^{\infty}(] 0,1[) \subset L^{1}(] 0,1[)$,

$$
-\int_{I} u \varphi^{\prime} d x=\lim _{\Lambda \ni k \rightarrow \infty}\left(-\int_{I} u_{k} \varphi^{\prime} d x\right)=\lim _{\Lambda \ni k \rightarrow \infty}\left(\int_{I} u_{k}^{\prime} \varphi d x\right)=\int_{I} g \varphi d x
$$

follows as in part (a) with the only difference, that the last identity comes from weak *-convergence rather than weak convergence. Hence, $g \in\left(L^{1}(I)\right)^{*} \cong L^{\infty}(I)$ is indeed the weak derivative of $u \in L^{\infty}(I)$ and $u \in W^{1, \infty}(I)$ follows.
(b) The assumption $p \neq 1$ in part (a) is necessary. Consider $I=]-1,1[$ and $u=\chi_{] 0,1[} \in L^{1}(I)$. For every $k \in \mathbb{N}$ let $u_{k}: I \rightarrow \mathbb{R}$ be given by

$$
u_{k}(x)= \begin{cases}0, & \text { for }-1<x \leq 0 \\ k x, & \text { for } 0<x \leq \frac{1}{k} \\ 1, & \text { for } \frac{1}{k}<x \leq 1\end{cases}
$$

Then, $u_{k} \in W^{1,1}(I)$ with $\left\|u_{k}\right\|_{L^{1}}=1-\frac{1}{2 k}$ and $\left\|u_{k}^{\prime}\right\|_{L^{1}}=\frac{1}{k} k=1$. Moreover, there holds $\left\|u_{k}-u\right\|_{L^{1}}=\frac{1}{2 k} \rightarrow 0$ as $k \rightarrow \infty$. However, $u \notin W^{1,1}(I)$, otherwise u would have a continuous representative.

Remark. This is not a counterexample in the case $p>1$, where $\left\|u_{k}^{\prime}\right\|_{L^{p}}=\left(\frac{1}{k} k^{p}\right)^{\frac{1}{p}} \rightarrow \infty$.

3.2. Fundamental solution of Laplace's equation in two dimensions

(a) Given $j \in\{1,2\}$ and $x=\left(x_{1}, x_{2}\right) \in \mathbb{R} \backslash\{0\}$, we have

$$
\begin{aligned}
E(x) & =\frac{1}{2 \pi} \log |x|=\frac{1}{4 \pi} \log \left(x_{1}^{2}+x_{2}^{2}\right), \\
\frac{\partial E}{\partial x_{j}}(x) & =\frac{2 x_{j}}{4 \pi|x|^{2}}=\frac{x_{j}}{2 \pi|x|^{2}} .
\end{aligned}
$$

(b) Since E is represented smoothly away from the origin, it suffices to compute

$$
\begin{aligned}
& \int_{B_{1}(0)}|E| d x=2 \pi \int_{0}^{1}\left(-\frac{1}{2 \pi} \log r\right) r d r=-\int_{0}^{1} r \log r d r=\left.\frac{1}{4} r^{2}(1-2 \log r)\right|_{0} ^{1}=\frac{1}{4}, \\
& \int_{B_{1}(0)}|\nabla E| d x=\int_{B_{1}(0)} \frac{|x|}{2 \pi|x|^{2}} d x=2 \pi \int_{0}^{1} \frac{r}{2 \pi r^{2}} r d r=1
\end{aligned}
$$

in order to conclude $E \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$ and $|\nabla E| \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{2}\right)$.
(c) Let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{2}\right)$ be arbitrary and $\left.(r, \theta) \in\right] 0, \infty\left[\times\left[0,2 \pi\left[\right.\right.\right.$ polar coordinates in \mathbb{R}^{2}. Part (b) justifies the computation

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} E \Delta \varphi d x & =\lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{2} \backslash B_{\varepsilon}} E \Delta \varphi d x=\lim _{\varepsilon \rightarrow 0}\left(-\int_{\partial B_{\varepsilon}} E \frac{\partial \varphi}{\partial r} d \sigma-\int_{\mathbb{R}^{2} \backslash B_{\varepsilon}} \nabla E \cdot \nabla \varphi d x\right) \\
& =-\int_{\mathbb{R}^{2}} \nabla E \cdot \nabla \varphi d x=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{x}{|x|^{2}} \cdot \nabla \varphi d x \\
& =-\frac{1}{2 \pi} \int_{0}^{2 \pi} \int_{0}^{\infty} \frac{1}{r} \frac{\partial \varphi}{\partial r} r d r d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} \varphi(0) d \theta=\varphi(0) .
\end{aligned}
$$

(d) By definition,

$$
\frac{\partial E}{\partial z}:=\frac{1}{2}\left(\frac{\partial E}{\partial x_{1}}-i \frac{\partial E}{\partial x_{2}}\right)=\frac{x_{1}-i x_{2}}{4 \pi|x|^{2}}=\frac{\bar{z}}{4 \pi z \bar{z}}=\frac{1}{4 \pi z} .
$$

(e) Let $f \in C^{2}\left(\mathbb{R}^{2} ; \mathbb{C}\right)$. Then, by symmetry of second derivatives,

$$
4 \frac{\partial^{2} f}{\partial z \partial \bar{z}}=\frac{\partial}{\partial x_{1}}\left(\frac{\partial f}{\partial x_{1}}+i \frac{\partial f}{\partial x_{2}}\right)-i \frac{\partial}{\partial x_{2}}\left(\frac{\partial f}{\partial x_{1}}+i \frac{\partial f}{\partial x_{2}}\right)=\frac{\partial^{2} f}{\partial x_{1}^{2}}+\frac{\partial^{2} f}{\partial x_{2}^{2}}=\Delta f .
$$

From part (d) we conclude

$$
\frac{\partial}{\partial \bar{z}} \frac{1}{\pi z}=4 \frac{\partial^{2} E}{\partial \bar{z} \partial z}=\Delta E=\delta_{0}
$$

in $\mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)$.

3.3. Linear ODE with constant coefficients

(a) By definition, the space $H_{0}^{1}(I)$ is a closed subspace of the Hilbert space

$$
\left(H^{1}(I),(\cdot, \cdot)_{H^{1}}\right), \quad(u, v)_{H^{1}}:=\int_{I} u^{\prime} v^{\prime} d x+\int_{I} u v d x
$$

In particular, $\left(H_{0}^{1}(I),(\cdot, \cdot)_{H^{1}}\right)$ is also Hilbertean. Given $f \in C^{0}(\bar{I})$, the map

$$
\ell_{f}: H_{0}^{1}(I) \rightarrow \mathbb{R}, \quad \quad \ell_{f}(\varphi):=\int_{I} f(x) \varphi(x) d x
$$

is a linear, continuous functional. In fact $\left|\ell_{f}(\varphi)\right| \leq\|f\|_{L^{2}}\|\varphi\|_{L^{2}} \leq\|f\|_{L^{2}}\|\varphi\|_{H^{1}}$. By the Riesz representation Theorem applied in the Hilbert space $\left(H_{0}^{1}(I),(\cdot, \cdot)_{H^{1}}\right)$, there exists a unique $u \in H_{0}^{1}(I)$ satisfying

$$
\begin{equation*}
\forall \varphi \in H_{0}^{1}(I): \quad \int_{I} f \varphi d x=: \ell_{f}(\varphi)=(u, \varphi)_{H^{1}}=\int_{I} u^{\prime} \varphi^{\prime} d x+\int_{I} u \varphi d x \tag{1}
\end{equation*}
$$

(b) Let $u \in H_{0}^{1}(I)$ be the weak solution to the equation $-u^{\prime \prime}+u=f$ in I found in part (a). By (1), we have in particular

$$
\forall \varphi \in C_{c}^{\infty}(I): \quad-\int_{I} u^{\prime} \varphi^{\prime} d x=\int_{I}(u-f) \varphi d x
$$

Hence, the function $u^{\prime} \in L^{2}(I)$ has the weak derivative $(u-f) \in L^{2}(I)$ and we conclude $u^{\prime} \in H^{1}(I)$. Therefore, u^{\prime} allows a continuous representative satisfying

$$
\begin{equation*}
u^{\prime}(x)=u^{\prime}(a)+\int_{a}^{x}(u-f)(t) d t \tag{2}
\end{equation*}
$$

Since $u \in H_{0}^{1}(I)$ allows a continuous representative and $f \in C^{0}(\bar{I})$, the right hand side of (2) is in $C^{1}(\bar{I})$. Finally, $u^{\prime} \in C^{1}(\bar{I})$ implies $u \in C^{2}(\bar{I})$ as claimed.
(c) Let $g \in C^{0}(\bar{I})$. Let $\alpha, \beta \in \mathbb{R}$ and let $v_{0} \in C^{\infty}(\bar{I})$ be given by

$$
v_{0}(x)=\alpha+\frac{x-a}{b-a}(\beta-\alpha) .
$$

Let $f=g-v_{0} \in C^{0}(\bar{I})$ and let $u \in H_{0}^{1}(I)$ be the solution of $-u^{\prime \prime}+u=f$ found in part (a). By part (b), $u \in C^{2}(\bar{I})$. Moreover, $v:=u+v_{0} \in C^{2}(\bar{I})$ satisfies

$$
\left\{\begin{aligned}
-v^{\prime \prime}+v & =-u^{\prime \prime}-v_{0}^{\prime \prime}+u+v_{0}=-u^{\prime \prime}+u+v_{0}=f+v_{0}=g, \\
v(a) & =u(a)+u_{0}(a)=u_{0}(a)=\alpha, \\
v(b) & =u(b)+u_{0}(b)=u_{0}(b)=\beta
\end{aligned}\right.
$$

To prove uniqueness, let $\tilde{v} \in C^{2}(\bar{I})$ be another solution to the boundary-value problem

$$
\left\{\begin{aligned}
-v^{\prime \prime}+v & =g \quad \text { in } I, \\
v(a)=\alpha, & v(b)=\beta .
\end{aligned}\right.
$$

Then, the function $u:=v-\tilde{v} \in C^{2}(\bar{I})$ satisfies $-u^{\prime \prime}+u=0$ with $u(a)=0=u(b)$. Moreover, since $u=u^{\prime \prime}$ integration by parts yields

$$
\int_{I} u^{2} d x=\int_{I} u^{\prime \prime} u d x=-\int_{I}\left|u^{\prime}\right|^{2} d x \leq 0
$$

which implies $u=0$ and hence $\tilde{v}=v$.

3.4. Linear ODE with variable coefficients

(a) Let $I=] a, b\left[\right.$. Given $g \in C^{1}(\bar{I})$ and $h \in C^{0}(\bar{I})$ we assume that $g(x) \geq \lambda>0$ and $h(x) \geq 0$ for every $x \in \bar{I}$ and define the new scalar product

$$
\langle u, v\rangle:=\int_{I}\left(g u^{\prime} v^{\prime}+h u v\right) d x
$$

for all $u, v \in H_{0}^{1}(I)$. By assumption,

$$
\langle u, u\rangle=\int_{I}\left(g\left|u^{\prime}\right|^{2}+h|u|^{2}\right) d x \geq \lambda \int_{I}\left|u^{\prime}\right|^{2} d x
$$

for any $u \in H_{0}^{1}(I)$. Moreover, using Poincaré's inequality,

$$
\begin{aligned}
\langle u, u\rangle & \leq\|g\|_{C^{0}} \int_{I}\left|u^{\prime}\right|^{2} d x+\|h\|_{C^{0}} \int_{I}|u|^{2} d x \\
& \leq\left(\|g\|_{C^{0}}+(b-a)^{2}\|h\|_{C^{0}}\right) \int_{I}\left|u^{\prime}\right|^{2} d x .
\end{aligned}
$$

Hence, $\langle\cdot, \cdot\rangle$ is equivalent to the standard scalar product $(u, v)_{H_{0}^{1}}$ on $H_{0}^{1}(I)$ given by

$$
(u, v)_{H_{0}^{1}}:=\int_{I} u^{\prime} v^{\prime} d x
$$

Hence, $\left(H_{0}^{1}(I),\langle\cdot, \cdot\rangle\right)$ is Hilbertean. Given $f \in C^{0}(\bar{I})$, the map

$$
\ell_{f}: H_{0}^{1}(I) \rightarrow \mathbb{R}, \quad \quad \ell_{f}(\varphi):=\int_{I} f(x) \varphi(x) d x
$$

is a linear, continuous functional. In fact, $\left|\ell_{f}(\varphi)\right| \leq\|f\|_{L^{2}}\|\varphi\|_{L^{2}} \leq(b-a)\|f\|_{L^{2}}\|\varphi\|_{H_{0}^{1}}$. By the Riesz representation Theorem applied in the Hilbert space $\left(H_{0}^{1}(I),\langle\cdot, \cdot\rangle\right)$, there exists a unique $u \in H_{0}^{1}(I)$ satisfying

$$
\begin{equation*}
\forall \varphi \in H_{0}^{1}(I): \quad \int_{I} f \varphi d x=: \ell_{f}(\varphi)=\langle u, \varphi\rangle=\int_{I} g u^{\prime} \varphi^{\prime}+h u \varphi d x \tag{3}
\end{equation*}
$$

which is equivalent to being a weak solution of the equation

$$
-\left(g u^{\prime}\right)^{\prime}+h u=f \quad \text { in } I .
$$

(b) Let $u \in H_{0}^{1}(I)$ be the weak solution to equation (\dagger) found in (a). By (3), we have in particular,

$$
\forall \varphi \in C_{c}^{\infty}(I): \quad-\int_{I} g u^{\prime} \varphi^{\prime} d x=\int_{I}(h u-f) \varphi d x
$$

Hence, the function $g u^{\prime}$ has the weak derivative $(h u-f) \in L^{2}(I)$ and we conclude $g u^{\prime} \in H^{1}(I)$. Therefore, $g u^{\prime}$ allows a continuous representative satisfying

$$
\begin{equation*}
\left(g u^{\prime}\right)(x)=\left(g u^{\prime}\right)(a)+\int_{a}^{x}(h u-f)(t) d t \tag{4}
\end{equation*}
$$

Since $u \in H_{0}^{1}(I)$ allows a continuous representative and $h, f \in C^{0}(\bar{I})$, the right hand side of (4) is in $C^{1}(\bar{I})$. Finally, $g u^{\prime} \in C^{1}(\bar{I})$ and $0<\lambda \leq g \in C^{1}(\bar{I})$ imply $u^{\prime} \in C^{1}(\bar{I})$. Hence, $u \in C^{2}(\bar{I})$ as claimed.

3.5. Extension operator of first and second order

In order to extend $u \in W^{2, p}\left(\mathbb{R}_{+}\right)$by "odd reflection", we define

$$
(E u)(x):=\left\{\begin{array}{ll}
u(x) & \text { for } x>0, \\
2 u(0)-u(-x) & \text { for } x<0,
\end{array} \quad h(x):=\left\{\begin{array}{ll}
u^{\prime}(x) & \text { for } x>0, \\
u^{\prime}(-x) & \text { for } x<0,
\end{array},\left\{\begin{array}{ll}
u^{\prime \prime}(x) & \text { for } x>0, \\
-u^{\prime \prime}(-x) & \text { for } x<0
\end{array}, ~ \$\right.\right.\right.
$$

where we extended the continuous representative of $u \in W^{2, p}(I)$ continuously at $x=0$ to obtain the value $u(0)$.

Figure 1: Extension by odd reflection.
Then, $(E u), g, h \in L_{\mathrm{loc}}^{p}(\mathbb{R})$ because $u, u^{\prime}, u^{\prime \prime} \in L^{p}\left(\mathbb{R}_{+}\right)$and because the constant function $x \mapsto 2 u(0)$ is in $L_{\mathrm{loc}}^{p}(\mathbb{R})$. We claim that g is the first and h the second weak derivative of $E u$. Let $\varphi \in C_{c}^{\infty}(\mathbb{R})$ be arbitrary. Then,

$$
\begin{aligned}
-\int_{\mathbb{R}}(E u) \varphi^{\prime} d x & =-\int_{-\infty}^{0} 2 u(0) \varphi^{\prime}(x)-u(-x) \varphi^{\prime}(x) d x-\int_{0}^{\infty} u(x) \varphi^{\prime}(x) d x \\
& =-2 u(0) \varphi(0)+\int_{-\infty}^{0} u(-x) \varphi^{\prime}(x) d x-\int_{0}^{\infty} u(x) \varphi^{\prime}(x) d x \\
& =-\int_{-\infty}^{0}-u^{\prime}(-x) \varphi(x) d x+\int_{0}^{\infty} u^{\prime}(x) \varphi(x) d x=\int_{\mathbb{R}} g \varphi d x
\end{aligned}
$$

which proves that $g \in L_{\mathrm{loc}}^{p}(\mathbb{R})$ is the first weak derivative of $E u$. Since $u^{\prime} \in W^{1, p}\left(\mathbb{R}_{+}\right)$ we know from the lecture that h is the first weak derivative of g. Hence,

$$
\int_{\mathbb{R}}(E u) \varphi^{\prime \prime} d x=-\int_{\mathbb{R}}(E u)^{\prime} \varphi^{\prime} d x=-\int_{\mathbb{R}} g \varphi^{\prime} d x=\int_{\mathbb{R}} h \varphi d x
$$

proves that $h \in L_{\mathrm{loc}}^{p}(\mathbb{R})$ is the weak second derivative of $E u$ and it follows that $E: W^{2, p}\left(\mathbb{R}_{+}\right) \rightarrow W_{\mathrm{loc}}^{2, p}(\mathbb{R})$ is well-defined. Let $K \subset \mathbb{R}$ be any compact subset. Then, since by Sobolev's embedding $|u(0)| \leq\|u\|_{L^{\infty}\left(\mathbb{R}_{+}\right)} \leq C\|u\|_{W^{1, p}\left(\mathbb{R}_{+}\right)}$, we may estimate

$$
\|E u\|_{L^{p}(K)} \leq 2\left|u(0)\left\|\left.K\right|^{\frac{1}{p}}+2\right\| u\left\|_{L^{p}\left(\mathbb{R}_{+}\right)} \leq\left(2 C|K|^{\frac{1}{p}}+2\right)\right\| u \|_{W^{1, p}\left(\mathbb{R}_{+}\right)} .\right.
$$

With $\left\|(E u)^{\prime}\right\|_{L^{p}(K)}+\left\|(E u)^{\prime \prime}\right\|_{L^{p}(K)} \leq 2\left\|u^{\prime}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}+2\left\|u^{\prime \prime}\right\|_{L^{p}\left(\mathbb{R}_{+}\right)} \leq 2\|u\|_{W^{2, p}\left(\mathbb{R}_{+}\right)}$, we obtain $\|E u\|_{W^{2, p}(K)} \leq \tilde{C}\|u\|_{W^{2, p}\left(\mathbb{R}_{+}\right)}$with constant $\tilde{C}=2 C|K|^{\frac{1}{p}}+4$.

3.6. Extension operator of any order

(a) Let $k \in \mathbb{N}$. For $m \in\{0, \ldots, k-1\}$ and $p(x)=x^{m}$, we obtain the equation

$$
\forall x \in \mathbb{R} \quad \sum_{j=1}^{k} a_{j}\left(\frac{-x}{j}\right)^{m}=x^{m} \quad \Leftrightarrow \quad \sum_{j=1}^{k} \frac{a_{j}}{j^{m}}=(-1)^{m} .
$$

Equivalently,

$$
\left(\begin{array}{ccccc}
1 & 1 & 1 & \ldots & 1 \\
1 & \frac{1}{2} & \frac{1}{3} & \ldots & \frac{1}{k} \\
1 & \left(\frac{1}{2}\right)^{2} & \left(\frac{1}{3}\right)^{2} & \ldots & \left(\frac{1}{k}\right)^{2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \left(\frac{1}{2}\right)^{k-1} & \left(\frac{1}{3}\right)^{k-1} & \ldots & \left(\frac{1}{k}\right)^{k-1}
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{k}
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
\vdots \\
(-1)^{k-1}
\end{array}\right) .
$$

The matrix A on the left hand side is a Vandermonde matrix. In particular,

$$
\operatorname{det} A=\prod_{1 \leq i<j \leq k}\left(\frac{1}{j}-\frac{1}{i}\right) \neq 0
$$

which implies that a unique solution $\left(a_{1}, \ldots, a_{k}\right) \in \mathbb{R}^{k}$ to the linear system exists. By linearity,

$$
\sum_{j=1}^{k} a_{j} p\left(\frac{-x}{j}\right)=p(x) .
$$

holds not only for monomials $p(x)=x^{m}$ with $m \in\{0, \ldots, k-1\}$ but in fact for arbitrary polynomials of degree $k-1$.
(b) Let $k \in \mathbb{N}$ be fixed and a_{1}, \ldots, a_{k} as in part (a). Given $u \in W^{k, p}\left(\mathbb{R}_{+}\right)$, consider ($E u$) as given on the problem set and

$$
g_{\alpha}(x):= \begin{cases}D^{\alpha} u(x) & \text { for } x>0 \\ \sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha} a_{j}\left(D^{\alpha} u\right)\left(\frac{-x}{j}\right) & \text { for } x<0\end{cases}
$$

for integers $0 \leq \alpha \leq k$. Then, $(E u) \in L^{p}(\mathbb{R})$ since $u \in L^{p}\left(\mathbb{R}_{+}\right)$and $g_{\alpha} \in L^{p}(\mathbb{R})$ since $\left(D^{\alpha} u\right) \in L^{p}\left(\mathbb{R}_{+}\right)$.

Figure 2: Extensions $(E u)(x)$ of $u(x)=\mathrm{e}^{-x}$ for $k=2,3,4$.
We prove by induction that g_{α} is the α-th weak derivative of $(E u)$. For $\alpha=0$ we have $g_{0}=E u$ by construction. Suppose $D^{\alpha}(E u)=g_{\alpha}$ for some $\alpha<k$. For $\varphi \in C_{c}^{\infty}(\mathbb{R})$,

$$
\begin{aligned}
& (-1)^{\alpha+1} \int_{\mathbb{R}}(E u) D^{\alpha+1} \varphi d x=-\int_{\mathbb{R}} D^{\alpha}(E u) \varphi^{\prime} d x=-\int_{\mathbb{R}} g_{\alpha} \varphi^{\prime} d x \\
& =-\sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha} a_{j} \int_{-\infty}^{0}\left(D^{\alpha} u\right)\left(-\frac{x}{j}\right) \varphi^{\prime}(x) d x-\int_{0}^{\infty}\left(D^{\alpha} u\right) \varphi^{\prime} d x \\
& =\sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha+1} a_{j} \int_{-\infty}^{0}\left(D^{\alpha+1} u\right)\left(-\frac{x}{j}\right) \varphi(x) d x-\sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha} a_{j}\left(D^{\alpha} u\right)(0) \varphi(0) \\
& \quad+\int_{0}^{\infty}\left(D^{\alpha+1} u\right) \varphi d x+\left(D^{\alpha} u\right)(0) \varphi(0) \\
& =\int_{\mathbb{R}} g_{\alpha+1} \varphi d x+\left(1-\sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha} a_{j}\right)\left(D^{\alpha} u\right)(0) \varphi(0) .
\end{aligned}
$$

Since $\sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha} a_{j}=1$ was proven in part (a) (set $x=1$ and $m=\alpha$), the claim $D^{\alpha+1}(E u)=g_{\alpha+1}$ follows. Hence, $E: W^{k, p}\left(\mathbb{R}_{+}\right) \rightarrow W^{k, p}(\mathbb{R})$ is well-defined. Moreover, for any integer $0 \leq \alpha \leq k$,

$$
\begin{aligned}
\left\|D^{\alpha}(E u)\right\|_{L^{p}(\mathbb{R})} & \leq\left\|D^{\alpha} u\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}+\left\|\sum_{j=1}^{k}\left(-\frac{1}{j}\right)^{\alpha} a_{j}\left(D^{\alpha} u\right)(\dot{\bar{j}})\right\|_{L^{p}\left(\mathbb{R}_{+}\right)} \\
& \leq\left\|D^{\alpha} u\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}+\sum_{j=1}^{k} \frac{\left|a_{j}\right|}{j^{\alpha}} j^{\frac{1}{p}}\left\|D^{\alpha} u\right\|_{L^{p}\left(\mathbb{R}_{+}\right)} \leq C_{k, p}\left\|D^{\alpha} u\right\|_{L^{p}\left(\mathbb{R}_{+}\right)}
\end{aligned}
$$

