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Exercise Sheet 1

Please hand in your solutions by January 26, 2018. If you have any troubles
with understanding the material of the lecture or solving the exercises,
please ask questions in your exercise class.

All the definitions needed for intrinsic manifolds can be found in
Chapter 2.8 of the lecture notes from last semester.

1. In this exercise, we will introduce projective spaces. They are an important
class of differential manifolds.

a) The real projective plane RP 2 is the set

RP 2 = {` ⊂ R3 : ` is a 1-dimensional linear subspace}

of real lines in R3. It can be identified with the quotient space

RP 2 =
(
R3 \ {0}

)
/R∗

of nonzero vectors in R3 modulo the action of the multiplicative group
R∗ = R \ {0} of nonzero real numbers. The equivalence class of a
nonzero vector x = (x0, x1, x2) ∈ R3 \ {0} will be denoted by

[x] = [x0 : x1 : x2] := {λx : λ ∈ R∗}.

We define subsets Ui = {[x] ∈ RP 2 : xi 6= 0} and charts φi : Ui → R2 by
[x] 7→ (xj/xi, xk/xi) for i = 0, 1, 2 and where {i, j, k} = {0, 1, 2}, j < k.
(i) Check that RP 2 with the atlas {φi}i=0,1,2 is a smooth manifold of

dimension 2.
(ii) Check that the intrinsic manifold topology is the quotient topology

of RP 2

Remark: Note how this definition is more natural than the one seen
in exercise 4 of sheet 2 of the first semester.

b) The complex projective space CP 1 is the set

CP 1 = {` ⊂ C2 : ` is a 1-dimensional complex linear subspace.}

of complex lines in C2. It can be identified with the quotient space

CP 1 =
(
C2 \ {0}

)
/C∗
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of nonzero vectors in C2 modulo the action of the multiplicative group
C∗ = C \ {0} of nonzero complex numbers. The equivalence class of a
nonzero vector z = (z0, z1) ∈ C2 \ {0} will be denoted by

[z] = [z0 : z1] := {λz : λ ∈ C∗}.

(i) Find an atlas, which makes CP 1 into a smooth manifold.
(ii) Find an explicit diffeomorphism between CP 1 and the sphere S2.
Remark: RP n and CP n can be defined similarly for all n ≥ 0.

2. a) We define ϕ1 : R → R : x 7→ x and ϕ2 : R → R : x 7→ x3. Prove
that Ai = {ϕi} are smooth atlases for R with i = 1, 2. Prove that
A = A1 ∪ A2 is not an atlas. Prove that (R,A1) is diffeomorphic to
(R,A2).
Remark: It can be proven that in dimension 1,2 and 3, every un-
derlying topological space of a smooth manifold has only one smooth
manifold structure up to diffeomorphism. It is an open question whether
S4 has a unique differentiable structure. A remarkable result by Don-
aldson give uncountably many non-diffeomorphic smooth structures on
R4. Another result by Milnor says that S7 allows exactly 28 different
smooth structures up to diffeomorphisms.

b) Prove that any submanifoldM of Rn as seen in the last semester is also
an intrinsic manifold.
Remark: The Whitney Embedding Theorem gives a converse to this
statement. Namely, for every intrinsic m-manifold M , there is an em-
bedding as submanifold into Rn for n = 2m. So intrinsic manifolds are
the same concept as submanifolds in Rn from last semester. However
this semester, in the context of differential topology, we only want to
study properties of manifolds up to diffeomorphisms and not manifolds
and their specific embedding into Rn. This is why we need the more
abstract concept of intrinsic manifolds.

3. a) We identify CP 1 with C∪{∞} by [z : 1] 7→ z and [1 : 0] 7→ ∞. Consider
the map f : C∪{∞} → C∪{∞} given by z 7→ 1

z
for z 6= 0 and 0 7→ ∞.

Prove that this defines a smooth diffeomorphism f : CP 1 → CP 1.

b) Prove that the map g : S2 → RP 2 : (x0, x1, x2) 7→ [x0 : x1 : x2] is a
smooth double cover.
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4. LetM be a manifold with an atlas A = {(φα, Uα)}α∈A. We give the following
two definitions of the tangent space at p ∈M .
(i) Two smooth curves γ0, γ1 : R → M with γ0(0) = γ1(0) = p are called

p-equivalent if for some (and hence every) α ∈ A with p ∈ Uα we have
d

dt

∣∣∣∣∣
t=0
φα(γ0(t)) = d

dt

∣∣∣∣∣
t=0
φα(γ1(t)).

We write γ0
p∼ γ1 if γ is p-equivalent to γ1 and denote the equivalence

class of a smooth curve γ : R→M with γ(0) = p by [γ]p. The tangent
space of M at p is the set of equivalence classes

TpM := {[γ]p : γ : R→M is smooth and γ(0) = p}.

(ii) The A-tangent space of M at p is the quotient space
TAp M :=

⋃
p∈Uα

{α} × Rm/ ∼p,

where the union runs over all α ∈ A with p ∈ Uα and
(α, ξ) ∼p (β, η) ⇐⇒ d(φβ ◦ φ−1

α )(x)ξ = η, x := φα(p).
The equivalence class will be denoted by [α, ξ]p.

Show that the natural map

TpM 7→ TAp M : [γ]p 7→
[
α,

d

dt

∣∣∣∣∣
t=0
φα(γ(t))

]
is well-defined and bijective.
Since TAp M has a canonical vector space structure of dimension m, this
bijection induces a vector space structure on the set TpM . This exercise
shows that both definitions of tangent space are equivalent.

5. Let M be a m-manifold with an atlas A = {(φα, Uα)}α∈A.

a) Define the tangent bundle as
TM =

⋃
p∈M
{p} × TpM,

and denote by π : TM →M the projection given by π(p, v) := p.
Prove that TM is a smooth 2m-dimensional manifold with atlas con-
sisting of the charts

φ̃α : Ũα := π−1(Uα)→ φα(Uα)× Rm : (p, v) 7→ (φα(p), dφα(p)v)
for α ∈ A. Also, verify that π : TM →M is a smooth submersion.
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b) We give the following two definitions of vector fields.
(i) A mapX : M → TM is a vector field ifX is smooth and π◦X = id.

Denote the set of such maps X by Vect(M).
(ii) A collection of smooth maps Xα : φα(Uα)→ Rm for α ∈ A is called
A-vector field if for all α, β ∈ A and all x ∈ φα(Uα ∩ Uβ), we have
Xβ(φβα(x)) = dφβα(x)Xα(x). Denote the set of such collections
{Xα}α∈A by VectA(M).

Define the map Vect(M)→ VectA(M) by

X 7→ {Xα}α∈A where Xα(x) := dφα(p)X(p), p := φ−1
α (x).

Prove that this map is well-defined and bijective.

6. a) Prove that there exists a canonical isomorphism T`RP n ∼= L(`, `⊥)
where ⊥ is the orthogonal complement with respect to the Euclidean
metric on Rn+1.

b) Prove that the tangent bundle TT3 of the three torus is diffeomorphic
to T3 × R3. Characterise vector fields on T3.
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