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6.1. Inextendible
Let Ω = ]−1, 1[2 \ ([0, 1[× {0}) and let u : Ω→ R be given by

u(x1, x2) :=

x1 if x1 > 0 and x2 > 0,
0 otherwise.

As shown in Problem 5.1, u ∈ W 1,∞(Ω). Since Ω is bounded, u ∈ W 1,p(Ω) for any
1 ≤ p ≤ ∞. Suppose, there exists an extension operator E : W 1,p(Ω) → W 1,p(R2)
such that (Eu)|Ω = u almost everywhere in Ω. Let Q := ]−1, 1[2 and v := (Eu)|Q.
Then Eu ∈ W 1,p(Rn) implies v ∈ W 1,p(Q). Consequently, as shown in Problem 5.5,
(x2 7→ v(x1, x2)) ∈ W 1,p(]−1, 1[) for almost every x1 ∈ ]−1, 1[. Moreover, since
[0, 1[× {0} has measure zero, v(x1, x2) = u(x1, x2) for almost every (x1, x2) ∈ Q.

Hence, there exists some fixed x1 ∈ ]1
2 , 1[ such that (g : x2 7→ v(x1, x2)) ∈ W 1,p(]−1, 1[)

and such that g(x2) = u(x1, x2) for almost every x2 ∈ ]−1, 1[. By Sobolev’s embedding
in dimension one, g and hence x2 7→ u(x1, x2) has a representative in C0(]−1, 1[).
However, since we chose x1 >

1
2 , this contradicts discontinuity of

x2 7→ u(x1, x2) =

x1 for x2 > 0,
0 for x2 < 0.

6.2. Zero trace and H1
0

(a) Step 1. The problem can be reduced to the following model case. Let

Q = {x = (x′, xn) ∈ Rn−1 × R : |x′| < 1 and |xn| < 1},
Q+ = {x = (x′, xn) ∈ Q : xn > 0},
Q0 = {x = (x′, xn) ∈ Q : xn = 0}.

Let u ∈ H1(Q) satisfy u = 0 in Q \ Q+. Then we claim αu ∈ H1
0 (Q+) for any

α ∈ C1
c (Q). Note that since α is compactly supported in Q, (αu) extends to a

function in H1(Rn) which allows mollification. Let 0 ≤ ρ ∈ C∞c (B1(0)) satisfy

supp(ρ) ⊂ {(x′, xn) ∈ B1(0) : 1
2 < xn < 1},

∫
B1(0)

ρ dx = 1

and let ρm(x) := mnρ(mx) for m ∈ N. Then, ‖ρm ∗ (αu)− (αu)‖H1 → 0 as m→∞.
Moreover, if x = (x′, xn) ∈ Q+ with xn <

1
4m

then (αu)(x− y) = 0 whenever yn >
1

2m

because u vanishes outside Q+. Hence, by choice of supp(ρm),(
ρm ∗ (αu)

)
(x) =

∫
Rn
ρm(y) (αu)(x− y) dy = 0 if xn <

1
4m

which implies ρm ∗ (αu) ∈ C∞c (Q+) and therefore αu ∈ H1
0 (Q+).

last update: 12 April 2018 1/5



ETH Zürich
Spring 2018

Functional Analysis II
Solution to Problem Set 6

d-math
Prof. A. Carlotto

Step 2. Let Ω ⊂ Rn be open and bounded with boundary of class C1. Since ∂Ω
is compact and regular, there exist finitely many open sets U1, . . . , UN ⊂ Rn and
diffeomorphisms hk : Q→ Uk such that for every k ∈ {1, . . . , N}

hk(Q+) = Uk ∩ Ω, hk(Q0) = Uk ∩ ∂Ω, ∂Ω ⊂
N⋃

k=1
Uk.

Furthermore, there exists an open set U0 ⊂ Rn such that U0 ⊂ Ω and Ω ⊂ ⋃N
k=0 Uk.

Let (ϕk)k∈{0,...,N} be a corresponding partition of unity, i. e. a collection of smooth
functions such that for every k ∈ {0, . . . , N}

0 ≤ ϕk ≤ 1, supp(ϕk) ⊂ Uk,
N∑

k=0
ϕk|Ω = 1.

Let v ∈ H1(Rn) satisfy v(x) = 0 for almost every x ∈ Rn \ Ω. By Satz 8.3.3,
v ◦ hk ∈ H1(Q) for k ∈ {1, . . . , N} and it satisfies v ◦ hk = 0 in Q \Q+. By Step 1,
choosing α = ϕk ◦ hk, we have ϕkv ◦ hk ∈ H1

0 (Q+) Let w(m)
k ∈ C∞c (Q+) be such that

‖w(m)
k − ϕkv ◦ hk‖H1(Q+) → 0 as m → ∞. Moreover, since supp(ϕ0) ⊂ U0 ⊂ Ω, we

can approximate ϕ0v by v(m)
0 ∈ C∞c (Ω) directly using mollification. Then, we have

w(m) := v
(m)
0 +

N∑
k=1

(w(m)
k ◦ h−1

k ) ∈ C∞c (Ω)

and since v = ∑N
k=0 ϕkv in Ω by partition of unity,

‖w(m) − v‖H1(Ω) ≤ ‖v
(m)
0 − ϕ0v‖H1(Ω) +

N∑
k=1

∥∥∥w(m)
k ◦ h−1

k − ϕkv
∥∥∥

H1(Ω)

≤ ‖v(m)
0 − ϕ0v‖H1(Ω) +

N∑
k=1

C
∥∥∥w(m)

k − ϕkv ◦ hk

∥∥∥
H1(Q+)

m→∞−−−→ 0

which concludes the proof of v|Ω ∈ H1
0 (Ω).

(b) Let Ω = ]−1, 1[2 \ ([0, 1[× {0}) and let u ∈ C∞(Rn) satisfy u(x) = 1 if |x| < 1
2

and u(x) = 0 if |x| > 3
4 . Then u ∈ H

1(Ω) and u(x) = 0 for almost every x ∈ Rn \ Ω.
Towards a contradiction, suppose there exists a sequence of functions um ∈ C∞c (Ω)
such that ‖um − u‖H1(Ω) → 0 as m→∞. Let Q := ]0, 1[2 and Q0 = ]0, 1[× {0}. By
Lemma 8.4.2 the trace operator T : H1(Q)→ L2(Q0) mapping T : u 7→ u|Q0 is linear
and continuous. In particular,

‖Tum − Tu‖L2(Q0) ≤ C‖um − u‖H1(Q)
m→∞−−−→ 0.

Since Q0 ⊂ ∂Ω implies Tum = um|Q0 = 0, we obtain u|Q0 = 0 in L2(Q0). This
however contradicts the fact that u(x) = 1 for |x| < 1

2 .

Consequently, the assumption that Ω is of class C1 cannot be dropped in part (a).
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6.3. Ladyženskaja’s inequality
Sobolev’s embedding (in the case n = 2 = p) states that the space H1(R2) embeds
into Lq(R2) for any 2 ≤ q <∞, in particular for q = 4. The Sobolev inequality states

∃C <∞ ∀u ∈ H1(R2) : ‖u‖L4(R2) ≤ C‖u‖H1(Rn).

In this special case, we claim that the following inequality also holds.
∀u ∈ H1(R2) : ‖u‖4

L2(R2) ≤ 4‖u‖2
L2(R2)‖∇u‖

2
L2(R2).

Since C∞c (R2) is dense in H1(R2), it suffices to prove the inequality for u ∈ C∞c (R2).
Let u ∈ C∞c (R2) and (x1, x2) ∈ R2. Then,

|u2(x1, x2)| =
∣∣∣∣∫ x1

−∞

∂u2

∂x1
(s, x2) ds

∣∣∣∣ =
∣∣∣∣∫ x1

−∞
2u(s, x2) ∂u

∂x1
(s, x2) ds

∣∣∣∣
≤ 2

∫
R
|u(s, x2)||∇u(s, x2)| ds.

Analogously,
|u2(x1, x2)| ≤ 2

∫
R
|u(x1, t)||∇u(x1, t)| dt.

Hence, by Fubini’s theorem and the Cauchy–Schwarz inequality

‖u‖4
L4(R2) =

∫
R

∫
R
|u(x1, x2)|4 dx1 dx2 =

∫
R

∫
R
|u2(x1, x2)||u2(x1, x2)| dx1 dx2

≤ 2
∫
R

(∫
R
|u(s, x2)||∇u(s, x2)|ds

) ∫
R
|u2(x1, x2)| dx1 dx2

≤ 4
∫
R

(∫
R
|u(s, x2)||∇u(s, x2)|ds

)
dx2

∫
R

(∫
R
|u(x1, t)||∇u(x1, t)|dt

)
dx1

= 4
(∫

R2
|u||∇u| dx

)2
≤ 4‖u‖2

L2(R2)‖∇u‖
2
L2(R2).

6.4. Non-compactness
Let n ∈ N and 1 ≤ p ≤ ∞. Let u ∈ C∞c (Rn) satisfy ‖u‖W 1,p(Rn) = 1. For any k ∈ N,
let uk(x) = u(x+ ke1), where e1 = (1, 0, . . . , 0) ∈ Rn. Then ‖uk‖W 1,p(Rn) = 1 for every
k ∈ N. Towards a contradiction, suppose that the embedding W 1,p(Rn) ↪→ Lp(Rn) is
compact. Then the sequence (uk)k∈N allows a convergent subsequence in Lp(Rn), i. e.
there exists an unbounded set Λ1 ⊂ N and some v ∈ Lp(Rn) such that ‖uk−v‖Lp → 0
as Λ1 3 k →∞. Hence, there exists another subsequence denoted by Λ2 ⊂ Λ1 such
that uk(x) → v(x) converges pointwise as Λ2 3 k → ∞ for almost every x ∈ Rn.
However, since the support of u is a bounded subset of Rn, we have pointwise
convergence uk(x) → 0 as k → ∞ for every x ∈ Rn. Therefore, v = 0 almost
everywhere. A contradiction arises from

0 < ‖u‖Lp(Rn) = ‖uk‖Lp(Rn)
Λ13k→∞−−−−−→ ‖v‖Lp(Rn) = 0.
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6.5. Compactness

(a) Let n ∈ N and 1 < p ≤ n. Let Ω ⊂ Rn be of finite Lebesgue measure. Let
(uk)k∈N be a sequence in W 1,p

0 (Ω) satisfying ‖uk‖W 1,p(Ω) ≤ C1 for every k ∈ N. In
particular, uk ∈ W 1,p

0 (Ω) can be extended by zero to a function uk ∈ W 1,p(Rn). Thus,
‖uk‖W 1,p(Rn) ≤ C1 for every k ∈ N. Since 1 < p <∞, the space W 1,p(Rn) is reflexive
and there exists a subsequence (uk)k∈Λ1⊂N converging weakly to some v ∈ W 1,p(Rn).
For any R > 0, the embeddingW 1,p(BR) ↪→ Lp(BR) is compact. Hence, a subsequence
(uk|BR

)k∈ΛR⊂Λ1 converges in Lp(BR). Restricting to nested subsequences for each
R ∈ N and choosing a diagonal sequence, we find Λ2 ⊂ Λ1 (independently of R)
such that (uk|BR

)k∈Λ2 converges in Lp(BR) for any R ∈ N. Moreover, the limit must
coincide with v|BR

by uniqueness of weak limits: both, weak convergence in W 1,p and
norm-convergence in Lp imply weak convergence in Lp.

We claim that ‖uk − v‖Lp(BR) → 0 as Λ2 3 k →∞ implies that ‖uk − v‖Lp(Ω) → 0.

If p < n, then Sobolev’s embedding W 1,p(Rn) ↪→ Lp∗(Rn) with 1
p∗ = 1

p
− 1

n
implies∫

Rn\BR

|uk|p dx =
∫

Ω\BR

|uk|p dx

≤
(∫

Ω\BR

|uk|p
∗
dx
) p

p∗
(∫

Ω\BR

1
n
p dx

) p
n

(Hölder’s inequality)

≤
(∫

Rn
|uk|p

∗
dx
) p

p∗

|Ω \BR|
p
n

≤ Cn,p ‖∇uk‖p
Lp(Rn)|Ω \BR|

p
n (Sobolev’s inequality, p < n)

≤ Cn,p C1|Ω \BR|
p
n .

If p = n, then W 1,n(Rn) ↪→ Lq(Rn) for any n ≤ q <∞, in particular for q = 2n. Thus,∫
Rn\BR

|uk|n dx =
∫

Ω\BR

|uk|n dx

≤
(∫

Ω\BR

|uk|2n dx
) 1

2
(∫

Ω\BR

12 dx
) 1

2
(Hölder’s inequality)

≤
(∫

Rn
|uk|2n dx

) 1
2
|Ω \BR|

1
2

≤ Cn,p ‖uk‖n
W 1,n(Rn)|Ω \BR|

1
2 (Sobolev’s inequality, p = n)

≤ Cn,p C1|Ω \BR|
1
2 .

The same estimates also hold for v ∈ W 1,p(Rn) in place of uk. Let ε > 0 be arbitrary.
Since |Ω| <∞, the estimates above imply that there exists some Rε ∈ N such that

∀k ∈ N : ‖uk‖p
Lp(Rn\BRε ) < ε, ‖v‖p

Lp(Rn\BRε ) < ε.
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Moreover, as shown above, there exists Nε ∈ N such that ‖uk − v‖p
Lp(BRε ) < ε for

every Λ2 3 k ≥ Nε. The claim follows from

‖uk − v‖p
Lp(Ω) ≤ ‖uk − v‖p

Lp(Rn) = ‖uk − v‖p
Lp(Rn\BRε ) + ‖uk − v‖p

Lp(BRε )

≤
(
‖uk‖Lp(Rn\BRε ) + ‖v‖Lp(Rn\BRε )

)p
+ ‖uk − v‖p

Lp(BRε )

< (2p + 1)ε.

Hence, the embedding W 1,p
0 (Ω) ↪→ Lp(Ω) is indeed compact.

(b) The embedding W 1,p(Ω) ↪→ Lp(Ω) is not always compact if Ω ⊂ Rn is of finite
measure but unbounded. An example for n ≥ 2 is the domain Ω ⊂ Rn given by

Ω :=
∞⋃

m=2
B 1

m
(me1), |Ω| = |B1|

∞∑
m=2

m−n <∞,

where e1 = (1, 0, . . . , 0) ∈ Rn. Let uk = k
n
pχB 1

k
(ke1). This function is constant on the

k-th connected component of Ω and zero on the rest of Ω. Hence, uk ∈ W 1,p(Ω) with

‖uk‖p
W 1,p(Ω) = ‖uk‖p

Lp(Ω) = |B 1
k
|kn = |B1| ∀k ≥ 2.

Suppose, there exists a subsequence (uk)k∈Λ1⊂N converging in Lp(Ω) to some v ∈ Lp(Ω).
Then there exists a subsequence (uk)k∈Λ2⊂Λ1 such that uk(x) → v(x) pointwise as
Λ2 3 k →∞ for almost every x ∈ Ω. By construction however, uk(x)→ 0 as k →∞
for every x ∈ Ω. Hence, v = 0 almost everywhere. A contradiction arises from

0 < ‖uk‖Lp(Ω)
Λ13k→∞−−−−−→ ‖v‖Lp(Ω) = 0.
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