5.1. Lipschitz vs. bounded weak derivative

Let $\Omega = (]-1, 1[\times]-1, 1[) \setminus ([0, 1[\times \{0\}) \text{ and let } u \colon \Omega \to \mathbb{R} \text{ be given by}$

$$u(x_1, x_2) := \begin{cases} 0 & \text{if } -1 < x_1 \le 0 \text{ or } x_2 < 0, \\ x_1 & \text{if } x_1 > 0 \text{ and } x_2 > 0. \end{cases}$$

Then, $\Omega \subset \mathbb{R}^2$ is open and u is bounded. For any $\varphi \in C_c^{\infty}(\Omega)$, we have

$$-\int_{\Omega} u \frac{\partial \varphi}{\partial x_1} \, dx = -\int_0^1 \left(\int_0^1 x_1 \frac{\partial \varphi}{\partial x_1} \, dx_1 \right) \, dx_2$$

= $\int_0^1 \left(\left(\int_0^1 \varphi \, dx_1 \right) - x_1 \varphi(x_1, x_2) \Big|_{x_1=0}^{x_1=1} \right) \, dx_2 = \int_0^1 \int_0^1 \varphi \, dx_1 \, dx_2,$
- $\int_{\Omega} u \frac{\partial \varphi}{\partial x_2} \, dx = -\int_0^1 \left(\int_0^1 x_1 \frac{\partial \varphi}{\partial x_2} \, dx_2 \right) \, dx_1 = \int_0^1 \left(0 - x_1 \varphi(x_1, x_2) \Big|_{x_2=0}^{x_2=1} \right) \, dx_1 = 0$

where we used that $(1, x_2), (x_1, 1) \in \partial\Omega$ for any $x_1, x_2 \in]-1, 1[$ and $(x_1, 0) \in \partial\Omega$ for $x_1 > 0$ which implies that φ vanishes at these points. Hence, the weak derivatives $\frac{\partial u}{\partial x_1} = \chi_{]0,1[^2} \in L^{\infty}(\Omega)$ and $\frac{\partial u}{\partial x_2} = 0 \in L^{\infty}(\Omega)$ exist and $u \in W^{1,\infty}(\Omega)$. However, since $\frac{|u(\frac{1}{2}, -\frac{1}{k}) - u(\frac{1}{2}, \frac{1}{k})|}{|(\frac{1}{2}, -\frac{1}{k}) - (\frac{1}{2}, \frac{1}{k})|} = \frac{\frac{1}{2}}{\frac{2}{k}} = \frac{k}{4}$

is well-defined for any k > 1 and unbounded for $k \to \infty$, we conclude that u is not Lipschitz continuous.

5.2. A tent for Rudolf Lipschitz

The function $u: Q \to \mathbb{R}$ is given by $u(x_1, x_2) = 1 - \max\{|x_1|, |x_2|\}$ and it is bounded in Q. Let $x = (x_1, x_2), y = (y_1, y_2) \in Q$ be arbitrary; w.l.o.g. u(y) > u(x). Then

$$u(y) - u(x) = \max\{|x_1|, |x_2|\} - \max\{|y_1|, |y_2|\}$$

$$\leq \begin{cases} |x_1| - |y_1| \le |x_1 - y_1| & \text{if } |x_1| \ge |x_2|, \\ |x_2| - |y_2| \le |x_2 - y_2| & \text{if } |x_1| < |x_2| \\ \le |x - y| \end{cases}$$

which implies that u is Lipschitz continuous. Hence $u \in W^{1,\infty}(Q)$. Since Q is bounded, $u \in W^{1,\infty}(Q) \subset W^{1,p}(Q)$ for any $1 \leq p \leq \infty$.

last update: 26 March 2018

5.3. Capacity and Hausdorff measure

Let $K \subset \mathbb{R}^n$ be compact with Hausdorff measure $\mathscr{H}^{n-\alpha}(K) = 0$ for some $1 \leq \alpha < n$.

(a) Let $1 \le p \le \alpha$. Let $\varepsilon > 0$. By definition, there exists a collection of points $x_i \in \mathbb{R}^n$ and radii $0 < r_i < 1$ such that

$$K \subset \bigcup_{i=1}^{\infty} B_{r_i}(x_i), \qquad \qquad \sum_{i=1}^{\infty} r_i^{n-\alpha} < \varepsilon.$$

Since K is compact, there exists $N \in \mathbb{N}$ such that

$$K \subset \bigcup_{i=1}^{N} B_{r_i}(x_i), \qquad \qquad \sum_{i=1}^{N} r_i^{n-\alpha} < \varepsilon.$$

For every $i \in \{1, \ldots, N\}$ there exists a function $\psi_i \in C_c^{\infty}(\mathbb{R}^n)$ satisfying

$$\psi_i = 0$$
 in $\mathbb{R}^n \setminus B_{3r_i}(x_i)$, $\psi_i = 1$ in $B_{2r_i}(x_i)$, $|\nabla \psi_i| \le \frac{2}{r_i}$.

Let $\phi(x) := \max{\{\psi_1(x), \ldots, \psi_N(x)\}}$. Then, $\phi \in W^{1,p}$ as shown in Problem 5.6 (b). Moreover, there exists a constant *C* depending only on *n* and *p* such that

$$\int_{\mathbb{R}^n} |\nabla \phi|^p \, dx \le \sum_{i=1}^N \int_{B_{3r_i}(x_i)} |\nabla \psi_i|^p \, dx \le \sum_{i=1}^N Cr_i^{n-p} \le \sum_{i=1}^N Cr_i^{n-\alpha} < C\varepsilon,$$

where we used $r_i^{-p} \leq r_i^{-\alpha}$ for $p \leq \alpha$ and $r_i < 1$. Let $r_0 := \min\{r_1, \ldots, r_N\}$ and let $0 \leq \rho \in C_c^{\infty}(B_{r_0}(0))$ with $\int_{\mathbb{R}^n} \rho \, dx = 1$. Then the mollification $\varphi := \rho * \phi \in C_c^{\infty}(\mathbb{R}^n)$ has the property that for any $i \in \{1, \ldots, N\}$ and all $x \in B_{r_i}(x_i)$

$$\varphi(x) = \int_{\mathbb{R}^n} \rho(y)\phi(x-y) \, dy = \int_{B_{r_0}(0)} \rho(y)\phi(x-y) \, dy = \int_{B_{r_0}(0)} \rho(y) \, dy = 1,$$

as $|(x-y)-x_i| \leq |x-x_i|+|y| < r_i+r_0 < 2r_i$ for all $x \in B_{r_i}(x_i)$ and all $y \in B_{r_0}(0)$. Hence, $\varphi = 1$ in $\bigcup_{i=1}^N B_{r_i}(x_i) \supset K$. Furthermore,

$$\|\nabla\varphi\|_{L^p(\mathbb{R}^n)} = \|\rho * \nabla\phi\|_{L^p(\mathbb{R}^n)} \le \|\rho\|_{L^1(\mathbb{R}^n)} \|\nabla\phi\|_{L^p(\mathbb{R}^n)} = \|\nabla\phi\|_{L^p(\mathbb{R}^n)} \le (C\varepsilon)^{\frac{1}{p}}.$$

For every $k \in \mathbb{N}$, let φ_k be the function φ constructed above for the choice $\varepsilon = \frac{1}{k} > 0$. Then $\|\nabla \varphi_k\|_{L^p(\mathbb{R}^n)} \to 0$ as $k \to \infty$. By construction, $\varphi_k(x) \to 0$ for every $x \in \mathbb{R}^n \setminus K$. In particular, $\varphi_k(x) \to 0$ for almost every $x \in \mathbb{R}^n$ because $\mathscr{H}^{n-\alpha}(K) = 0$ implies that K has vanishing Lebesgue measure. Since $\varphi_k = 1$ in a neighbourhood of K, we have shown that K has vanishing $W^{1,p}$ -capacity.

(b) Let $1 \leq p \leq q \leq \infty$ and $\frac{1}{q} + \frac{1}{\alpha} \leq 1$. Let $\Omega \subset \mathbb{R}^n$ be open and bounded and $u \in L^q(\Omega) \cap C^1(\Omega \setminus K)$ with $|\nabla u| \in L^p(\Omega \setminus K)$. Let $1 \leq s \leq \infty$ such that $\frac{1}{q} + \frac{1}{s} = 1$. Then, $s \leq \alpha$ which by (a) implies $\operatorname{cap}_{W^{1,s}}(K) = 0$. By Satz 8.1.1, $u \in W^{1,p}(\Omega)$ as claimed.

5.4. Traceless

Let $\Omega \subset \mathbb{R}^n$ be a bounded, open set with boundary of class C^1 and $1 \leq p < \infty$. Suppose, $T: L^p(\Omega) \to L^p(\partial\Omega)$ is a continuous linear operator satisfying $Tu = u|_{\partial\Omega}$ for all $u \in C^0(\overline{\Omega}) \subset L^p(\Omega)$. Given $k \in \mathbb{N}$, let $u_k: \overline{\Omega} \to \mathbb{R}$ be given by

$$u_k(x) = \begin{cases} 1 - k \operatorname{dist}(x, \partial \Omega), & \text{if } \operatorname{dist}(x, \partial \Omega) \leq \frac{1}{k}, \\ 0 & \text{otherwise.} \end{cases}$$

Then, $u_k \in C^0(\overline{\Omega})$ and $u_k|_{\partial\Omega} \equiv 1$. Moreover, $u_k(x) \to 0$ as $k \to \infty$ for almost every $x \in \Omega$ and $|u_k| \leq 1 \in L^p(\Omega)$ for every $k \in \mathbb{N}$. Since $1 \leq p < \infty$, the dominated convergence theorem implies $||u_k||_{L^p(\Omega)} \to 0$ as $k \to \infty$. But $||Tu_k||_{L^p(\partial\Omega)} = ||1||_{L^p(\partial\Omega)}$ does not converge to zero which contradicts continuity of T.

5.5. Traces of weak derivatives

Let $\Omega := [0, 1[\times]0, 1[\subset \mathbb{R}^2]$. Given $1 \le p \le \infty$, let $u \in W^{1,p}(\Omega)$.

(a) In the case $1 \le p < \infty$ we have $|u|^p \in L^1(\Omega)$ by assumption and Fubini's theorem implies that the map $x_1 \mapsto |u(x_1, x_2)|^p$ is in $L^1(]0, 1[)$ for almost every $x_2 \in]0, 1[$. Hence, $g := u(\cdot, x_2) \in L^p(]0, 1[)$ and analogously, $f := \frac{\partial u}{\partial x_1}(\cdot, x_2) \in L^p(]0, 1[)$ for almost every $x_2 \in]0, 1[$.

In the case $p = \infty$ we know that $u \in W^{1,\infty}(\Omega)$ has a (globally) Lipschitz continuous representative because Ω is convex. In particular, $g = u(\cdot, x_2)$ has a Lipschitz continuous representative for almost every $x_2 \in [0, 1[$. Hence, $g \in W^{1,\infty}([0, 1[)$ for almost every $x_2 \in [0, 1[$.

It remains to prove that f is actually the weak derivative of g for almost all $x_2 \in [0, 1[$. Let $\phi, \psi \in C_c^{\infty}([0, 1[)$ and let $\varphi(x_1, x_2) = \phi(x_1)\psi(x_2)$. Then, since $\varphi \in C_c^{\infty}(\Omega)$,

$$0 = \int_{\Omega} \frac{\partial u}{\partial x_1} \varphi + u \frac{\partial \varphi}{\partial x_1} dx = \int_0^1 \left(\int_0^1 \frac{\partial u}{\partial x_1} \phi + u \phi' dx_1 \right) \psi dx_2.$$

Since $\psi \in C_c^{\infty}([0,1[))$ is arbitrary, Satz 3.4.3 (variational Lemma) applies and yields

$$\forall \phi \in C_c^{\infty}(]0,1[) \quad \exists G_{\phi} \subseteq]0,1[\quad \forall x_2 \in G_{\phi}: \quad 0 = \int_0^1 \frac{\partial u}{\partial x_1} \phi + u\phi' \, dx_1$$

and such that the Lebesgue measure of $]0, 1[\langle G_{\phi} \rangle$ vanishes for any ϕ . Let $\mathcal{P} \subset C_c^{\infty}(]0, 1[)$ be a countable subset, which is dense in the C^1 -Topology and $G = \bigcap_{\phi \in \mathcal{P}} G_{\phi}$. Then, since \mathcal{P} is countable, the Lebesgue measure of $]0, 1[\langle G \rangle$ still vanishes and we obtain

$$\exists G \subseteq]0,1[\quad \forall \phi \in \mathcal{P} \quad \forall x_2 \in G: \quad 0 = \int_0^1 \frac{\partial u}{\partial x_1} \phi + u\phi' \, dx_1. \tag{*}$$

last update: 26 March 2018

 $3/_{5}$

Let $\eta \in C_c^{\infty}(]0, 1[)$ be arbitrary. By density of \mathcal{P} we can choose a sequence of functions $\phi_k \in \mathcal{P}$ such that $\|\phi_k - \eta\|_{C^1} \to 0$ as $k \to \infty$ which suffices to pass to the limit in (*). Hence, for all $x_2 \in G$, i.e. for almost all $x_2 \in]0, 1[$, there holds

$$\forall \eta \in C_c^{\infty}(]0,1[): \quad 0 = \int_0^1 \frac{\partial u}{\partial x_1} \eta + u\eta' \, dx_1 \quad \Rightarrow \quad -\int_0^1 g\eta' \, dx_1 = \int_0^1 f\eta \, dx_1$$

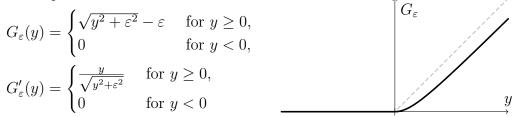
which implies that f is the weak derivative of g for almost all $x_2 \in [0, 1[$ as claimed.

(b) Suppose the weak derivatives $\frac{\partial u}{\partial x_1}$ and $\frac{\partial u}{\partial x_2}$ vanish almost everywhere in Ω . By part (a), $g := u(\cdot, x_2) \in W^{1,p}(]0,1[)$ with weak derivative g' = 0 for almost every $x_2 \in]0,1[$. Hence, g has a constant representative, i. e. $u(\cdot, x_2) = C(x_2)$ for almost all $x_2 \in]0,1[$. Analogously, $u(x_1, \cdot) = \tilde{C}(x_1)$ for almost all $x_1 \in]0,1[$. Since $C(x_2) = \int_0^1 u(x_1, x_2) dx_1$ and $\tilde{C}(x_1) = \int_0^1 u(x_1, x_2) dx_2$ are measurable, by Fubini's theorem we have $C(x_2) = u(x_1, x_2) = \tilde{C}(x_1)$ for almost every point (x_1, x_2) . Hence, for almost every fixed x_1 , we have $C(x_2) = \tilde{C}(x_1)$ for almost every x_2 . So C is constant almost everywhere and thus u has a constant representative.

5.6. Positive and negative part

Let $\Omega \subset \mathbb{R}^n$ be open. Given $1 \leq p < \infty$, let $u \in W^{1,p}(\Omega)$.

(a) In order to prove $u_+ \in W^{1,p}(\Omega)$, we consider the function $G_{\varepsilon} \in C^1(\mathbb{R})$ and its derivative G'_{ε} given by



for some $\varepsilon > 0$. Then, $G_{\varepsilon}(0) = 0$ and $|G'_{\varepsilon}| < 1$. By the chain rule, $G_{\varepsilon} \circ u \in W^{1,p}(\Omega)$ with weak gradient $\nabla(G_{\varepsilon} \circ u) = (G'_{\varepsilon} \circ u) \nabla u \in L^{p}(\Omega)$. Since $|G_{\varepsilon} \circ u| \leq |u| \in L^{p}(\Omega)$ and since $(G_{\varepsilon} \circ u)(x) \to u_{+}(x)$ as $\varepsilon \to 0$ pointwise almost everywhere, Lebesgue's dominated convergence theorem implies that $||u_{+} - (G_{\varepsilon} \circ u)||_{L^{p}(\Omega)} \to 0$ as $\varepsilon \to 0$. Similarly, $|\nabla(G_{\varepsilon} \circ u)| = |G'_{\varepsilon} \circ u| |\nabla u| \leq |\nabla u| \in L^{p}(\Omega)$. If u(x) > 0, then $G'_{\varepsilon}(u(x)) \to 1$ as $\varepsilon \to 0$. Otherwise, $G'_{\varepsilon}(u(x)) = 0$. Therefore, we have pointwise convergence

$$\nabla(G_{\varepsilon} \circ u)(x) \xrightarrow{\varepsilon \to 0} g(x) := \begin{cases} \nabla u(x) & \text{ for almost all } x \text{ with } u(x) > 0, \\ 0 & \text{ for almost all } x \text{ with } u(x) \le 0 \end{cases}$$

and after application of the dominated convergence theorem, $\|g - \nabla(G_{\varepsilon} \circ u)\|_{L^{p}(\Omega)} \to 0$ as $\varepsilon \to 0$. Since the space $W^{1,p}(\Omega)$ is complete, and since $(G_{\varepsilon} \circ u)$ converges (for a sequence $\varepsilon \to 0$) in $W^{1,p}(\Omega)$, we conclude $u_{+} \in W^{1,p}(\Omega)$ with weak gradient $\nabla u_{+} = g$. The proof of $u_{-} \in W^{1,p}(\Omega)$ is identical after replacing $G_{\varepsilon}(y)$ with $G_{\varepsilon}(-y)$. (b) Let $u, v \in W^{1,p}(\Omega)$. Then, $(u-v)_+ \in W^{1,p}(\Omega)$ by part (a). Since

$$w(x) := \max\{u(x), v(x)\} = \max\{u(x) - v(x), 0\} + v(x),$$

we have $w = (u - v)_{+} + v \in W^{1,p}(\Omega)$.

(c) Any $u \in W^{1,p}(\Omega)$ satisfies $u = u_+ - u_-$ with weak gradient $\nabla u = \nabla u_+ - \nabla u_-$. Part (a) implies in particular, that $\nabla u_+(x) = 0$ and $\nabla u_+(x) = 0$ for almost all $x \in \Omega$ with u(x) = 0. Consequently, $\nabla u(x) = 0$ for almost all $x \in \Omega$ with u(x) = 0.

(d) Given $\lambda \in \mathbb{R}$ we define $u_{\lambda}(x) = u(x) - \lambda$. However, unless Ω is bounded, we only have $u_{\lambda} \in W^{1,p}_{\text{loc}}(\Omega)$. Let $r \geq 1$. Then, $u_{\lambda} \in W^{1,p}(\Omega \cap B_r)$. By part (c), $\nabla u(x) = \nabla u_{\lambda}(x) = 0$ for almost all $x \in \Omega \cap B_r$ with $u_{\lambda}(x) = 0$. Since a countable union of sets of measure zero still has measure zero and since $\Omega = \bigcup_{r \in \mathbb{N}} (\Omega \cap B_r)$ we conclude that $\nabla u(x) = 0$ for almost all $x \in \Omega$ with $u(x) = \lambda$.