6.1. Inextendible

Let $\Omega = [-1, 1]^2 \setminus ([0, 1] \times \{0\})$ and let $u: \Omega \to \mathbb{R}$ be given by

$$u(x_1, x_2) := \begin{cases} x_1 & \text{if } x_1 > 0 \text{ and } x_2 > 0, \\ 0 & \text{otherwise.} \end{cases}$$

As shown in Problem 5.1, $u \in W^{1,\infty}(\Omega)$. Since Ω is bounded, $u \in W^{1,p}(\Omega)$ for any $1 \leq p \leq \infty$. Suppose, there exists an extension operator $E: W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^2)$ such that $(Eu)|_{\Omega} = u$ almost everywhere in Ω . Let $Q := [-1, 1[^2 \text{ and } v := (Eu)|_Q$. Then $Eu \in W^{1,p}(\mathbb{R}^n)$ implies $v \in W^{1,p}(Q)$. Consequently, as shown in Problem 5.5, $(x_2 \mapsto v(x_1, x_2)) \in W^{1,p}(]-1, 1[)$ for almost every $x_1 \in [-1, 1[$. Moreover, since $[0, 1[\times \{0\} \text{ has measure zero, } v(x_1, x_2) = u(x_1, x_2) \text{ for almost every } (x_1, x_2) \in Q$.

Hence, there exists some fixed $x_1 \in]\frac{1}{2}, 1[$ such that $(g: x_2 \mapsto v(x_1, x_2)) \in W^{1,p}(]-1, 1[)$ and such that $g(x_2) = u(x_1, x_2)$ for almost every $x_2 \in]-1, 1[$. By Sobolev's embedding in dimension one, g and hence $x_2 \mapsto u(x_1, x_2)$ has a representative in $C^0(]-1, 1[)$. However, since we chose $x_1 > \frac{1}{2}$, this contradicts discontinuity of

$$x_2 \mapsto u(x_1, x_2) = \begin{cases} x_1 & \text{for } x_2 > 0, \\ 0 & \text{for } x_2 < 0. \end{cases}$$

6.2. Zero trace and H_0^1

(a) Step 1. The problem can be reduced to the following model case. Let

$$Q = \{x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R} : |x'| < 1 \text{ and } |x_n| < 1\},\$$
$$Q_+ = \{x = (x', x_n) \in Q : x_n > 0\},\$$
$$Q_0 = \{x = (x', x_n) \in Q : x_n = 0\}.$$

Let $u \in H^1(Q)$ satisfy u = 0 in $Q \setminus Q_+$. Then we claim $\alpha u \in H^1_0(Q_+)$ for any $\alpha \in C^1_c(Q)$. Note that since α is compactly supported in Q, (αu) extends to a function in $H^1(\mathbb{R}^n)$ which allows mollification. Let $0 \leq \rho \in C^\infty_c(B_1(0))$ satisfy

$$\operatorname{supp}(\rho) \subset \{ (x', x_n) \in B_1(0) : \frac{1}{2} < x_n < 1 \}, \qquad \int_{B_1(0)} \rho \, dx = 1$$

and let $\rho_m(x) := m^n \rho(mx)$ for $m \in \mathbb{N}$. Then, $\|\rho_m * (\alpha u) - (\alpha u)\|_{H^1} \to 0$ as $m \to \infty$. Moreover, if $x = (x', x_n) \in Q_+$ with $x_n < \frac{1}{4m}$ then $(\alpha u)(x - y) = 0$ whenever $y_n > \frac{1}{2m}$ because u vanishes outside Q_+ . Hence, by choice of $\operatorname{supp}(\rho_m)$,

$$\left(\rho_m * (\alpha u)\right)(x) = \int_{\mathbb{R}^n} \rho_m(y) \ (\alpha u)(x-y) \, dy = 0 \quad \text{if } x_n < \frac{1}{4m}$$

which implies $\rho_m * (\alpha u) \in C_c^{\infty}(Q_+)$ and therefore $\alpha u \in H_0^1(Q_+)$.

last update: 12 April 2018

Step 2. Let $\Omega \subset \mathbb{R}^n$ be open and bounded with boundary of class C^1 . Since $\partial \Omega$ is compact and regular, there exist finitely many open sets $U_1, \ldots, U_N \subset \mathbb{R}^n$ and diffeomorphisms $h_k \colon Q \to U_k$ such that for every $k \in \{1, \ldots, N\}$

$$h_k(Q_+) = U_k \cap \Omega,$$
 $h_k(Q_0) = U_k \cap \partial\Omega,$ $\partial\Omega \subset \bigcup_{k=1}^N U_k.$

Furthermore, there exists an open set $U_0 \subset \mathbb{R}^n$ such that $\overline{U_0} \subset \Omega$ and $\Omega \subset \bigcup_{k=0}^N U_k$. Let $(\varphi_k)_{k \in \{0,\ldots,N\}}$ be a corresponding partition of unity, i.e. a collection of smooth functions such that for every $k \in \{0,\ldots,N\}$

$$0 \le \varphi_k \le 1,$$
 $\operatorname{supp}(\varphi_k) \subset U_k,$ $\sum_{k=0}^N \varphi_k|_{\Omega} = 1.$

Let $v \in H^1(\mathbb{R}^n)$ satisfy v(x) = 0 for almost every $x \in \mathbb{R}^n \setminus \Omega$. By Satz 8.3.3, $v \circ h_k \in H^1(Q)$ for $k \in \{1, \ldots, N\}$ and it satisfies $v \circ h_k = 0$ in $Q \setminus Q_+$. By Step 1, choosing $\alpha = \varphi_k \circ h_k$, we have $\varphi_k v \circ h_k \in H^1_0(Q_+)$ Let $w_k^{(m)} \in C_c^{\infty}(Q_+)$ be such that $\|w_k^{(m)} - \varphi_k v \circ h_k\|_{H^1(Q_+)} \to 0$ as $m \to \infty$. Moreover, since $\operatorname{supp}(\varphi_0) \subset U_0 \subset \Omega$, we can approximate $\varphi_0 v$ by $v_0^{(m)} \in C_c^{\infty}(\Omega)$ directly using mollification. Then, we have

$$w^{(m)} := v_0^{(m)} + \sum_{k=1}^N (w_k^{(m)} \circ h_k^{-1}) \in C_c^{\infty}(\Omega)$$

and since $v = \sum_{k=0}^{N} \varphi_k v$ in Ω by partition of unity,

$$\begin{split} \|w^{(m)} - v\|_{H^{1}(\Omega)} &\leq \|v_{0}^{(m)} - \varphi_{0}v\|_{H^{1}(\Omega)} + \sum_{k=1}^{N} \left\|w_{k}^{(m)} \circ h_{k}^{-1} - \varphi_{k}v\right\|_{H^{1}(\Omega)} \\ &\leq \|v_{0}^{(m)} - \varphi_{0}v\|_{H^{1}(\Omega)} + \sum_{k=1}^{N} C \left\|w_{k}^{(m)} - \varphi_{k}v \circ h_{k}\right\|_{H^{1}(Q_{+})} \xrightarrow{m \to \infty} 0 \end{split}$$

which concludes the proof of $v|_{\Omega} \in H^1_0(\Omega)$.

(b) Let $\Omega = [-1, 1[^2 \setminus ([0, 1[\times \{0\}) \text{ and let } u \in C^{\infty}(\mathbb{R}^n) \text{ satisfy } u(x) = 1 \text{ if } |x| < \frac{1}{2}$ and u(x) = 0 if $|x| > \frac{3}{4}$. Then $u \in H^1(\Omega)$ and u(x) = 0 for almost every $x \in \mathbb{R}^n \setminus \Omega$. Towards a contradiction, suppose there exists a sequence of functions $u_m \in C_c^{\infty}(\Omega)$ such that $||u_m - u||_{H^1(\Omega)} \to 0$ as $m \to \infty$. Let $Q := [0, 1[^2 \text{ and } Q_0 =]0, 1[\times \{0\}.$ By Lemma 8.4.2 the trace operator $T: H^1(Q) \to L^2(Q_0)$ mapping $T: u \mapsto u|_{Q_0}$ is linear and continuous. In particular,

$$||Tu_m - Tu||_{L^2(Q_0)} \le C ||u_m - u||_{H^1(Q)} \xrightarrow{m \to \infty} 0.$$

Since $Q_0 \subset \partial \Omega$ implies $Tu_m = u_m|_{Q_0} = 0$, we obtain $u|_{Q_0} = 0$ in $L^2(Q_0)$. This however contradicts the fact that u(x) = 1 for $|x| < \frac{1}{2}$.

Consequently, the assumption that Ω is of class C^1 cannot be dropped in part (a).

6.3. Ladyženskaja's inequality

Sobolev's embedding (in the case n = 2 = p) states that the space $H^1(\mathbb{R}^2)$ embeds into $L^q(\mathbb{R}^2)$ for any $2 \leq q < \infty$, in particular for q = 4. The Sobolev inequality states

$$\exists C < \infty \quad \forall u \in H^1(\mathbb{R}^2) : \quad \|u\|_{L^4(\mathbb{R}^2)} \le C \|u\|_{H^1(\mathbb{R}^n)}.$$

In this special case, we claim that the following inequality also holds.

$$\forall u \in H^1(\mathbb{R}^2) : \quad \|u\|_{L^2(\mathbb{R}^2)}^4 \le 4\|u\|_{L^2(\mathbb{R}^2)}^2 \|\nabla u\|_{L^2(\mathbb{R}^2)}^2.$$

Since $C_c^{\infty}(\mathbb{R}^2)$ is dense in $H^1(\mathbb{R}^2)$, it suffices to prove the inequality for $u \in C_c^{\infty}(\mathbb{R}^2)$. Let $u \in C_c^{\infty}(\mathbb{R}^2)$ and $(x_1, x_2) \in \mathbb{R}^2$. Then,

$$\begin{aligned} |u^2(x_1, x_2)| &= \left| \int_{-\infty}^{x_1} \frac{\partial u^2}{\partial x_1}(s, x_2) \, ds \right| = \left| \int_{-\infty}^{x_1} 2u(s, x_2) \frac{\partial u}{\partial x_1}(s, x_2) \, ds \right| \\ &\leq 2 \int_{\mathbb{R}} |u(s, x_2)| |\nabla u(s, x_2)| \, ds. \end{aligned}$$

Analogously,

 $|u^{2}(x_{1}, x_{2})| \leq 2 \int_{\mathbb{R}} |u(x_{1}, t)| |\nabla u(x_{1}, t)| dt.$

Hence, by Fubini's theorem and the Cauchy–Schwarz inequality

$$\begin{aligned} \|u\|_{L^{4}(\mathbb{R}^{2})}^{4} &= \int_{\mathbb{R}} \int_{\mathbb{R}} |u(x_{1}, x_{2})|^{4} dx_{1} dx_{2} = \int_{\mathbb{R}} \int_{\mathbb{R}} |u^{2}(x_{1}, x_{2})| |u^{2}(x_{1}, x_{2})| dx_{1} dx_{2} \\ &\leq 2 \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |u(s, x_{2})| |\nabla u(s, x_{2})| ds \right) \int_{\mathbb{R}} |u^{2}(x_{1}, x_{2})| dx_{1} dx_{2} \\ &\leq 4 \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |u(s, x_{2})| |\nabla u(s, x_{2})| ds \right) dx_{2} \int_{\mathbb{R}} \left(\int_{\mathbb{R}} |u(x_{1}, t)| |\nabla u(x_{1}, t)| dt \right) dx_{1} \\ &= 4 \left(\int_{\mathbb{R}^{2}} |u| |\nabla u| dx \right)^{2} \leq 4 \|u\|_{L^{2}(\mathbb{R}^{2})}^{2} \|\nabla u\|_{L^{2}(\mathbb{R}^{2})}^{2}.\end{aligned}$$

6.4. Non-compactness

Let $n \in \mathbb{N}$ and $1 \leq p \leq \infty$. Let $u \in C_c^{\infty}(\mathbb{R}^n)$ satisfy $||u||_{W^{1,p}(\mathbb{R}^n)} = 1$. For any $k \in \mathbb{N}$, let $u_k(x) = u(x + ke_1)$, where $e_1 = (1, 0, \dots, 0) \in \mathbb{R}^n$. Then $||u_k||_{W^{1,p}(\mathbb{R}^n)} = 1$ for every $k \in \mathbb{N}$. Towards a contradiction, suppose that the embedding $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^p(\mathbb{R}^n)$ is compact. Then the sequence $(u_k)_{k \in \mathbb{N}}$ allows a convergent subsequence in $L^p(\mathbb{R}^n)$, i.e. there exists an unbounded set $\Lambda_1 \subset \mathbb{N}$ and some $v \in L^p(\mathbb{R}^n)$ such that $||u_k - v||_{L^p} \to 0$ as $\Lambda_1 \ni k \to \infty$. Hence, there exists another subsequence denoted by $\Lambda_2 \subset \Lambda_1$ such that $u_k(x) \to v(x)$ converges pointwise as $\Lambda_2 \ni k \to \infty$ for almost every $x \in \mathbb{R}^n$. However, since the support of u is a bounded subset of \mathbb{R}^n , we have pointwise convergence $u_k(x) \to 0$ as $k \to \infty$ for every $x \in \mathbb{R}^n$. Therefore, v = 0 almost everywhere. A contradiction arises from

$$0 < \|u\|_{L^p(\mathbb{R}^n)} = \|u_k\|_{L^p(\mathbb{R}^n)} \xrightarrow{\Lambda_1 \ni k \to \infty} \|v\|_{L^p(\mathbb{R}^n)} = 0.$$

last update: 12 April 2018

6.5. Compactness

(a) Let $n \in \mathbb{N}$ and $1 . Let <math>\Omega \subset \mathbb{R}^n$ be of finite Lebesgue measure. Let $(u_k)_{k\in\mathbb{N}}$ be a sequence in $W_0^{1,p}(\Omega)$ satisfying $||u_k||_{W^{1,p}(\Omega)} \leq C_1$ for every $k \in \mathbb{N}$. In particular, $u_k \in W_0^{1,p}(\Omega)$ can be extended by zero to a function $\overline{u}_k \in W^{1,p}(\mathbb{R}^n)$. Thus, $||\overline{u}_k||_{W^{1,p}(\mathbb{R}^n)} \leq C_1$ for every $k \in \mathbb{N}$. Since $1 , the space <math>W^{1,p}(\mathbb{R}^n)$ is reflexive and there exists a subsequence $(\overline{u}_k)_{k\in\Lambda_1\subset\mathbb{N}}$ converging weakly to some $v \in W^{1,p}(\mathbb{R}^n)$. For any R > 0, the embedding $W^{1,p}(B_R) \hookrightarrow L^p(B_R)$ is compact. Hence, a subsequence $(\overline{u}_k|_{B_R})_{k\in\Lambda_R\subset\Lambda_1}$ converges in $L^p(B_R)$. Restricting to nested subsequences for each $R \in \mathbb{N}$ and choosing a diagonal sequence, we find $\Lambda_2 \subset \Lambda_1$ (independently of R) such that $(\overline{u}_k|_{B_R})_{k\in\Lambda_2}$ converges in $L^p(B_R)$ for any $R \in \mathbb{N}$. Moreover, the limit must coincide with $v|_{B_R}$ by uniqueness of weak limits: both, weak convergence in $W^{1,p}$ and norm-convergence in L^p imply weak convergence in L^p .

We claim that $\|\overline{u}_k - v\|_{L^p(B_R)} \to 0$ as $\Lambda_2 \ni k \to \infty$ implies that $\|u_k - v\|_{L^p(\Omega)} \to 0$. If p < n, then Sobolev's embedding $W^{1,p}(\mathbb{R}^n) \hookrightarrow L^{p^*}(\mathbb{R}^n)$ with $\frac{1}{p^*} = \frac{1}{p} - \frac{1}{n}$ implies

$$\begin{split} \int_{\mathbb{R}^n \setminus B_R} |\overline{u}_k|^p \, dx &= \int_{\Omega \setminus B_R} |u_k|^p \, dx \\ &\leq \left(\int_{\Omega \setminus B_R} |\overline{u}_k|^{p^*} \, dx \right)^{\frac{p}{p^*}} \left(\int_{\Omega \setminus B_R} 1^{\frac{n}{p}} \, dx \right)^{\frac{p}{n}} \quad (\text{H\"{o}lder's inequality}) \\ &\leq \left(\int_{\mathbb{R}^n} |\overline{u}_k|^{p^*} \, dx \right)^{\frac{p}{p^*}} |\Omega \setminus B_R|^{\frac{p}{n}} \\ &\leq C_{n,p} \, \|\nabla \overline{u}_k\|_{L^p(\mathbb{R}^n)}^p |\Omega \setminus B_R|^{\frac{p}{n}} \quad (\text{Sobolev's inequality}, \, p < n) \\ &\leq C_{n,p} \, C_1 |\Omega \setminus B_R|^{\frac{p}{n}}. \end{split}$$

If p = n, then $W^{1,n}(\mathbb{R}^n) \hookrightarrow L^q(\mathbb{R}^n)$ for any $n \leq q < \infty$, in particular for q = 2n. Thus,

$$\begin{split} \int_{\mathbb{R}^n \setminus B_R} |\overline{u}_k|^n \, dx &= \int_{\Omega \setminus B_R} |u_k|^n \, dx \\ &\leq \left(\int_{\Omega \setminus B_R} |\overline{u}_k|^{2n} \, dx \right)^{\frac{1}{2}} \left(\int_{\Omega \setminus B_R} 1^2 \, dx \right)^{\frac{1}{2}} \qquad \text{(Hölder's inequality)} \\ &\leq \left(\int_{\mathbb{R}^n} |\overline{u}_k|^{2n} \, dx \right)^{\frac{1}{2}} |\Omega \setminus B_R|^{\frac{1}{2}} \\ &\leq C_{n,p} \, \|\overline{u}_k\|_{W^{1,n}(\mathbb{R}^n)}^n |\Omega \setminus B_R|^{\frac{1}{2}} \qquad \text{(Sobolev's inequality, } p = n) \\ &\leq C_{n,p} \, C_1 |\Omega \setminus B_R|^{\frac{1}{2}}. \end{split}$$

The same estimates also hold for $v \in W^{1,p}(\mathbb{R}^n)$ in place of \overline{u}_k . Let $\varepsilon > 0$ be arbitrary. Since $|\Omega| < \infty$, the estimates above imply that there exists some $R_{\varepsilon} \in \mathbb{N}$ such that

$$\forall k \in \mathbb{N} : \quad \|\overline{u}_k\|_{L^p(\mathbb{R}^n \setminus B_{R_{\varepsilon}})}^p < \varepsilon, \qquad \qquad \|v\|_{L^p(\mathbb{R}^n \setminus B_{R_{\varepsilon}})}^p < \varepsilon.$$

last update: 12 April 2018

4/5

Moreover, as shown above, there exists $N_{\varepsilon} \in \mathbb{N}$ such that $\|\overline{u}_k - v\|_{L^p(B_{R_{\varepsilon}})}^p < \varepsilon$ for every $\Lambda_2 \ni k \ge N_{\varepsilon}$. The claim follows from

$$\begin{aligned} \|u_k - v\|_{L^p(\Omega)}^p &\leq \|\overline{u}_k - v\|_{L^p(\mathbb{R}^n)}^p = \|\overline{u}_k - v\|_{L^p(\mathbb{R}^n \setminus B_{R_{\varepsilon}})}^p + \|\overline{u}_k - v\|_{L^p(B_{R_{\varepsilon}})}^p \\ &\leq \left(\|\overline{u}_k\|_{L^p(\mathbb{R}^n \setminus B_{R_{\varepsilon}})} + \|v\|_{L^p(\mathbb{R}^n \setminus B_{R_{\varepsilon}})}\right)^p + \|\overline{u}_k - v\|_{L^p(B_{R_{\varepsilon}})}^p \\ &< (2^p + 1)\varepsilon. \end{aligned}$$

Hence, the embedding $W_0^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ is indeed compact.

(b) The embedding $W^{1,p}(\Omega) \hookrightarrow L^p(\Omega)$ is *not* always compact if $\Omega \subset \mathbb{R}^n$ is of finite measure but unbounded. An example for $n \geq 2$ is the domain $\Omega \subset \mathbb{R}^n$ given by

$$\Omega := \bigcup_{m=2}^{\infty} B_{\frac{1}{m}}(me_1), \qquad \qquad |\Omega| = |B_1| \sum_{m=2}^{\infty} m^{-n} < \infty,$$

where $e_1 = (1, 0, ..., 0) \in \mathbb{R}^n$. Let $u_k = k^{\frac{n}{p}} \chi_{B_{\frac{1}{k}}(ke_1)}$. This function is constant on the *k*-th connected component of Ω and zero on the rest of Ω . Hence, $u_k \in W^{1,p}(\Omega)$ with

$$||u_k||_{W^{1,p}(\Omega)}^p = ||u_k||_{L^p(\Omega)}^p = |B_{\frac{1}{k}}|k^n = |B_1| \qquad \forall k \ge 2.$$

Suppose, there exists a subsequence $(u_k)_{k\in\Lambda_1\subset\mathbb{N}}$ converging in $L^p(\Omega)$ to some $v\in L^p(\Omega)$. Then there exists a subsequence $(u_k)_{k\in\Lambda_2\subset\Lambda_1}$ such that $u_k(x) \to v(x)$ pointwise as $\Lambda_2 \ni k \to \infty$ for almost every $x \in \Omega$. By construction however, $u_k(x) \to 0$ as $k \to \infty$ for every $x \in \Omega$. Hence, v = 0 almost everywhere. A contradiction arises from

$$0 < \left\| u_k \right\|_{L^p(\Omega)} \xrightarrow{\Lambda_1 \ni k \to \infty} \left\| v \right\|_{L^p(\Omega)} = 0.$$

last update: 12 April 2018