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Part |. Multiple choice questions

12.1. Let Q =10,1[" € R™ and let ' = {0,1}" C R™ be the set of vertices of Q.
Let u € H}(Q) be a weak solution of —Au = Au in @ for some X\ € R. Then,

(a) weC®(Q)but ug C*(Q)
(b) ue C®°(Q\T) but u ¢ C(Q)
(

() uel=(Q)

)
)

d) The answer depends on the dimension n € N.
)

(e

Since the domain () is not of class C*!, we can not apply the boundary regularity
theory. However, we can do the following reflection trick. Let {ej,...,e,} be the
standard basis in R". Let Qo = @ and ug = 0. For every k € {1,...,n} we define
the connected, open domain ), C R"™ to be the interior of the closure of

Qi1 U (Qr—1+ex) U (Qr-1 — ex)

None of the above.

and ug to be the odd reflection of ug_; in both, direction e, and —e along the
corresponding faces of Q;_;. Provided that uz_; € H}(Qp_1) is a weak solution of
the equation —Au = Au in Qj_; we have that u;, € Hj(Qk) is a weak solution of the
equation —Au = Au in Q)x. The proof of this fact is analogous to the solution of
problem 9.2. By interior elliptic regularity, u, is smooth in the interior of Q);. Iterating

this argument for all k£ € {1,...,n} proves u € C*(Q) because @, =|—1,2[" DD Q.

Remark. The argument above shows that if A € R is a Dirichlet eigenvalue of —A
in Q, then \ is also a Dirichlet eigenvalue of —A in the larger domain @, DD Q.
However, even if X is the first eigenvalue of —A in @, it is not the first eigenvalue of
—A in @, since the corresponding eigenfunction u, changes sign.
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12.2. Let Q C R™ be a smooth and connected open domain. Suppose u € C*(Q)
satisfies u > 0, u Z 0, ulsgo = 0 and Au + Au = 0 for some A € R. Then,

(a) A is the largest negative Dirichlet eigenvalue of the operator —A.
(b) A=0.
(c) A is the smallest positive Dirichlet eigenvalue of the operator —A.
(d)
(e)

Since u # 0 and u|sq = 0 integration by parts yields

A is a positive eigenvalue of —A, but not necessarily the smallest one.

None of the above.

O</|Vu|2d:p:—/uAudx:/\/Ude = A>0.
Q Q Q

We claim that A equals the smallest Dirichlet eigenvalue A; of —A. Indeed, recall
that A; has a unique eigenfunction w; (up to multiples), which is smooth up to the
boundary by elliptic regularity. Recall also that u; > 0 in Q, up to changing its sign.
Consider now the biggest constant pu > 0 such that u — pu; > 0 everywhere on Q.
The function v := u — puy > 0 vanishes at the boundary and satisfies

—Av = u — A\jpuy > Au — A\puy = Ao >0

since A > \;. Hence, by the strong maximum principle, either v = 0, in which case
we have that v is a multiple of u; and so A = Ay, or v > 0 on 2. Assuming we are in
the second case, we want to reach a contradiction. By E. Hopf’s lemma (applied to
the function —v, with a;; := §;; and ¢ := 0), we have d,v < 0. Choose now any 1 > 0
so small that d,(v —nuy) < 0 on 9. By smoothness of €, if € > 0 is small enough
then the set C, := {z € Q: dist(x,9Q) < €} can be expressed as

Co={y—tv(y): y€ 0, 0 <t <e}
By uniform continuity of Vu and Vu, if € is small enough we also have
Oy (v = nua)(y — tr(y)) <0
for all y € 092 and all 0 <t < ¢, hence
t
(v =)y — () = = | duyuly - su(y)) ds 2 0

and we get u > (u+ n)u; on C.. On the other hand, 2\ C. CC €, so here v is
bounded from below by a positive constant and we can find " > 0 such that

v—nu; >0 inQ\C..

So u > (pu +min{n, n’})u; on Q, contradicting the maximality of .
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12.3. For which n € N is the following statement true? Let 2 C R™ be an open,
bounded domain of class C'. Then,

Ve>0 3IC <00 Yue HY(Q): [ull agqy < ellVaull 2y + Cllull 2o
) forallneN.
) only for n € {1,2,3,4}.
c¢) only for n € {1,2,3}.
) only for n € {2,3}.
) None of the above.
As Q is bounded, the embedding L*(Q2) — L?*(Q) is continuous by Holder’s inequality.
If n = 1 the embedding H'(Q) — C°() is compact and C°(Q2) — L*(Q) continuously.
If n = 2 the embedding H'(Q) — L%(Q) is compact for any 1 < g < oo.
If n = 3 the embedding H'(Q) < L*(2) is compact because 4 < 2% = 6.

The right hand side of the inequality is €| Vul| ;. + C||ul| ;2 = el|ul| ;1 + (C — €)||u]| ;2.
Hence, for n € {1,2,3}, the claim follows from the interpolation inequality proven in
problem 11.5 (respectively Lemma 10.4.2) with X = H'| Y = L* and Z = L.

If n = 4 the embedding H'(Q) — L*(Q) is only continuous and not compact. In
fact, we can show that the statement does not hold in this case: Let Q = B;(0) C R™.
Given any u € C2°(£2) and any k € N, let

ur(y) = ku(ky), = Vu(y) = K*Vu(ky)
which we extend by zero to functions in 2. Recall the scaling properties
2 274 2 2
dz — / k) 2R dy = k / dy,
L@ de = [ [u(y)*k* dy = &2 [ jun(y)P dy
4 444 4
dz = / k) [k dy = / dy,
L) de = [ jury)** dy = [ fuey)]*dy
LIvw@P e = [ [(Vu)ky) Pkt dy = [ [(Vu) ()] dy.
Assuming the statement to be true, we obtain
C
[ull oy = llurllpagq) < ellVurll o) + Cllurllr2) = ellVullp2q) + EHUHm(m

Letting k& — oo yields [Ju|| ;4 < e]|Vu||. which can not be true for arbitrary ¢ > 0
unless u = 0.
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12.4. Assume —Au = f in the open unit ball B; C R" for some function f € C°(B;)
satisfying | f(x)| <1 for all x € By and |f| # 1 and some u € C?(B;) vanishing along
the boundary 0B;. Then, for every x € B;

@ Ju@)| < &l

(b) Ju(z)| < %MQ and equality may occur at some point in Bj.

() fu(@)| < 2 (1= l*).

(d) Ju(z)| < i(l - |:17|2> and equality may occur at some point in Bj.
(e) None of the above.

The example u(z) = 1-(1 — |z*) with —Au = 1 =: f shows that %mz is not an
upper bound for |u(z)| in general.

Observe that the function v(z) 1= 5-(1— |z|?) satisfies —Av = 1 and v|yp, = 0. Hence
—A(u—v) = f—1<0, so by the maximum principle

max(u —v) = max(u —v) =0 = u <.
B 0B1
Notice that u(x) < v(z) for every interior point x € By, since otherwise the strong
maximum principle would give that u — v is constant, hence u —v = 0 by the boundary
conditions. However, —Au = f # 1 = —Awv. Replacing v and f with —u and —f in
the argument above, we obtain —v < u < v in Bj.
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12.5. Given z = (z',2%,...,2") € R" we define 2’ = (z',2?,..., 2" 1) € R
Consider the domain 2 = {$ = (2/;2") e R": |(2/, 2™ —1)] < 1, 2" < 1} and let

Tn Yn
$: Q0 — Bf m
; Q; — B
(', 2™) — (ﬁ’,x”—1+\/1—|x’|2) |
a,/,/ /

be a diffecomorphism flattening the lower part I' = 0QN9dB;(0, 1) of the boundary of .
Let u € HY(Q) be a weak solution with vanishing trace on I' of the equation

—Au =div f
where f = (f!,..., f")" € C*(2;R"). Then, the equation solved by v := w0 &~ is
—div(a- Vo) = div(b- (fo @)

with (n X n)-matrices a = a(y) and b = b(y) given by

(a) a = Ian, b= Ian

Tdgn-1 (Z/)T, _
(b) a= , ST b =1dge

L 2
Vi W

Idgn-1 )T Idwn_1 (y)7
(c) a= ( Y 1—1|y"2 , b= ( " 1—y’|2)

Vi-yPE WP 0 1

Tdgn 1 % Idgn1 0
(d) a=| _, U b=y

V-l P 1—|y')? 1=y

(e) None of the above.

The inverse map ¥ := ®&~!: B; — Q is given by U(y/,y") = (y’,y” +1—4/1-— \y’\Q).
The Jacobi matrices of ® and ¥ are given by

(d2) >—(IdR“ O) () >—(IdR7‘1 0)
W= Po\EE )

Since we have the Euclidean metric gg on §2, we equip B; with the Riemannian metric

h=Ugs = (dD)T - (dV).
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The equation —Ag u = divy, f in €2 for v implies that v = u o U satisfies
—Apv = (divy, f) o W = divy ((d¥) " - (fo¥)) in B

using formula (10.4.3) from the notes. We compute v/det h = |det(d¥)| = 1 and

1 8 > E)v a .. av
Apv = —— A<\/d thh”.) = .(h”.),
" Vet oy \ Oy’ dy*\ Oy’
divy X — 1 6’(\/detﬁX) _0X

Vdeth 9y dyt’
where X := (d¥)~! . (f o ¥) and Einstein’s summation convention is used. Hence,
Ianfl 0
b= (d¥) ' = (dPo V) = —y/ 1]
a=(h")y=h"'=(dPo W) (dPo W)

(2T L -7

- (mlR;/_l (1)) . (mRn_l \/%) [ e T
e -y — ! 1

1-ly'[? 0 1 \/1—y\y'|2 1-ly'[?

where we computed
) (2T 712 1
y . ¥) . |y|/2+1: -
Vi— )P Ji-ly| 1 -y 1 -y
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Part Il. True or false?

12.6. Let 2 < n € N, let Q := B%(O) C R™ and let g: B, — R be given by
g(z) = log log(gl‘). Then, g is in the Morrey space L*"((Q).

(a) True.
(b) False.

By definition, any f € L*"(Q) satisfies f € L?(Q) and
1 2
sup </ | f] d:l:><oo
20, 0<r<1 \T"™ JQ, (z0)
which implies f € L>(§2) by the Lebesgue differentiation theorem; but g ¢ L>(Q2).

12.7. Let 2 < n € N, let Q := B%(O) C R"™ and let g: B, — R be given by
g(z) = loglog(X). Then, g is in the Campanato space £>"((2).

(a) True.

z|

(b) False.

We have g € Wh™(Q) as shown in Beispiel 8.1.2. Moreover, for every 0 < r < 1,

2

1 o, 1 L \= 1-2
L No=ga e (] Jg=g, ) ([ var) (1
" JQ (z0) r Qr(z0) Qr (o)
Cn72 %
<O (C’r” / |Vg]”dx> (2)
rn Q- (z0)
< C”vQHin(Q)

where we applied Hélder’s inequality in step (1) and the Poincaré inequality (Satz 8.6.6)
in step (2). Note that the constants C' do not depend on r nor zy. Hence,

1

1 o 2
[9]lc2n = sup (/Q ( )\9 ~ Gaorl dl") < CHVQHLn(Q) < 00.
r(Z0

20€Q, O<r<1 \T"
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12.8. Let 2<n € Nand := B1 CR". Then, L*™(Q) € L2™(Q).
(a) True.
(b) False.

Let f € L?>"(2). Recall that f

xo,T

| o= Par=min [ |f—afde< [ |fPdr
Qr(z0) ’ a€R JQr(z0) Qr(z0)

Therefore [f]z2n < || f|| ;2. which implies L?™(Q2) C £L*>™(Q). As shown in the previous
questions the inclusion is indeed strict.

= m Jo,(zy) £ d has the property that

12.9. Let 2 C R" be any open, bounded domain. Then,

l J—
30 <00 Yue CH@: o < bl g + Cllulmge
(a) True.
(b) False.

The embedding C2(Q) < C*(Q) is compact (as proven in Satz 8.6.2 using Arzéla—

Ascoli) and the embedding C'*(Q) < H'(f2) is continuous. Hence, the claim follows
1

from the interpolation inequality proven in problem 11.5 with € = §.
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12.10. Let © C R™ be any bounded domain. Given 0 < o < 1 let f € C%*(Q).
Then there exists g € C>*(R") such that g|qg = f.

(a) True.
(b) False.
Given f € C%%(Q), let [f]co := sup % and consider f: R" — R given by
z,yef
f@) = inf (f(y) + [flooely — =|%).

yeQ
By definition, of f we have Vo € Q: f(z) < f(z). Moreover, by definition of [f]co.,
Vo,y € Qo f(@) < fy) + [fleoely — 2| = Ve eQ: flx) < f(a).
Therefore, flg = f. We claim that f € CO*(R"). Since y +— f(y) + [f]coa|y — z|* is

continuous for any r € R" and Q compact, the infimum defining f(x) is attained at
some T € ). Let x,y € R™ be arbitrary. Assuming f(x) > f(y) we have

0 < f(x) = f(y) = f@) + [fleoslT — 2|" = f@) = [Fleoslz —yI*
< F@) + [fleoels — 21" = £@) = [fleoslz — yI°

fleoa (7 — 2 = [7—y|%)

fleoa ([7— 2 =7 —y])"

fleoala — y|*.

Note that we applied the following lemma: For real values 0 < s < t and exponents
0 < a < 1, there holds

0<t*—s*<(t—s)"

=
<
<

Proof. Since { € [0,1] and 0 < o < 1, we have 1 — ($)* < (1 — 1) < (1= $)* The

claim follows by multiplication with ¢¢. O]

Hence, f e C"*(R™). Let p € C(R™) satisfy 0 < p < 1, ¢|g =1 and |¢’| < 1. Then,
g = @f is compactly supported, satisfies g|q = f and for every x,y € supp g C supp ¢,

l9(x) — 9)| = () f(x) — (@) F(y) + (@) F(y) — W) [ (y)]
< le@)|[f (@) = )] + () — W f ()]
< [fleoalr —y|* + |z — yH|fHCO(supp<p)
< ([flcoe + diam(supp ©)' | Fllcoupp ) )12 = 1°
which proves g € C%%(R™).
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12.11. Let 2 CC R" be any open, bounded, smooth domain and let u € H} (D) be
the unique weak solution of Au = (1 + |z|*) in Q. Then, u > 0 in Q.

(a) True.

(b) False.

By elliptic regularity, u € C?(Q). Moreover, —Au < 0 in Q and u|sq = 0. Hence,
u < 0 in © by the maximum principle. (We also must have u # 0, thus u % 0.)

12.12. Let Q CC R" be any open, bounded, smooth domain and let u € H}(Q2) be
the unique weak solution of Au = (1 + |z|?) in Q. Then, u(z) # 0 for every x € Q.

(a) True.

(b) False.

By elliptic regularity, u € C?(Q). Moreover, —Au < 0 in Q and u|sq = 0. Hence,
u < 0 in © by the maximum principle. Suppose, u(xy) = 0 at some zy € 2. Then, u
attains an interior maximum at xy which by the strong maximum principle implies
u = 0. This however contradicts Au = (1 + |z|*).

10/12 last update: 28 May 2018



D-MATH Functional Analysis Il ETH Ziirich
Prof. A. Carlotto Solution to Problem Set 12 Spring 2018

12.13. Let B; C R? be the unit disc. Let u € Ch*(By) satisfy
Vo € C%(B,) : /

Then, u € C*(By).
(a) True.
(b) False.

By assumption, u € C*(By) is a weak solution to the (minimal surface) equation

dw(v“) —0 inB,.

V14 |[Vaul?

As computed in problem 10.12, this equation reads

2 g 2 _
Lu =Y a’u; =0, (a) = (1 U u1u2>

_ 2
i1 uug 14 uy

in non-divergence form, where the subscripts denote partial derivatives. Since we
assume u € CH*(By), we have IVullgocp,) < oo and

trace(a’) = 2 + |Vu|* > 2 > 0,
det(a”) = (1 +u3)(1 + u}) + (uyug)® > 1 >0,

which proves that L is uniformly elliptic. Moreover, since u € CV%(B;) by assumption,
we have @ € C%*(By). Thus, by the interior elliptic regularity theory we have
u € C** which implies u € C?(By).
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12.14. If a non-negative function u € C?(B;) solves Au = cu for some ¢ € C°(By)
and satisfies © > 0 on 9By, then v > 0 in Bj.

(a) True.
(b) False.

If by contradiction u vanishes somewhere in B;, then we can find a ball B CC B,
with u|p > 0 and u(xy) = 0 for some zy € IB. Indeed, take a ray yo + tv, with |v| =1
and t € [0, oo, starting at a point yo where u vanishes and passing through a point
where u > 0. Then take e.g. ¢ to be the minimum value such that

f(t) == dist(yo + tv, {u = 0}) — 5 dist(yo + tv, 0B)

vanishes and notice that yy + tv € By, since f(0) < 0 and f(T') > 0, T being the
unique time for which yo +7Tv € 9B;. Finally, set r := dist(yo + tv, {u = 0}) > 0, put
B := B,(yo + tv) and call zy a point in {u = 0} with minimum distance from yq + tv,
so that xg € dB. Now observe that, even if ¢ can change sign on B, we have

—Au+ctu=cu>0.

Hence, —u satisfies the hypotheses of E. Hopf’s lemma in B implying 0,(—u)(x¢) > 0
and thus u(zg + ev) < 0 for sufficiently small € > 0, contradicting u > 0.

12.15. Ifu € H(By) N Coa(Bl) weakly solves —Au + cu = 0 in the unit ball

loc

B, C R” for some function ¢ € C{:%(By) then u € C2¥(By).

loc
(a) True.

(b) False.

Observe that, if f,g € C2%(By), then fg € C%(By) as we can write

U@w@)—ﬂwﬂwISU@Wﬂ@—ﬂ@H I(HU() ()]

|z —y[* |z —y[* |z —y|*

and all the terms in the right-hand side are bounded when x,y vary in a compact
subset of By. From this it easily follows that, if f, g € CF%(B;), then fg € Cl*(By)

loc loc

as well. Now we can prove that u € C’k“a(Bl) for all 0 < k < 6, by induction on

loc

k: the base step holds since cu € CY%(By), so that the interior Schauder estimates
give u € C’loc (B1). The inductive step is similar: by inductive hypothesis we know

that u E e +2a(Bl), so in particular (being k < 6) ¢,u € C%(B;) and finally

loc
cu € CP(By), giving u € CEF(By) by interior Schauder estimates.

loc
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