9.1. Elliptic equations in non-divergence form

(a) Given $u, \varphi \in H_0^1(\Omega)$ let

$$B(u,\varphi) = \sum_{i,j=1}^n \int_\Omega a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial \varphi}{\partial x_i} + \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} \varphi \, dx + \int_\Omega c u \varphi \, dx.$$

Then, with some unspecified constant $C < \infty$ depending only on a_{ij} , c and Ω ,

$$\begin{aligned} &|B(u,\varphi)| \\ &\leq \sum_{i,j=1}^{n} \int_{\Omega} |a_{ij}| |\nabla u| |\nabla \varphi| + |\nabla a_{ij}| |\nabla u| |\varphi| + |c| |u| |\varphi| \, dx \\ &\leq \sum_{i,j=1}^{n} \left(\|a_{ij}\|_{C^{0}} \|\nabla u\|_{L^{2}} \|\nabla \varphi\|_{L^{2}} + \|\nabla a_{ij}\|_{C^{0}} \|\nabla u\|_{L^{2}} \|\varphi\|_{L^{2}} + \|c\|_{C^{0}} \|u\|_{L^{2}} \|\varphi\|_{L^{2}} \right) \\ &\leq C \|\nabla u\|_{L^{2}} \|\nabla \varphi\|_{L^{2}}, \end{aligned}$$

where we used that $||a_{ij}||_{C^1(\Omega)}$ and $||c||_{C^0}$ are finite for every $i, j \in \{1, \ldots, n\}$ and applied the Poincaré inequality: $||\varphi||_{L^2(\Omega)} \leq \tilde{C} ||\nabla\varphi||_{L^2(\Omega)}$ and $||u||_{L^2(\Omega)} \leq \tilde{C} ||\nabla u||_{L^2(\Omega)}$. Moreover, ellipticity implies the following lower bound for the first term of B(u, u).

$$\int_{\Omega} \sum_{i,j=1}^{n} a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial u}{\partial x_i} \, dx \ge \int_{\Omega} \lambda |\nabla u|^2 \, dx = \lambda \|\nabla u\|_{L^2(\Omega)}^2.$$

Since $u \in H_0^1(\Omega)$ we may integrate the second term of B(u, u) by parts with vanishing boundary terms to obtain

$$\sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} u \, dx = \frac{1}{2} \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u^2}{\partial x_j} \, dx = -\frac{1}{2} \sum_{i,j=1}^{n} \int_{\Omega} \frac{\partial^2 a_{ij}}{\partial x_j \partial x_i} u^2 \, dx.$$

Under the given assumptions on a_{ij} and c, we conclude

$$B(u, u) \ge \lambda \|\nabla u\|_{L^2(\Omega)}^2$$

Therefore, the Lax-Milgram Lemma (Satz 4.3.3) applies to $B: H_0^1(\Omega) \times H_0^1(\Omega) \to \mathbb{R}$ and (by Korollar 4.3.1) we obtain a unique $u \in H_0^1(\Omega)$ such that

$$\forall \varphi \in H_0^1(\Omega) : \quad B(u, \varphi) = \int f \varphi \, dx.$$

(b) If $u \in C^2(\Omega) \cap H^1_0(\Omega)$ is a classical solution of -Lu + cu = f and $\varphi \in H^1_0(\Omega)$,

$$\int_{\Omega} f\varphi \, dx = -\sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} \varphi \, dx + \int_{\Omega} cu\varphi \, dx$$
$$= \sum_{i,j=1}^{n} \int_{\Omega} a_{ij} \frac{\partial u}{\partial x_j} \frac{\partial \varphi}{\partial x_i} + \frac{\partial a_{ij}}{\partial x_i} \frac{\partial u}{\partial x_j} \varphi \, dx + \int_{\Omega} cu\varphi \, dx = B(u,\varphi).$$

last update: 3 May 2018

1/5

9.2. The reflection Lemma towards boundary regularity

Given $f \in L^2(\mathbb{R}^n_+)$ let $u \in H^1_0(\mathbb{R}^n_+)$ with $\operatorname{supp}(u) \subset \mathbb{R}^n$ be a weak solution to

 $-\Delta u = f$ in \mathbb{R}^n_+ .

We introduce the notation

$$x = (x', x_n) \in \mathbb{R}^{n-1} \times \mathbb{R},$$
 $\nabla' u = \left(\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_{n-1}}, 0\right)$

and define

$$\overline{u}(x) = \begin{cases} u(x', x_n) & \text{if } x_n > 0, \\ -u(x', -x_n) & \text{if } x_n < 0, \end{cases} \quad \overline{f}(x) = \begin{cases} f(x', x_n) & \text{if } x_n > 0, \\ -f(x', -x_n) & \text{if } x_n < 0. \end{cases}$$

Since $u \in H_0^1(\mathbb{R}^n_+)$ has compact support in \mathbb{R}^n , the extension \overline{u} via odd reflection is in $H^1(\mathbb{R}^n)$ (compare Problem 3.5). Let $\varphi \in C_c^{\infty}(\mathbb{R}^n)$ be arbitrary. Then,

$$\begin{split} &\int_{\mathbb{R}^n} \nabla \overline{u} \cdot \nabla \varphi \, dx \\ &= \int_{\mathbb{R}^n_+} \nabla' u(x', x_n) \cdot \nabla' \varphi(x', x_n) - \nabla' u(x', x_n) \cdot \nabla' \varphi(x', -x_n) \, dx \\ &+ \int_{\mathbb{R}^n_+} \frac{\partial u}{\partial x_n} (x', x_n) \frac{\partial \varphi}{\partial x_n} (x', x_n) + \frac{\partial u}{\partial x_n} (x', x_n) \frac{\partial \varphi}{\partial x_n} (x', -x_n) \, dx \\ &= \int_{\mathbb{R}^n_+} \nabla u(x) \cdot \nabla \Big(\varphi(x', x_n) - \varphi(x', -x_n) \Big) \, dx \\ &= \int_{\mathbb{R}^n_+} \nabla u \cdot \nabla \psi \, dx, \end{split}$$

where $\psi(x', x_n) = \varphi(x', x_n) - \varphi(x', -x_n)$ satisfies $\psi(x', 0) = 0$, i. e. $\psi \in C^{\infty} \cap H_0^1(\mathbb{R}^n_+)$. Because u is a weak solution to $-\Delta u = f$ in \mathbb{R}^n_+ by assumption, we have

$$\int_{\mathbb{R}^{n}_{+}} \nabla u \cdot \nabla \psi \, dx = \int_{\mathbb{R}^{n}_{+}} f\psi \, dx$$
$$= \int_{\mathbb{R}^{n}_{+}} f\varphi \, dx - \int_{\mathbb{R}^{n}_{+}} f(x', x_{n})\varphi(x', -x_{n}) \, dx$$
$$= \int_{\mathbb{R}^{n}} \overline{f}\varphi \, dx.$$

Since φ is arbitrary, if follows that $\overline{u} \in H^1(\mathbb{R}^n)$ is a weak solution of $-\Delta \overline{u} = \overline{f}$ in \mathbb{R}^n .

last update: 3 May 2018

2/5

9.3. Horizontal derivatives

Given $u \in H^2(\mathbb{R}^n_+) \cap H^1_0(\mathbb{R}^n_+)$ and $h \in \mathbb{R} \setminus \{0\}$, let $D_{h,i}u \colon \mathbb{R}^n_+ \to \mathbb{R}$ be given by

$$D_{h,i}u(x) = \frac{u(x+he_i) - u(x)}{h},$$

where $e_i = (0, \ldots, 0, 1, 0, \ldots, 0, 0) \in \mathbb{R}^n$ has the entry 1 at position $i \in \{1, \ldots, n-1\}$. The translation by he_i is an isometry of $H^1(\mathbb{R}^n_+)$ and carries $C_c^{\infty}(\mathbb{R}^n_+)$ into itself, so it carries its closure $H^1_0(\mathbb{R}^n_+)$ into itself. Therefore, $u \in H^1_0(\Omega)$ implies $D_{h,i}u \in H^1_0(\mathbb{R}^n_+)$.

According to Satz 8.3.1.iii) the assumption $u \in H^2(\mathbb{R}^n_+)$ implies

$$\exists C < \infty \quad \forall h \in \mathbb{R}^n \setminus \{0\} : \quad \|D_{h,i}u\|_{H^1} \le C.$$

Hence, there exists a sequence $h_k \xrightarrow{k \to \infty} 0$ such that $D_{h_k,i}u$ converges weakly in $H^1(\mathbb{R}^n_+)$ to some $v \in H^1(\mathbb{R}^n_+)$ as $k \to \infty$. Since $H^1_0(\mathbb{R}^n_+)$ is a closed subspace of $H^1(\mathbb{R}^n_+)$, it is weakly closed. Therefore, $v \in H^1_0(\mathbb{R}^n_+)$. Moreover, for any $\varphi \in C^\infty_c(\mathbb{R}^n_+)$ there holds

$$\begin{split} \int_{\mathbb{R}^n_+} v\varphi \, dx &= \lim_{k \to \infty} \int_{\mathbb{R}^n_+} \frac{u(x+h_k e_i) - u(x)}{h_k} \varphi(x) \, dx \\ &= \lim_{k \to \infty} \frac{1}{h_k} \Big(\int_{\mathbb{R}^n_+} u(x+h_k e_i) \varphi(x) \, dx - \int_{\mathbb{R}^n_+} u(x) \varphi(x) \, dx \Big) \\ &= \lim_{k \to \infty} \frac{1}{h_k} \Big(\int_{\mathbb{R}^n_+} u(y) \varphi(y-h_k e_i) \, dy - \int_{\mathbb{R}^n_+} u(x) \varphi(x) \, dx \Big) \\ &= -\lim_{k \to \infty} \int_{\mathbb{R}^n_+} u(x) \frac{\varphi(x) - \varphi(x-h_k e_i)}{h_k} \, dx \\ &= -\int_{\mathbb{R}^n_+} u \frac{\partial \varphi}{\partial x_i} \, dx. \end{split}$$

By definition of weak derivative,

$$\frac{\partial u}{\partial x_i} = v \in H^1_0(\mathbb{R}^n_+)$$

and the claim follows.

9.4. Properties of the bilaplacian

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary and

$$\Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) : \Delta u \in H^1_0(\Omega) \}.$$

(a) Since the bilaplacian $\Delta^2 \colon \Xi \to L^2(\Omega)$ is linear, it suffices to prove ker $(\Delta^2) = \{0\}$ to conclude injectivity. Let $u \in \Xi$ with $\Delta^2 u = 0$. By definition of Ξ , we have

$$v := \Delta u \in H^2(\Omega) \cap H^1_0(\Omega).$$

Moreover, $\Delta v = 0$ combined with the elliptic regularity estimate (Satz 9.1.2) implies v = 0. Repeating the same argument for $\Delta u = 0$ yields u = 0 and proves ker $(\Delta^2) = 0$.

To prove surjectivity, let $f \in L^2(\Omega)$ be given arbitrarily. Let $v \in H^1_0(\Omega)$ be the weak solution to $\Delta v = f$ in Ω . By elliptic regularity, $v \in H^2(\Omega)$. Let $u \in H^1_0(\Omega)$ be the weak solution to $\Delta u = v$. Then, by elliptic regularity, $u \in H^4(\Omega)$. Consequently, $u \in \Xi$. Since $\Delta^2 u = f$ by construction, surjectivity of $\Delta^2 \colon \Xi \to L^2(\Omega)$ follows.

(b) Given $f \in L^2(\Omega)$, let $u \in \Xi$ satisfy $\Delta^2 u = f$. Let $\varphi \in \Xi$ be arbitrary. Then, $\nabla \Delta \varphi \in L^2(\Omega)$. Since $u \in H_0^1(\Omega)$, the trace theorem (Satz 8.4.3) implies that $u|_{\partial\Omega} \in L^2(\partial\Omega)$ is well-defined and vanishes according to Korollar 8.4.3. Analogously, since $\Delta \varphi \in H_0^1(\Omega)$ by assumption, $(\Delta v)|_{\partial\Omega} = 0$. Hence, we may integrate by parts twice with vanishing boundary terms to obtain

$$\int_{\Omega} u\Delta^2 \varphi \, dx = -\int_{\Omega} \nabla u \cdot \nabla \Delta \varphi \, dx = \int_{\Omega} \Delta u \Delta \varphi \, dx. \tag{(*)}$$

Since the right hand side of (*) is symmetric in u and φ we may switch the roles of $u, \varphi \in \Xi$ to also obtain

$$\int_{\Omega} \varphi \Delta^2 u \, dx = \int_{\Omega} \Delta u \Delta \varphi \, dx = \int_{\Omega} u \Delta^2 \varphi \, dx.$$

Since $\varphi \in \Xi$ is arbitrary, the claim follows by substituting $\Delta^2 u = f$.

(c) Given $f \in L^2(\Omega)$, let $u \in L^2(\Omega)$ satisfy

$$\forall \varphi \in \Xi : \quad \int_{\Omega} u \Delta^2 \varphi \, dx = \int_{\Omega} f \varphi \, dx. \tag{\dagger}$$

According to part (a), there exists $v \in \Xi$ such that $\Delta^2 v = f$. Moreover, by part (b)

$$\forall \varphi \in \Xi : \quad \int_{\Omega} v \Delta^2 \varphi \, dx = \int_{\Omega} f \varphi \, dx.$$

Therefore, using again bijectivity of $\Delta^2 \colon \Xi \to L^2(\Omega)$ as shown in (a), we have

$$\forall \varphi \in \Xi : \quad \int_{\Omega} (u-v) \Delta^2 \varphi \, dx = 0 \quad \iff \quad \forall \psi \in L^2(\Omega) : \quad \int_{\Omega} (u-v) \psi \, dx = 0.$$

Hence u - v = 0 in $L^2(\Omega)$. Therefore, $u = v \in \Xi$ as claimed.

last update: 3 May 2018

4/5

9.5. Weak solutions to the bilaplace equation

Let $\Omega \subset \mathbb{R}^n$ be open and bounded with smooth boundary.

(a) The map $\langle \cdot, \cdot \rangle \colon \left(H^2(\Omega) \cap H^1_0(\Omega) \right) \times \left(H^2(\Omega) \cap H^1_0(\Omega) \right) \to \mathbb{R}$ given by

$$\langle u,v\rangle \mathrel{\mathop:}= \int_\Omega \Delta u \Delta v\,dx$$

is symmetric and bilinear by definition. Moreover, by the elliptic regularity estimate (Satz 9.1.2), there exists a constant $C < \infty$ such that for every $u \in H^2(\Omega) \cap H^1_0(\Omega)$

$$\langle u, u \rangle \le (u, u)_{H^2(\Omega)} = ||u||^2_{H^2(\Omega)} \le C ||\Delta u||^2_{L^2(\Omega)} = C \langle u, u \rangle.$$

In particular, $\langle u, u \rangle \geq 0$ and $\langle u, u \rangle = 0 \Leftrightarrow u = 0$; hence $\langle \cdot, \cdot \rangle$ defines a scalar product and $\langle \cdot, \cdot \rangle$ is equivalent to $(\cdot, \cdot)_{H^2(\Omega)}$.

(b) Since Ω is bounded, convergence in $H^2(\Omega)$ implies convergence in $H^1(\Omega)$. Since $H_0^1(\Omega)$ is closed in $H^1(\Omega)$, we obtain that $H^2(\Omega) \cap H_0^1(\Omega)$ is closed in $H^2(\Omega)$. Hence, $(H^2(\Omega) \cap H_0^1(\Omega), \langle \cdot, \cdot \rangle)$ is a Hilbert space.

(c) Let $f \in L^2(\Omega)$. Then the map $H^2(\Omega) \cap H^1_0(\Omega) \to \mathbb{R}$ given by $v \mapsto \int_{\Omega} f v \, dx$ is a continuous linear functional. By part (b) we may apply the Riesz representation theorem to conclude that there exists a unique $u \in H^2(\Omega) \cap H^1_0(\Omega)$ satisfying

$$\forall v \in H^2(\Omega) \cap H^1_0(\Omega) : \quad \langle u, v \rangle = \int_{\Omega} f v \, dx.$$

In particular, for any $v \in \Xi := \{ u \in H^4(\Omega) \cap H^1_0(\Omega) : \Delta u \in H^1_0(\Omega) \},\$

$$\int_{\Omega} u\Delta^2 v \, dx = \int_{\Omega} \Delta u\Delta v = \int f v \, dx.$$

Hence, $u \in \Xi$ according to problem 9.4 (c) and

$$\int_{\Omega} (\Delta^2 u) v \, dx = \int_{\Omega} u \Delta^2 v \, dx = \int f v \, dx$$

for any $v \in C_c^{\infty}(\Omega)$ which implies $\Delta^2 u = f$.