Sample Questions 1

- For what exponents p does $\{0\} \subset \mathbb{R}^n$ have vanishing $W^{1,p}$ -capacity?
- What is an elliptic operator? Give examples and non-examples.
- Prove existence of solutions $u \in C^{2,\alpha}$ of the elliptic equation

$$\sum \frac{\partial}{\partial x_i} \left(a_{ij} \frac{\partial u}{\partial x_j} \right) + cu = f$$

provided that solutions exist in the case c = 0.

• Discuss existence of weak derivatives of the functions

$$\begin{array}{ll} f \colon \mathbb{R} \to \mathbb{R}, & g \colon \mathbb{R} \to \mathbb{R}. \\ x \mapsto |x| & x \mapsto \frac{x}{|x|} \end{array}$$

Sample Questions 2

- Define the Sobolev space $W^{1,p}(\Omega)$ and discuss its properties.
- State the spectral theorem for the Laplace operator on a bounded domain Ω . Explain why the operator $K \colon L^2(\Omega) \to L^2(\Omega)$ mapping $f \in L^2(\Omega)$ to the weak solution u of $-\Delta u = f$ in Ω is compact.
- What can you say about the regularity of the eigenfunctions of $-\Delta$ in the interior and on the boundary of the domain?
- Let $B_R \subset \mathbb{R}^n$ be the ball of radius R > 0. For p < n and $q \leq \frac{np}{n-p}$ consider

 $\|f\|_{L^q(B_R)} \le CR^{\alpha} \|\nabla f\|_{L^p(B_R)}$

and compute α by scaling.

Sample Questions 3

- Define $H_0^1(\Omega)$. Characterise $H_0^1(\Omega)$ in terms of trace operators.
- Prove the Poincaré inequality for $H_0^1(\Omega)$. Do you know any similar inequality without null boundary conditions?
- Prove E. Hopf's boundary point lemma.
- Consider the Hamiltonian for the quantum oscillator on the interval]-1,1[i.e. $L = -\Delta + V$ where $0 \le V \in C^0(]-1,1[)$ (for instance $V(x) := \frac{1}{2}|x|^2$). What can you say about its spectrum?