11.1. Integration by parts

Let $w \in H_0^1(B_r)$. By definition of H_0^1 , there exists a sequence $(w_k)_{k \in \mathbb{N}}$ in $C_c^{\infty}(B_r)$ such that $||w - w_k||_{H^1(B_r)} \to 0$ as $k \to \infty$. Moreover, integration by parts yields

$$\int_{B_r} \frac{\partial w_k}{\partial x_i} \, dx = \int_{\partial B_r} w_k \, d\sigma = 0.$$

Therefore,

$$\begin{aligned} \left| \int_{B_r} \frac{\partial w}{\partial x_i} \, dx \right| &= \left| \int_{B_r} \frac{\partial w}{\partial x_i} - \frac{\partial w_k}{\partial x_i} \, dx \right| \\ &\leq \int_{B_r} \left| \nabla w - \nabla w_k \right| \, dx \leq \left| B_r \right|^{\frac{1}{2}} \left\| \nabla w - \nabla w_k \right\|_{L^2(B_r)} \xrightarrow{k \to \infty} 0. \end{aligned}$$

Since the left hand side does not depend on k it must vanish as claimed.

11.2. Linear transformation

Let $T: \mathbb{R}^n \to \mathbb{R}^n$ be linear, symmetric and invertible. Given $v \in H^1(B_r^+)$, let $w = v \circ T^{-1}$. Then, using symmetry of T,

$$\frac{\partial w}{\partial \nu} = \nu \cdot \nabla w = (Te_n) \cdot \nabla (v \circ T^{-1}) = (Te_n) \cdot \left(T^{-1}((\nabla v) \circ T^{-1})\right)$$
$$= e_n \cdot \left(TT^{-1}((\nabla v) \circ T^{-1})\right) = e_n \cdot ((\nabla v) \circ T^{-1}) = \frac{\partial v}{\partial x_n} \circ T^{-1}.$$

With the change of variables $x = T^{-1}y$ we obtain

$$\begin{split} \int_{B_r^+} \left| \frac{\partial v}{\partial x_n}(x) \right|^2 dx &= \int_{T(B_r^+)} \left| \frac{\partial v}{\partial x_n}(T^{-1}y) \right|^2 |\det(T^{-1})| \, dy \\ &= |\det(T^{-1})| \int_{T(B_r^+)} \left| \frac{\partial w}{\partial \nu}(y) \right|^2 dy. \end{split}$$

11.3. Basic iteration lemma

Let $f: [0, R_0] \to [0, \infty]$ be a non-decreasing function satisfying

$$\forall \rho \in]0, R_0]: \quad f\left(\frac{\rho}{2}\right) \le \left(\frac{1}{2}\right)^{\alpha} f(\rho)$$

for some $\alpha > 0$. Given $0 < r < R \leq R_0$, let $N \in \mathbb{N}$ such that $2^{-N-1}R < r \leq 2^{-N}R$. By monotonicity of f and iteration of the hypothesis, we obtain

$$f(r) \le f\left(\frac{R}{2^N}\right) \le \left(\frac{1}{2}\right)^{\alpha N} f(R) = \left(\frac{2}{R}\right)^{\alpha} \left(\frac{R}{2^{N+1}}\right)^{\alpha} f(R) < \left(\frac{2r}{R}\right)^{\alpha} f(R).$$

last update: 14 May 2018

1/4

11.4. Technical iteration lemma

Let $f: [0, R_0] \to [0, \infty[$ be a non-decreasing function satisfying for some coefficients $A, B \ge 0$, some exponents $0 < \beta < \alpha$ and some $\varepsilon \ge 0$ the following inequality.

$$\forall 0 < r < R \le R_0: \quad f(r) \le A\left(\left(\frac{r}{R}\right)^{\alpha} + \varepsilon\right)f(R) + BR^{\beta}.$$

(a) For any $0 < R \le R_0$ and any $\tau \in [0, 1[$ we have by assumption

$$f(\tau R) \le A(\tau^{\alpha} + \varepsilon)f(R) + BR^{\beta}.$$

Since increasing A weakens the assumption, we may assume $A > \frac{1}{2}$ without loss of generality. Suppose, $\varepsilon \leq (2A)^{-\frac{\alpha}{\alpha-\gamma}} =: \varepsilon_0$ for some $\gamma \in]\beta, \alpha[$. Note that since $\alpha > \gamma$ and 2A > 1, there exists $\tau \in]0, 1[$ such that $2A\tau^{\alpha} = \tau^{\gamma}$. In particular, $\varepsilon \leq (2A)^{-\frac{\alpha}{\alpha-\gamma}} = \tau^{\alpha}$ and $A(\tau^{\alpha} + \varepsilon) \leq 2A\tau^{\alpha} = \tau^{\gamma}$. Therefore, $f(\tau R) \leq \tau^{\gamma} f(R) + BR^{\beta}$ for any $0 < R \leq R_0$ as claimed.

(b) In part (a), we proved the claim for k = 1. Suppose, the inequality

$$f(\tau^k R) \le \tau^{k\gamma} f(R) + BR^{\beta} \tau^{(k-1)\beta} \sum_{n=0}^{k-1} \tau^{n(\gamma-\beta)}$$

is true for some $k \in \mathbb{N}$. Then, by (a)

$$\begin{split} f(\tau^{k+1}R) &\leq \tau^{\gamma} f(\tau^{k}R) + B(\tau^{k}R)^{\beta} \\ &\leq \tau^{(k+1)\gamma} f(R) + \tau^{\gamma} B R^{\beta} \tau^{(k-1)\beta} \sum_{n=0}^{k-1} \tau^{n(\gamma-\beta)} + B(\tau^{k}R)^{\beta} \\ &= \tau^{(k+1)\gamma} f(R) + B R^{\beta} \tau^{k\beta} \Big(\tau^{\gamma-\beta} \sum_{n=0}^{k-1} \tau^{n(\gamma-\beta)} + 1 \Big) \\ &= \tau^{(k+1)\gamma} f(R) + B R^{\beta} \tau^{k\beta} \sum_{n=0}^{k} \tau^{n(\gamma-\beta)} \end{split}$$

and the claim follows by induction.

(c) Given $0 < r < R \le R_0$ let $N \in \mathbb{N}_0$ such that $\tau^{N+1}R < r \le \tau^N R$. Then, by (b)

$$\begin{split} f(r) &\leq f(\tau^N R) \leq \tau^{N\gamma} f(R) + B R^{\beta} \tau^{(N-1)\beta} \sum_{n=0}^{N-1} \tau^{n(\gamma-\beta)} \\ &\leq \tau^{-\gamma} \tau^{(N+1)\gamma} f(R) + B R^{\beta} \tau^{(N+1)\beta} \frac{\tau^{-2\beta}}{1 - \tau^{(\gamma-\beta)}} \\ &\leq \tau^{-\gamma} \Big(\frac{r}{R}\Big)^{\gamma} f(R) + B r^{\beta} \frac{\tau^{-2\beta}}{1 - \tau^{(\gamma-\beta)}} \\ &\leq C \Big(\Big(\frac{r}{R}\Big)^{\beta} f(R) + B r^{\beta} \Big), \end{split}$$

where $C := \max\left\{\tau^{-\gamma}, \frac{\tau^{-2\beta}}{1-\tau^{(\gamma-\beta)}}\right\}$ depends only on α, β, γ and A.

last update: 14 May 2018

2/4

11.5. Interpolation inequality

Towards a contradiction, suppose there exists a sequence $(x_k)_{k\in\mathbb{N}}$ in X and some $\varepsilon_0 > 0$ such that

$$\forall k \in \mathbb{N}: \quad 1 = \|x_k\|_Y \ge \varepsilon_0 \|x_k\|_X + k\|x_k\|_Z.$$

Then, $||x_k||_X \leq \frac{1}{\varepsilon_0}$ and $||x_k||_Z \leq \frac{1}{k}$ for every $k \in \mathbb{N}$. Thus, the sequence $(x_k)_{k \in \mathbb{N}}$ is bounded in X and since the embedding $X \hookrightarrow Y$ is compact, there exists a subsequence $(x_k)_{k \in \Lambda \subset \mathbb{N}}$ and some $y \in Y$ such that $||x_k - y||_Y \to 0$ as $\Lambda \ni k \to \infty$. Since the embedding $Y \hookrightarrow Z$ is continuous, we also have $||x_k - y||_Z \to 0$ as $\Lambda \ni k \to \infty$. Consequently,

$$1 = \lim_{\Lambda \ni k \to \infty} \|x_k\|_Y = \|y\|_Y, \qquad \qquad \|y\|_Z = \lim_{\Lambda \ni k \to \infty} \|x_k\|_Z = 0$$

which is a contradiction.

11.6. Abstract method of continuity

Given $A_0, A_1 \in L(X, Y)$ let $A_t = (1 - t)A_0 + tA_1$ for every $t \in [0, 1]$ and assume that

$$\exists C < \infty \quad \forall t \in [0, 1] \quad \forall x \in X : \quad \|x\|_X \le C \|A_t x\|_Y.$$
(*)

The claim is equivalence of the statements

- (i) A_0 is surjective.
- (ii) A_1^* is injective with closed image.

(a) Let $I := \{t \in [0, 1] : A_t \text{ is surjective}\}$. If we assume statement (i), then $0 \in I$. If we assume statement (ii), then $1 \in I$ by Satz 6.2.2. Therefore, $I \neq \emptyset$ in both cases.

(b) Let $t_0 \in I := \{t \in [0,1] : A_t \text{ is surjective}\}$. Assumption (*) implies that A_{t_0} is also injective and that the inverse is continuous: $A_{t_0}^{-1} \in L(Y,X)$. For any $t \in [0,1]$, we have

$$A_t = A_{t_0} - (A_{t_0} - A_t) = \left(1 - (A_{t_0} - A_t)A_{t_0}^{-1}\right)A_{t_0},$$

$$A_{t_0} - A_t = (1 - t_0)A_0 + t_0A_1 - (1 - t)A_0 - tA_1 = (t - t_0)(A_0 - A_1).$$

Let $B := (A_{t_0} - A_t)A_{t_0}^{-1} \in L(Y, Y)$. By Satz 2.2.7 the operator (1 - B) is invertible with inverse $(1 - B)^{-1} \in L(Y, Y)$ and in particular surjective, if ||B|| < 1. Since

$$||B|| \le ||A_{t_0} - A_t|| ||A_{t_0}^{-1}|| = |t - t_0|||A_0 - A_1|| ||A_{t_0}^{-1}||$$

we guarantee surjectivity of (1-B) if $t \in [0,1]$ satisfies $|t-t_0| < (||A_0 - A_1|| ||A_{t_0}^{-1}||)^{-1}$. In this case we obtain that A_t is surjective, since A_{t_0} is surjective by assumption. Therefore, the set $I \subset [0,1]$ is open.

last update: 14 May 2018

(c) Let $(t_k)_{k\in\mathbb{N}}$ be a sequence in I such that $t_k \to t_\infty$ as $k \to \infty$ for some $t_\infty \in [0, 1]$. We claim that $A_{t_\infty} \in L(X, Y)$ is surjective. Let $y \in Y$ be arbitrary. Since $t_k \in I$, there exists $x_k \in X$ such that $A_{t_k} x_k = y$ for every $k \in \mathbb{N}$. Moreover, by assumption (*),

$$\begin{aligned} \|x_{k} - x_{n}\|_{X} &\leq C \|A_{t_{k}}(x_{k} - x_{n})\|_{Y} \\ &= C \|A_{t_{k}}x_{k} - A_{t_{n}}x_{n} + (A_{t_{n}} - A_{t_{k}})x_{n}\|_{Y} \\ &= C \|(A_{t_{n}} - A_{t_{k}})x_{n}\|_{Y} \\ &\leq C \|A_{t_{n}} - A_{t_{k}}\| \|x_{n}\|_{X} \\ &\leq C^{2}|t_{k} - t_{n}| \|A_{0} - A_{1}\| \|A_{t_{n}}x_{n}\|_{Y} = C^{2}|t_{k} - t_{n}| \|A_{0} - A_{1}\| \|y\|_{Y} \end{aligned}$$

which implies that $(x_k)_{k \in \mathbb{N}}$ is a Cauchy-sequence in X. Since $(X, \|\cdot\|_X)$ is complete, $(x_k)_{k \in \mathbb{N}}$ has a limit $x_{\infty} \in X$. Moreover,

$$\begin{aligned} \|y - A_{t_{\infty}} x_{\infty}\|_{Y} &= \|A_{t_{k}} x_{k} - A_{t_{\infty}} x_{\infty}\|_{Y} \\ &= \|(A_{t_{k}} - A_{t_{\infty}}) x_{k} + A_{t_{\infty}} (x_{k} - x_{\infty})\|_{Y} \\ &\leq C \|A_{t_{k}} - A_{t_{\infty}}\| \|y\|_{Y} + \|A_{t_{\infty}}\| \|x_{k} - x_{\infty}\|_{X} \\ &\leq C \|t_{\infty} - t_{k}\| \|A_{0} - A_{1}\| \|y\|_{Y} + \|A_{t_{\infty}}\| \|x_{k} - x_{\infty}\|_{X} \xrightarrow{k \to \infty} 0. \end{aligned}$$

Hence, $A_{t_{\infty}}x_{\infty} = y$. Since $y \in Y$ is arbitrary, $t_{\infty} \in I$ follows. Therefore, the set $I \subset [0, 1]$ is closed.

Since [0, 1] is a connected topological space and $I \subset [0, 1]$ both open and closed by (b) and (c), we have either $I = \emptyset$ or I = [0, 1]. According to Satz 6.2.2, A_1 is surjective if and only if A_1^* is injective with closed image. Hence, equivalence of (i) and (ii) follows:

- (i) $\Leftrightarrow 0 \in I \Rightarrow I = [0, 1] \Rightarrow A_1 \text{ surjective } \Leftrightarrow$ (ii)
- (ii) $\Leftrightarrow 1 \in I \Rightarrow I = [0,1] \Rightarrow A_0$ surjective \Leftrightarrow (i)