Part I. Multiple choice questions

8.1. Let $\Omega \subset \mathbb{R}^3$ be open and bounded of class C^1 . Into which space does $H^1(\Omega)$ not embed continuously?

- $\sqrt{(a)} C^0(\overline{\Omega})$
 - (b) $L^4(\Omega)$
 - (c) $L^6(\Omega)$
 - (d) $W^{1,1}(\Omega)$
 - (e) None of the above.

Since $\Omega \subset \mathbb{R}^3$ is bounded of class C^1 , Sobolev's embedding theorem (Satz 8.5.3.) states that $H^1(\Omega) = W^{1,2}(\Omega)$ embeds into $L^q(\Omega)$ for every $1 \leq q \leq 6$. Moreover, since Ω is bounded, $\|u\|_{L^1} \leq C \|u\|_{L^2}$ and $\|\nabla u\|_{L^1} \leq C \|\nabla u\|_{L^2}$ for every $u \in H^1(\Omega)$. Hence $H^1(\Omega) \hookrightarrow W^{1,1}(\Omega)$. However, unlike in $C^0(\overline{\Omega})$, not every $u \in H^1(\Omega)$ is bounded.

- 8.2. Let $n \ge 2$ and p = 2n. Into which space does $W^{1,p}(\mathbb{R}^n)$ not embed continuously?
- (a) $L^{\infty}(\mathbb{R}^n)$
- (b) $\mathcal{L}^{p,p}(\mathbb{R}^n)$
- $\sqrt{(c)} L^n(\mathbb{R}^n)$
 - (d) $C^{0,\frac{1}{2}}(\mathbb{R}^n)$
 - (e) None of the above.

• According to Sobolev's embedding theorem (Satz 8.6.3), $W^{1,2n}(\mathbb{R}^n) \hookrightarrow C^{0,\frac{1}{2}}(\mathbb{R}^n)$. Functions $u \in C^{0,\frac{1}{2}}(\mathbb{R}^n)$ satisfy $||u||_{C^0(\mathbb{R}^n)} < \infty$, hence $u \in L^{\infty}(\mathbb{R}^n)$.

- According to the Poincaré-inequality (Satz 8.6.6), we have $W^{1,p}(\mathbb{R}^n) \hookrightarrow \mathcal{L}^{p,p}(\mathbb{R}^n)$.
- We claim that there exists $u \in W^{1,2n}(\mathbb{R}^n)$ such that $u \notin L^n(\mathbb{R}^n)$. Indeed, let $u \in C^{\infty}(\mathbb{R}^n)$ be given by $u(x) = |x|^{-\beta}$ whenever |x| > 1. Then, if $\frac{1}{2} < \beta < 1$, we have

$$\begin{array}{rcl} 2\beta n > n \Rightarrow & u \in L^{2n}(\mathbb{R}^n), \\ 2(\beta+1)n > n \Rightarrow & \nabla u \in L^{2n}(\mathbb{R}^n), \end{array} \qquad \qquad \beta n < n \Rightarrow & u \notin L^n(\mathbb{R}^n). \end{array}$$

8.3. Let $n \ge 2$ and $1 . Let <math>\Omega \subset \mathbb{R}^n$ be bounded of class C^1 . Let $u \in W^{1,p}(\Omega)$. Which statement is false?

- (a) $u|_{\partial\Omega} \in L^p(\partial\Omega)$ is well-defined.
- (b) The embedding $W^{1,p}(\Omega) \hookrightarrow L^{\frac{n}{n-p}}(\Omega)$ is compact.
- $\sqrt{(c)}$ There exists $C < \infty$ independently of u such that $\|u\|_{W^{1,p}(\Omega)} \leq C \|u\|_{L^{\frac{np}{n-p}}(\Omega)}$.
 - (d) There exists more than one $v \in W^{1,p}(\mathbb{R}^n)$ with $v|_{\Omega} = u$.
 - (e) None of the above.

• According to the trace theorem (Satz 8.4.3), $u \mapsto u|_{\partial\Omega}$ defines a continuous map $W^{1,p}(\Omega) \to L^p(\partial\Omega)$ because $\partial\Omega$ is compact of class C^1 .

• As $1 , the embedding <math>W^{1,p}(\Omega) \hookrightarrow L^{\frac{n}{n-p}}(\Omega)$ is compact.

• The Sobolev inequality states $||u||_{L^{\frac{np}{n-p}}} \leq C||u||_{W^{1,p}(\Omega)}$. However, the reverse inequality fails to hold: Suppose $B_1 \subset \Omega$ and let $u_k(x) = (1 - |x|^k)_+$. Then, u is Lipschitz and hence in $W^{1,p}(\Omega)$. Moreover, $||u_k||_{L^{\frac{np}{n-p}}} \leq |B_1|^{\frac{n-p}{np}} \leq C$ and

$$\int_{\Omega} |\nabla u_k|^p \, dx \ge C' \int_0^1 \left(kr^{k-1}\right)^p r^{n-1} \, dr = C'k^p \int_0^1 r^{kp-p+n-1} \, dr = \frac{C'k^p}{kp-p+n-1}.$$

Since p > 1 we conclude $\|\nabla u_k\|_{L^p(\Omega)} \to \infty$ while $\|u_k\|_{L^{\frac{np}{n-2}}(\Omega)}$ stays bounded.

• The extension theorem (Satz 8.4.1) states that $u \in W^{1,p}(\Omega)$ can be extended to $Eu \in W^{1,p}(\mathbb{R}^n)$. Some perturbation of Eu outside Ω shows that the extension is not unique.

8.4. Let $n \geq 3$ and let $B_1 \subset \mathbb{R}^n$ be the unit ball. For which $q \geq 1$ is the following inequality true?

$$\exists C < \infty \quad \forall u \in C_c^{\infty}(B_1) : \quad \int_{B_1} |u|^3 \, dx \le C \left(\int_{B_1} |\nabla u|^2 \, dx \right) \left(\int_{B_1} |u|^q \, dx \right)^{\frac{2}{n}}$$

- (a) any $q \ge 3$
- (b) only for q = 3
- (c) only for $q = \frac{n}{3}$

 $\sqrt{(d)}$ only for $q = \frac{n}{2}$

(e) None of the above.

Suppose the inequality holds for some $q \in \mathbb{R}$. Replacing u by λu for $\lambda > 0$ we obtain

$$\lambda^{3} \int_{B_{1}} |u|^{3} dx \leq C \lambda^{2+q\frac{2}{n}} \left(\int_{B_{1}} |\nabla u|^{2} dx \right) \left(\int_{B_{1}} |u|^{q} dx \right)^{\frac{2}{n}}.$$

If $q < \frac{n}{2}$, then $\lambda \to \infty$ leads to a contradiction. If $q > \frac{n}{2}$, then $\lambda \to 0$ leads to a contradiction. (The powers of λ must coincide left and right.) The inequality actually holds with $q = \frac{n}{2}$, since we can estimate

$$\begin{split} \int_{B_1} |u|^3 \, dx &= \int_{B_1} |u|^2 |u| \, dx \\ &\leq \left(\int_{B_1} |u|^{\frac{2n}{n-2}} \, dx \right)^{\frac{n-2}{n}} \left(\int_{B_1} |u|^{\frac{n}{2}} \, dx \right)^{\frac{2}{n}} \\ &\leq C \Big(\int_{B_1} |\nabla u|^2 \, dx \Big) \Big(\int_{B_1} |u|^{\frac{n}{2}} \, dx \Big)^{\frac{2}{n}}. \end{split} \tag{Hölder}$$

8.5. Let $n \in \mathbb{N}$ and let $B_R \subset \mathbb{R}^n$ be the ball of radius R > 0 around the origin. Let $1 \leq p < n$ and let $1 \leq q \leq \frac{np}{n-p}$. For which $\beta \in \mathbb{R}$ is the following statement true?

 $\exists C < \infty \quad \forall R > 0 \quad \forall u \in W_0^{1,p}(B_R) : \qquad \|u\|_{L^q(B_R)} \le CR^\beta \|\nabla u\|_{L^p(B_R)}$

- (a) $\beta = 0$
- (b) $\beta = 1$
- (c) $\beta = \frac{n-p}{q}$

 $\sqrt{(d)}$ $\beta = \frac{n}{q} - \frac{n}{p} + 1$

(e) None of the above.

Given $u \in W_0^{1,p}(B_R)$ let $\tilde{u} \in W_0^{1,p}(B_1)$ be defined by $\tilde{u}(y) = u(Ry)$. Then

$$\begin{split} \int_{B_R} |u(x)|^q \, dx &= \int_{B_1} |u(Ry)|^q R^n \, dy = R^n \int_{B_1} |\tilde{u}(y)|^q \, dy, \\ \Rightarrow &\|u\|_{L^q(B_R)} = R^{\frac{n}{q}} \|\tilde{u}\|_{L^q(B_1)}, \\ \int_{B_R} |(\nabla u)(x)|^p \, dx &= \int_{B_1} |(\nabla u)(Ry)|^p R^n \, dy \\ &= \int_{B_1} |\nabla (u(Ry))_{\frac{1}{R}}|^p R^n \, dy = R^{n-p} \int_{B_1} |\nabla \tilde{u}|^p \, dy, \\ \Rightarrow &\|\nabla u\|_{L^p(B_R)} = R^{\frac{n}{p}-1} \|\nabla \tilde{u}\|_{L^p(B_1)}. \end{split}$$

The function $\tilde{u} \in W_0^{1,p}(B_1)$ can be extended by zero to $\overline{u} \in W^{1,p}(\mathbb{R}^n)$. Hence,

$$\|\tilde{u}\|_{L^{q}(B_{1})} \leq C_{1} \|\tilde{u}\|_{L^{p^{*}}(B_{1})} = C_{1} \|\overline{u}\|_{L^{p^{*}}(\mathbb{R}^{n})} \leq C \|\nabla\overline{u}\|_{L^{p}(\mathbb{R}^{n})} = C \|\nabla\tilde{u}\|_{L^{p}(B_{1})}$$

follows from Hölder's inequality and the Sobolev inequality. Consequently,

$$\|u\|_{L^{q}(B_{R})} = R^{\frac{n}{q}} \|\tilde{u}\|_{L^{q}(B_{1})} \le CR^{\frac{n}{q}} \|\nabla\tilde{u}\|_{L^{p}(B_{1})} = CR^{\frac{n}{q} - \frac{n}{p} + 1} \|\nabla u\|_{L^{p}(B_{1})}$$

Moreover, $\beta = \frac{n}{q} - \frac{n}{p} + 1$ is the only possible choice. For any other β either $R \to 0$ or $R \to \infty$ leads to a contradiction.

Part II. True or false?

8.6. Let $u \in W^{1,1}(\mathbb{R}^n)$. Let $\Omega \subset \mathbb{R}^n$ be any open domain. Then $u|_{\Omega} \in W^{1,1}(\Omega)$.

 $\sqrt{}$ (a) True.

(b) False.

By monotonicity of the integral with respect to the domain, $\|u\|_{L^1(\Omega)} \leq \|u\|_{L^1(\mathbb{R}^n)} < \infty$ and $\|\nabla u\|_{L^1(\Omega)} \leq \|\nabla u\|_{L^1(\mathbb{R}^n)} < \infty$.

8.7. Let $n \in \mathbb{N}$ and $1 \leq p < \infty$. The spaces $W^{1,p}(\mathbb{R}^n)$ and $W^{1,p}_0(\mathbb{R}^n)$ are the same.

 $\sqrt{}$ (a) True.

(b) False.

For every $u \in W^{1,p}(\mathbb{R}^n)$ there exists a sequence of functions $u_k \in C_c^{\infty}(\mathbb{R}^n)$ such that $\|u_k - u\|_{W^{1,p}(\mathbb{R}^n)} \to 0$ as $k \to \infty$ (Korollar 8.4.2 with $\Omega = \mathbb{R}^n$). By definition, $W_0^{1,p}(\mathbb{R}^n)$ is the closure of $C_c^{\infty}(\mathbb{R}^n)$ in the $W^{1,p}$ -norm. Therefore, $W_0^{1,p}(\mathbb{R}^n) = W^{1,p}(\mathbb{R}^n)$.

8.8. Let $n \ge 2$ and $1 \le p < n$. The spaces $W^{1,p}(\mathbb{R}^n \setminus \overline{B_1(0)})$ and $W_0^{1,p}(\mathbb{R}^n \setminus \overline{B_1(0)})$ are the same.

- (a) True.
- $\sqrt{}$ (b) False.

Since the domain $\Omega := \mathbb{R}^n \setminus \overline{B_1(0)}$ is open of class C^1 with compact boundary, the trace operator $T : W^{1,p}(\Omega) \to L^p(\partial\Omega)$ is well-defined and continuous. Let $u \in W_0^{1,p}(\Omega)$. By definition of $W_0^{1,p}(\Omega)$, there exists a sequence $(u_k)_{k\in\mathbb{N}}$ in $C_c^{\infty}(\Omega)$ such that $||u_k - u||_{W^{1,p}(\mathbb{R}^n)} \to 0$ as $k \to \infty$. By linearity and continuity of the trace operator, $||Tu_k - Tu||_{L^p(\partial\Omega)} \to 0$ as $k \to \infty$. Since $Tu_k \equiv 0$ by definition of $C_c^{\infty}(\Omega)$, we have $u|_{\partial\Omega} = Tu = 0$ in $L^p(\partial\Omega)$. However, not every function $v \in W^{1,p}(\Omega)$ satisfies Tv = 0. Therefore $W_0^{1,p}(\Omega) \neq W^{1,p}(\Omega)$. **8.9.** Let $n \ge 2$ and $1 \le p < n$. The spaces $W^{1,p}(\mathbb{R}^n \setminus \{0\})$ and $W^{1,p}_0(\mathbb{R}^n \setminus \{0\})$ are the same.

 $\sqrt{}$ (a) True.

(b) False.

Since $\{0\} \subset \mathbb{R}^n$ has vanishing $W^{1,n}$ -capacity (Beispiel 8.1.1), there exists a sequence $(\psi_k)_{k\in\mathbb{N}}$ in $C_c^{\infty}(\mathbb{R}^n)$ satisfying $0 \leq \psi_k \leq 1$ and $\psi_k = 1$ in a neighbourhood of $\{0\}$ such that $\psi_k \to 0$ almost everywhere and $\|\nabla \psi_k\|_{L^n} \to 0$ as $k \to \infty$.

Given $u \in W^{1,p}(\mathbb{R}^n \setminus \{0\})$ let $u_k \in C_c^{\infty}(\mathbb{R}^n)$ such that $||u - u_k||_{W^{1,p}(\mathbb{R}^n \setminus \{0\})} \to 0$ (Korollar 8.4.2). Let $v_k = (1 - \psi_k)u_k$. Then, $v_k \in C_c^{\infty}(\mathbb{R}^n \setminus \{0\})$. The triangle inequality, Hölder's estimate and the Sobolev inequality for p < n yield

$$\|u - v_k\|_{W^{1,p}} \le \|u - u_k\|_{W^{1,p}} + \|\psi_k u_k\|_{W^{1,p}},\tag{I_k}$$

$$\|\psi_{k}u_{k}\|_{W^{1,p}} \leq \|\psi_{k}u_{k}\|_{L^{p}} + \|\psi_{k}\nabla u_{k}\|_{L^{p}} + \|u_{k}\nabla\psi_{k}\|_{L^{p}}, \tag{II}_{k}$$

$$\|u_k \nabla \psi_k\|_{L^p} \le \|u_k\|_{L^{p^*}} \|\nabla \psi_k\|_{L^n} \le \|u_k\|_{W^{1,p}} \|\nabla \psi_k\|_{L^n}.$$
 (III_k)

Since $(u_k)_{k\in\mathbb{N}}$ is convergent in $W^{1,p}$, we have $||u_k||_{W^{1,p}} \leq C$ for some constant $C < \infty$. Hence, $(\operatorname{III}_k) \to 0$ as $k \to \infty$. Moreover, since $||\psi_k u_k||_{L^p} + ||\psi_k \nabla u_k||_{L^p} \leq ||u_k||_{W^{1,p}} \leq C$ and since $\psi_k u_k \to 0$ and $\psi_k \nabla u_k \to 0$ pointwise almost everywhere, the dominated convergence theorem applies and we obtain first $(\operatorname{II}_k) \to 0$ and then $(\operatorname{I}_k) \to 0$ as $k \to \infty$. Therefore, $u \in W_0^{1,p}(\mathbb{R}^n \setminus \{0\})$ and we conclude $W^{1,p}(\mathbb{R}^n \setminus \{0\}) = W_0^{1,p}(\mathbb{R}^n \setminus \{0\})$. **8.10.** Let n = 1 and p = 1. The spaces $W^{1,1}(\mathbb{R} \setminus \{0\})$ and $W^{1,1}_0(\mathbb{R} \setminus \{0\})$ are the same.

(a) True.

 $\sqrt{}$ (b) False.

Let $v \in W^{1,1}(\mathbb{R} \setminus \{0\})$ be arbitrary. Then, v is continuous and for any $x \in [0, 1[$

$$\begin{aligned} v(0) &= v(x) - \int_0^x v' \, ds, \\ \Rightarrow & |v(0)| = \int_0^1 |v(0)| \, dx \le \int_0^1 |v(x)| \, dx + \int_0^1 |v'| \, dx = \|v\|_{W^{1,1}([0,1[)])}. \end{aligned}$$

Let $u \in W_0^{1,1}(\mathbb{R} \setminus \{0\})$ and $u_k \in C_c^{\infty}(\mathbb{R} \setminus \{0\})$ such that $||u - u_k||_{W^{1,1}} \to 0$ as $k \to \infty$. Then, choosing $v = u - u_k$ in the estimate above, we obtain

 $|u(0)| = |u(0) - u_k(0)| \le ||u - u_k||_{W^{1,1}([0,1[)]} \xrightarrow{k \to \infty} 0.$

Hence u(0) = 0. However, not every function $w \in W^{1,1}(\mathbb{R} \setminus \{0\})$ has this property. Therefore, $W_0^{1,1}(\mathbb{R}^n \setminus \{0\}) \neq W^{1,1}(\mathbb{R}^n \setminus \{0\})$.

8.11. Let $\Omega \subset \mathbb{R}^n$ be bounded of class C^1 . Then, $C^{\infty}(\overline{\Omega})$ is dense in $C^{0,\frac{1}{2}}(\overline{\Omega})$.

- (a) True.
- $\sqrt{}$ (b) False.

See Bemerkung 8.6.2 in the notes.

8.12. Let $B_1 \subset \mathbb{R}^2$ be the unit ball and let $(u_k)_{k \in \mathbb{N}}$ be a bounded sequence in $W^{1,4}(B_1)$. Then, there exists $v \in C^{0,\frac{1}{4}}(\overline{B_1})$ and $\Lambda \subset \mathbb{N}$ such that $\|v - u_k\|_{C^{0,\frac{1}{4}}(\overline{B_1})} \to 0$ as $\Lambda \ni k \to \infty$.

 $\sqrt{}$ (a) True.

(b) False.

Since $B_1 \subset \mathbb{R}^2$ is bounded of class C^1 , the embedding $W^{1,4}(B_1) \hookrightarrow C^{0,\alpha}(\overline{B_1})$ is compact for every $0 \leq \alpha < 1 - \frac{2}{4} = \frac{1}{2}$, in particular for $\alpha = \frac{1}{4}$.

8.13. There exists functions in $W^{1,3}(\mathbb{R}^2)$ such that all their representatives are nowhere differentiable.

- (a) True.
- $\sqrt{(b)}$ False.

According to Satz 8.6.10, the continuous representative of $u \in W^{1,3}(\mathbb{R}^2)$ is differentiable classically almost everywhere.

8.14. Every compactly supported function in $W^{1,4}(\mathbb{R}^3)$ is in $L^{\infty}(\mathbb{R}^3)$.

- $\sqrt{}$ (a) True.
 - (b) False.

According to Sobolev's embedding $W^{1,4}(\mathbb{R}^3) \hookrightarrow C^{0,\alpha}(\mathbb{R}^3)$ with $\alpha = 1 - \frac{3}{4} = \frac{1}{4}$, every $u \in W^{1,4}(\mathbb{R}^3)$ is Hölder continuous and $\|u\|_{C^{0,\frac{1}{4}}(\mathbb{R}^3)} \leq C \|u\|_{W^{1,4}(\mathbb{R}^3)}$. The claim follows from $\|u\|_{L^{\infty}} \leq \|u\|_{C^{0,\frac{1}{4}}}$. (Compact support is not needed here.)

8.15. Let $B_1 \subset \mathbb{R}^n$ be the unit ball. There exists a sequence $(u_k)_{k\in\mathbb{N}}$ in $C_c^{\infty}(B_1)$ satisfying $u_k(x) = 1$ for every $x \in B_1$ with $|x| = \frac{1}{2}$ and $||u_k||_{W^{1,1}(B_1)} \to 0$ as $k \to \infty$.

- (a) True.
- $\sqrt{(b)}$ False.

Since $v_k := u_k|_{B_{\frac{1}{2}}} \in W^{1,1}(B_{\frac{1}{2}})$ the trace theorem (Satz 8.4.3) implies that

$$\|u_k\|_{L^1(\partial B_{\frac{1}{2}})} = \|v_k\|_{L^1(\partial B_{\frac{1}{2}})} \le C\|v_k\|_{W^{1,1}(B_{\frac{1}{2}})} \le C\|u_k\|_{W^{1,1}(B_1)}.$$

Hence, if $u_k = 1$ on $\partial B_{\frac{1}{2}}$, then $||u_k||_{W^{1,1}(B_1)}$ cannot converge to zero.