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Part I. Multiple choice questions

12.1. Let Q = ]0, 1[n ⊂ Rn and let Γ = {0, 1}n ⊂ Rn be the set of vertices of Q.
Let u ∈ H1

0 (Q) be a weak solution of −∆u = λu in Q for some λ ∈ R. Then,

(a) u ∈ C∞(Q) but u /∈ C∞(Q)

(b) u ∈ C∞(Q \ Γ) but u /∈ C∞(Q)
√

(c) u ∈ C∞(Q)

(d) The answer depends on the dimension n ∈ N.

(e) None of the above.

Since the domain Q is not of class C1, we can not apply the boundary regularity
theory. However, we can do the following reflection trick. Let {e1, . . . , en} be the
standard basis in Rn. Let Q0 = Q and u0 = 0. For every k ∈ {1, . . . , n} we define
the connected, open domain Qk ⊂ Rn to be the interior of the closure of

Qk−1 ∪ (Qk−1 + ek) ∪ (Qk−1 − ek)

and uk to be the odd reflection of uk−1 in both, direction ek and −ek along the
corresponding faces of Qk−1. Provided that uk−1 ∈ H1

0 (Qk−1) is a weak solution of
the equation −∆u = λu in Qk−1 we have that uk ∈ H1

0 (Qk) is a weak solution of the
equation −∆u = λu in Qk. The proof of this fact is analogous to the solution of
problem 9.2. By interior elliptic regularity, uk is smooth in the interior of Qk. Iterating
this argument for all k ∈ {1, . . . , n} proves u ∈ C∞(Q) because Qn = ]−1, 2[n ⊃⊃ Q.

Remark. The argument above shows that if λ ∈ R is a Dirichlet eigenvalue of −∆
in Q, then λ is also a Dirichlet eigenvalue of −∆ in the larger domain Qn ⊃⊃ Q.
However, even if λ is the first eigenvalue of −∆ in Q, it is not the first eigenvalue of
−∆ in Qn since the corresponding eigenfunction un changes sign.
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12.2. Let Ω ⊂ Rn be a smooth and connected open domain. Suppose u ∈ C2(Ω)
satisfies u ≥ 0, u 6≡ 0, u|∂Ω = 0 and ∆u+ λu = 0 for some λ ∈ R. Then,

(a) λ is the largest negative Dirichlet eigenvalue of the operator −∆.

(b) λ = 0.
√

(c) λ is the smallest positive Dirichlet eigenvalue of the operator −∆.

(d) λ is a positive eigenvalue of −∆, but not necessarily the smallest one.

(e) None of the above.

Since u 6≡ 0 and u|∂Ω = 0 integration by parts yields

0 <
∫

Ω
|∇u|2 dx = −

∫
Ω
u∆u dx = λ

∫
Ω
u2 dx ⇒ λ > 0.

We claim that λ equals the smallest Dirichlet eigenvalue λ1 of −∆. Indeed, recall
that λ1 has a unique eigenfunction u1 (up to multiples), which is smooth up to the
boundary by elliptic regularity. Recall also that u1 > 0 in Ω, up to changing its sign.
Consider now the biggest constant µ ≥ 0 such that u − µu1 ≥ 0 everywhere on Ω.
The function v := u− µu1 ≥ 0 vanishes at the boundary and satisfies

−∆v = λu− λ1µu1 ≥ λ1u− λ1µu1 = λ1v ≥ 0

since λ ≥ λ1. Hence, by the strong maximum principle, either v ≡ 0, in which case
we have that u is a multiple of u1 and so λ = λ1, or v > 0 on Ω. Assuming we are in
the second case, we want to reach a contradiction. By E.Hopf’s lemma (applied to
the function −v, with aij := δij and c := 0), we have ∂νv < 0. Choose now any η > 0
so small that ∂ν(v − ηu1) < 0 on ∂Ω. By smoothness of Ω, if ε > 0 is small enough
then the set Cε := {x ∈ Ω : dist(x, ∂Ω) ≤ ε} can be expressed as

Cε = {y − tν(y) : y ∈ ∂Ω, 0 ≤ t ≤ ε}.

By uniform continuity of ∇u and ∇v, if ε is small enough we also have

∂ν(y)(v − ηu1)(y − tν(y)) < 0

for all y ∈ ∂Ω and all 0 ≤ t ≤ ε, hence

(v − ηu1)(y − tν(y)) = −
∫ t

0
∂ν(y)u(y − sν(y)) ds ≥ 0

and we get u ≥ (µ + η)u1 on Cε. On the other hand, Ω \ Cε ⊂⊂ Ω, so here v is
bounded from below by a positive constant and we can find η′ > 0 such that

v − η′u1 ≥ 0 in Ω \ Cε.

So u ≥ (µ+ min{η, η′})u1 on Ω, contradicting the maximality of µ.
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12.3. For which n ∈ N is the following statement true? Let Ω ⊂ Rn be an open,
bounded domain of class C1. Then,

∀ε > 0 ∃C <∞ ∀u ∈ H1(Ω) : ‖u‖L4(Ω) ≤ ε‖∇u‖L2(Ω) + C‖u‖L2(Ω)

(a) for all n ∈ N.

(b) only for n ∈ {1, 2, 3, 4}.
√

(c) only for n ∈ {1, 2, 3}.

(d) only for n ∈ {2, 3}.

(e) None of the above.

As Ω is bounded, the embedding L4(Ω) ↪→ L2(Ω) is continuous by Hölder’s inequality.

If n = 1 the embedding H1(Ω) ↪→ C0(Ω) is compact and C0(Ω) ↪→ L4(Ω) continuously.

If n = 2 the embedding H1(Ω) ↪→ Lq(Ω) is compact for any 1 ≤ q <∞.

If n = 3 the embedding H1(Ω) ↪→ L4(Ω) is compact because 4 < 2n
n−2 = 6.

The right hand side of the inequality is ε‖∇u‖L2 +C‖u‖L2 = ε‖u‖H1 + (C − ε)‖u‖L2 .
Hence, for n ∈ {1, 2, 3}, the claim follows from the interpolation inequality proven in
problem 11.5 (respectively Lemma 10.4.2) with X = H1, Y = L4 and Z = L2.

If n = 4 the embedding H1(Ω) ↪→ L4(Ω) is only continuous and not compact. In
fact, we can show that the statement does not hold in this case: Let Ω = B1(0) ⊂ R4.
Given any u ∈ C∞c (Ω) and any k ∈ N, let

uk(y) := k u(ky), ⇒ ∇uk(y) = k2∇u(ky)

which we extend by zero to functions in Ω. Recall the scaling properties∫
Ω
|u(x)|2 dx =

∫
Ω
|u(ky)|2k4 dy = k2

∫
Ω
|uk(y)|2 dy,∫

Ω
|u(x)|4 dx =

∫
Ω
|u(ky)|4k4 dy =

∫
Ω
|uk(y)|4 dy,∫

Ω
|(∇u)(x)|2 dx =

∫
Ω
|(∇u)(ky)|2k4 dy =

∫
Ω
|(∇uk)(y)|2 dy.

Assuming the statement to be true, we obtain

‖u‖L4(Ω) = ‖uk‖L4(Ω) ≤ ε‖∇uk‖L2(Ω) + C‖uk‖L2(Ω) = ε‖∇u‖L2(Ω) + C

k
‖u‖L2(Ω).

Letting k → ∞ yields ‖u‖L4 ≤ ε‖∇u‖L2 which can not be true for arbitrary ε > 0
unless u ≡ 0.
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12.4. Assume −∆u = f in the open unit ball B1 ⊂ Rn for some function f ∈ C0(B1)
satisfying |f(x)| ≤ 1 for all x ∈ B1 and |f | 6≡ 1 and some u ∈ C2(B1) vanishing along
the boundary ∂B1. Then, for every x ∈ B1

(a) |u(x)| < 1
2n |x|

2.

(b) |u(x)| ≤ 1
2n |x|

2 and equality may occur at some point in B1.
√

(c) |u(x)| < 1
2n

(
1− |x|2

)
.

(d) |u(x)| ≤ 1
2n

(
1− |x|2

)
and equality may occur at some point in B1.

(e) None of the above.

The example u(x) := 1
4n(1 − |x|2) with −∆u = 1

2 =: f shows that 1
2n |x|

2 is not an
upper bound for |u(x)| in general.

Observe that the function v(x) := 1
2n(1−|x|2) satisfies −∆v = 1 and v|∂B1 = 0. Hence

−∆(u− v) = f − 1 ≤ 0, so by the maximum principle

max
B1

(u− v) = max
∂B1

(u− v) = 0 ⇒ u ≤ v.

Notice that u(x) < v(x) for every interior point x ∈ B1, since otherwise the strong
maximum principle would give that u−v is constant, hence u−v = 0 by the boundary
conditions. However, −∆u = f 6≡ 1 = −∆v. Replacing u and f with −u and −f in
the argument above, we obtain −v < u < v in B1.
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12.5. Given x = (x1, x2, . . . , xn) ∈ Rn we define x′ = (x1, x2, . . . , xn−1) ∈ Rn−1.
Consider the domain Ω = {x = (x′, xn) ∈ Rn : |(x′, xn − 1)| < 1, xn < 1} and let

Φ: Ω→ B+
1

(x′, xn) 7→
(
x′, xn − 1 +

√
1− |x′|2

)
x′

xn

+
Ω →

y′

yn

+
B+

1

be a diffeomorphism flattening the lower part Γ = ∂Ω∩∂B1(0, 1) of the boundary of Ω.
Let u ∈ H1(Ω) be a weak solution with vanishing trace on Γ of the equation

−∆u = div f

where f = (f 1, . . . , fn)ᵀ ∈ C1,α(Ω;Rn). Then, the equation solved by v := u ◦ Φ−1 is

− div(a · ∇v) = div
(
b · (f ◦ Φ−1)

)
with (n× n)-matrices a = a(y) and b = b(y) given by

(a) a = IdRn , b = IdRn

(b) a =

 IdRn−1
(y′)ᵀ√
1−|y′|2

y′√
1−|y′|2

1+|y′|2

1−|y′|2

, b = IdRn

(c) a =

 IdRn−1
(y′)ᵀ√
1−|y′|2

y′√
1−|y′|2

1
1−|y′|2

, b =
IdRn−1

(y′)ᵀ√
1−|y′|2

0 1



√
(d) a =

 IdRn−1
−(y′)ᵀ√
1−|y′|2

−y′√
1−|y′|2

1
1−|y′|2

, b =
 IdRn−1 0

−y′√
1−|y′|2

1


(e) None of the above.

The inverse map Ψ := Φ−1 : B1 → Ω is given by Ψ(y′, yn) =
(
y′, yn + 1−

√
1− |y′|2

)
.

The Jacobi matrices of Φ and Ψ are given by

(dΦ)(x) =
 IdRn−1 0

−x′√
1−|x′|2

1

 , (dΨ)(y) =
 IdRn−1 0

y′√
1−|y′|2

1

 .
Since we have the Euclidean metric gE on Ω, we equip B1 with the Riemannian metric

h = Ψ∗gE = (dΨ)ᵀ · (dΨ).
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The equation −∆gEu = divgE f in Ω for u implies that v = u ◦Ψ satisfies

−∆hv = (divgE f) ◦Ψ = divh
(
(dΨ)−1 · (f ◦Ψ)

)
in B1

using formula (10.4.3) from the notes. We compute
√

deth = |det(dΨ)| ≡ 1 and

∆hv = 1√
deth

∂

∂yi

(√
dethhij ∂v

∂yj

)
= ∂

∂yi

(
hij

∂v

∂yj

)
,

divhX = 1√
deth

∂(
√

dethX i)
∂yi

= ∂X i

∂yi
,

where X := (dΨ)−1 · (f ◦Ψ) and Einstein’s summation convention is used. Hence,

b = (dΨ)−1 = (dΦ ◦Ψ) =
 IdRn−1 0

−y′√
1−|y′|2

1

 ,
a = (hij) = h−1 = (dΦ ◦Ψ) · (dΦ ◦Ψ)ᵀ

=
 IdRn−1 0

−y′√
1−|y′|2

1

 ·
IdRn−1

−(y′)ᵀ√
1−|y′|2

0 1

 =

 IdRn−1
−(y′)ᵀ√
1−|y′|2

−y′√
1−|y′|2

1
1−|y′|2


where we computed

−y′√
1− |y′|2

· −(y′)ᵀ√
1− |y′|2

+ 1 = |y′|2

1− |y′|2
+ 1 = 1

1− |y′|2
.
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Part II. True or false?

12.6. Let 2 ≤ n ∈ N, let Ω := B 1
2
(0) ⊂ Rn and let g : Br → R be given by

g(x) = log log( 1
|x|). Then, g is in the Morrey space L2,n(Ω).

(a) True.
√

(b) False.

By definition, any f ∈ L2,n(Ω) satisfies f ∈ L2(Ω) and

sup
x0∈Ω, 0<r<1

( 1
rn

∫
Ωr(x0)

|f |2 dx
)
<∞

which implies f ∈ L∞(Ω) by the Lebesgue differentiation theorem; but g /∈ L∞(Ω).

12.7. Let 2 ≤ n ∈ N, let Ω := B 1
2
(0) ⊂ Rn and let g : Br → R be given by

g(x) = log log( 1
|x|). Then, g is in the Campanato space L2,n(Ω).

√
(a) True.

(b) False.

We have g ∈ W 1,n(Ω) as shown in Beispiel 8.1.2. Moreover, for every 0 < r < 1,

1
rn

∫
Ωr(x0)

|g − gx0,r|
2 dx ≤ 1

rn

(∫
Ωr(x0)

|g − gx0,r|
n dx

) 2
n
(∫

Ωr(x0)
1 dx

)1− 2
n

(1)

≤ Crn−2

rn

(
Crn

∫
Ωr(x0)

|∇g|n dx
) 2
n

(2)

≤ C‖∇g‖2
Ln(Ω)

where we applied Hölder’s inequality in step (1) and the Poincaré inequality (Satz 8.6.6)
in step (2). Note that the constants C do not depend on r nor x0. Hence,

[g]L2,n = sup
x0∈Ω, 0<r<1

( 1
rn

∫
Ωr(x0)

|g − gx0,r|
n dx

) 1
2
≤ C‖∇g‖Ln(Ω) <∞.
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12.8. Let 2 ≤ n ∈ N and Ω := B 1
2
⊂ Rn. Then, L2,n(Ω) ( L2,n(Ω).

√
(a) True.

(b) False.

Let f ∈ L2,n(Ω). Recall that fx0,r
:= 1
|Ωr(x0)|

∫
Ωr(x0) f dx has the property that

∫
Ωr(x0)

|f − fx0,r|
2 dx = min

a∈R

∫
Ωr(x0)

|f − a|2 dx ≤
∫

Ωr(x0)
|f |2 dx.

Therefore [f ]L2,n ≤ ‖f‖L2,n which implies L2,n(Ω) ⊂ L2,n(Ω). As shown in the previous
questions the inclusion is indeed strict.

12.9. Let Ω ⊂ Rn be any open, bounded domain. Then,

∃C <∞ ∀u ∈ C1, 1
2 (Ω) : ‖u‖C1(Ω) ≤

1
9‖u‖C1, 1

2 (Ω)
+ C‖u‖H1(Ω).

√
(a) True.

(b) False.

The embedding C1, 1
2 (Ω) ↪→ C1(Ω) is compact (as proven in Satz 8.6.2 using Arzéla–

Ascoli) and the embedding C1(Ω) ↪→ H1(Ω) is continuous. Hence, the claim follows
from the interpolation inequality proven in problem 11.5 with ε = 1

9 .
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12.10. Let Ω ⊂ Rn be any bounded domain. Given 0 < α < 1 let f ∈ C0,α(Ω).
Then there exists g ∈ C0,α

c (Rn) such that g|Ω = f .
√

(a) True.

(b) False.

Given f ∈ C0,α(Ω), let [f ]C0,α := sup
x,y∈Ω

|f(x)−f(y)|
|x−y|α and consider f̃ : Rn → R given by

f̃(x) = inf
y∈Ω

(
f(y) + [f ]C0,α |y − x|α

)
.

By definition, of f̃ we have ∀x ∈ Ω : f̃(x) ≤ f(x). Moreover, by definition of [f ]C0,α ,

∀x, y ∈ Ω : f(x) ≤ f(y) + [f ]C0,α|y − x|α ⇒ ∀x ∈ Ω : f(x) ≤ f̃(x).

Therefore, f̃ |Ω = f . We claim that f̃ ∈ C0,α(Rn). Since y 7→ f(y) + [f ]C0,α|y − x|α is
continuous for any x ∈ Rn and Ω compact, the infimum defining f̃(x) is attained at
some x ∈ Ω. Let x, y ∈ Rn be arbitrary. Assuming f̃(x) ≥ f̃(y) we have

0 ≤ f̃(x)− f̃(y) = f(x) + [f ]C0,α|x− x|α − f(y)− [f ]C0,α |y − y|α

≤ f(y) + [f ]C0,α |y − x|α − f(y)− [f ]C0,α|y − y|α

= [f ]C0,α

(
|y − x|α − |y − y|α

)
≤ [f ]C0,α

(
|y − x| − |y − y|

)α
≤ [f ]C0,α |x− y|α.

Note that we applied the following lemma: For real values 0 < s ≤ t and exponents
0 < α < 1, there holds

0 ≤ tα − sα ≤ (t− s)α.

Proof. Since s
t
∈ [0, 1] and 0 < α < 1, we have 1− ( s

t
)α ≤ (1− s

t
) ≤ (1− s

t
)α. The

claim follows by multiplication with tα.

Hence, f̃ ∈ C0,α(Rn). Let ϕ ∈ C∞c (Rn) satisfy 0 ≤ ϕ ≤ 1, ϕ|Ω ≡ 1 and |ϕ′| ≤ 1. Then,
g := ϕf̃ is compactly supported, satisfies g|Ω = f and for every x, y ∈ supp g ⊂ suppϕ,

|g(x)− g(y)| = |ϕ(x)f̃(x)− ϕ(x)f̃(y) + ϕ(x)f̃(y)− ϕ(y)f̃(y)|
≤ |ϕ(x)||f̃(x)− f̃(y)|+ |ϕ(x)− ϕ(y)||f̃(y)|
≤ [f ]C0,α |x− y|α + |x− y|‖f̃‖C0(suppϕ)

≤
(
[f ]C0,α + diam(suppϕ)1−α‖f̃‖C0(suppϕ)

)
|x− y|α

which proves g ∈ C0,α
c (Rn).
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12.11. Let Ω ⊂⊂ Rn be any open, bounded, smooth domain and let u ∈ H1
0 (Ω) be

the unique weak solution of ∆u = (1 + |x|2) in Ω. Then, u ≥ 0 in Ω.

(a) True.
√

(b) False.

By elliptic regularity, u ∈ C2(Ω). Moreover, −∆u < 0 in Ω and u|∂Ω = 0. Hence,
u ≤ 0 in Ω by the maximum principle. (We also must have u 6≡ 0, thus u 6≥ 0.)

12.12. Let Ω ⊂⊂ Rn be any open, bounded, smooth domain and let u ∈ H1
0 (Ω) be

the unique weak solution of ∆u = (1 + |x|2) in Ω. Then, u(x) 6= 0 for every x ∈ Ω.
√

(a) True.

(b) False.

By elliptic regularity, u ∈ C2(Ω). Moreover, −∆u < 0 in Ω and u|∂Ω = 0. Hence,
u ≤ 0 in Ω by the maximum principle. Suppose, u(x0) = 0 at some x0 ∈ Ω. Then, u
attains an interior maximum at x0 which by the strong maximum principle implies
u ≡ 0. This however contradicts ∆u = (1 + |x|2).
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12.13. Let B1 ⊂ R2 be the unit disc. Let u ∈ C1,α(B1) satisfy

∀ϕ ∈ C∞c (B1) :
∫
B1

∇u · ∇ϕ√
1 + |∇u|2

dx = 0.

Then, u ∈ C2(B1).
√

(a) True.

(b) False.

By assumption, u ∈ C1,α(B1) is a weak solution to the (minimal surface) equation

div
(

∇u√
1 + |∇u|2

)
= 0 in B1.

As computed in problem 10.12, this equation reads

Lu :=
2∑

i,j=1
aijuij = 0, (aij) :=

(
1 + u2

2 −u1u2
−u1u2 1 + u2

1

)

in non-divergence form, where the subscripts denote partial derivatives. Since we
assume u ∈ C1,α(B1), we have ‖∇u‖C0(B1) <∞ and

trace(aij) = 2 + |∇u|2 ≥ 2 > 0,
det(aij) = (1 + u2

2)(1 + u2
1) + (u1u2)2 ≥ 1 > 0,

which proves that L is uniformly elliptic. Moreover, since u ∈ C1,α(B1) by assumption,
we have aij ∈ C0,α(B1). Thus, by the interior elliptic regularity theory we have
u ∈ C2,α which implies u ∈ C2(B1).
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12.14. If a non-negative function u ∈ C2(B1) solves ∆u = cu for some c ∈ C0(B1)
and satisfies u > 0 on ∂B1, then u > 0 in B1.

√
(a) True.

(b) False.

If by contradiction u vanishes somewhere in B1, then we can find a ball B ⊂⊂ B1
with u|B > 0 and u(x0) = 0 for some x0 ∈ ∂B. Indeed, take a ray y0 + tv, with |v| = 1
and t ∈ [0,∞[, starting at a point y0 where u vanishes and passing through a point
where u > 0. Then take e. g. t to be the minimum value such that

f(t) := dist(y0 + tv, {u = 0})− 1
2 dist(y0 + tv, ∂B1)

vanishes and notice that y0 + tv ∈ B1, since f(0) < 0 and f(T ) > 0, T being the
unique time for which y0 +Tv ∈ ∂B1. Finally, set r := dist(y0 + tv, {u = 0}) > 0, put
B := Br(y0 + tv) and call x0 a point in {u = 0} with minimum distance from y0 + tv,
so that x0 ∈ ∂B. Now observe that, even if c can change sign on B, we have

−∆u+ c+u = c−u ≥ 0.

Hence, −u satisfies the hypotheses of E.Hopf’s lemma in B implying ∂ν(−u)(x0) > 0
and thus u(x0 + εν) < 0 for sufficiently small ε > 0, contradicting u ≥ 0.

12.15. If u ∈ H1(B1) ∩ C0,α
loc (B1) weakly solves −∆u + cu = 0 in the unit ball

B1 ⊂ Rn for some function c ∈ C6,α
loc (B1) then u ∈ C8,α

loc (B1).
√

(a) True.

(b) False.

Observe that, if f, g ∈ C0,α
loc (B1), then fg ∈ C0,α

loc (B1) as we can write

|f(x)g(x)− f(y)g(y)|
|x− y|α

≤ |f(x)| |g(x)− g(y)|
|x− y|α

+ |g(y)| |f(x)− f(y)|
|x− y|α

and all the terms in the right-hand side are bounded when x, y vary in a compact
subset of B1. From this it easily follows that, if f, g ∈ Ck,α

loc (B1), then fg ∈ Ck,α
loc (B1)

as well. Now we can prove that u ∈ Ck+2,α
loc (B1) for all 0 ≤ k ≤ 6, by induction on

k: the base step holds since cu ∈ C0,α
loc (B1), so that the interior Schauder estimates

give u ∈ C2,α
loc (B1). The inductive step is similar: by inductive hypothesis we know

that u ∈ C(k−1)+2,α
loc (B1), so in particular (being k ≤ 6) c, u ∈ Ck,α

loc (B1) and finally
cu ∈ Ck,α

loc (B1), giving u ∈ Ck+2,α
loc (B1) by interior Schauder estimates.
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