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Holiday Sheet 14

No model solutions will be provided and you should not hand in your
solutions. Have a nice summer vacation.

1. The Grassmannian of k-planes in Rn is defined as the set

Gr(n, k) := {E |E ⊂ Rn is a k-dimensional linear subspace}.

a) Show that as a set Gr(n, k) admits the following descriptions
(i) Gr(n, k) ∼= {A ∈ Rn×k | det(ATA) 6= 0}/GL(k,R)
(ii) Gr(n, k) ∼= {A ∈ Rn×k |ATA = 1}/O(k)
where GL(k,R) and O(k) act by multiplication from the right side.

b) Endow Gr(n, k) with the structure of a smooth manifold. For this
provide explicit charts and investigate the transition maps. In order
to verify that you found the right atlas, verify that the projection map
from {A ∈ Rn×k | det(ATA) 6= 0} onto Gr(n, k) is a smooth submersion.

c) What is the dimension of Gr(n, k)?

d) Show that there exists a canonical isomorphism

TEGr(n, k) ∼= Hom(E,E⊥).

Hint: This generalizes our discussion of projective space RPn = Gr(n+ 1, 1). Revisit our
discussion of these spaces if you get stuck.

2. The Grassmannian of complex k-planes in Cn is defined as the set

GrC(n, k) := {E |E ⊂ Cn is a complex k-dimensional linear subspace}.

a) Show that as a set GrC(n, k) admits the following descriptions:
(i) GrC(n, k) = {A ∈ Cn×k | det(A∗A) 6= 0}/GL(k,C)
(ii) GrC(n, k) = {A ∈ Cn×k |A∗A = 1}/U(k)
where GL(k,C) and U(k) act by multiplication from the right side.

b) Endow GrC(n, k) with the structure of a smooth manifold. For this
provide explicit charts and investigate the transition maps. In order to
verify that you found the right atlas, verify that the projection map from
{A ∈ Cn×k, | det(A∗A) 6= 0} onto GrC(n, k) is a smooth submersion.

c) What is the (real) dimension of GrC(n, k)?
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d) Show that there exists a canonical isomorphism

TEGrC(n, k) ∼= Hom(E,E⊥).

Hint: This generalizes our discussion of projective space CPn = GrC(n+ 1, 1). Revisit our
discussion of these spaces if you get stuck.

3. The tautological vector bundle over the Grassmannian Gr(n, k) is defined as

E := {(P, v) |P ∈ Gr(n, k), v ∈ P}

a) Show that E defines a smooth rank k vector bundle over Gr(n, k).

b) Let M be a compact manifold and let F be a smooth rank k vector
bundle vector M . Show that there exists a smooth map f : M →
Gr(n, k) into some Grassmannian such that

F = f ∗E := {(p, v) | p ∈M, v ∈ Ef(p) = f(p)}

where E → Gr(n, k) denotes the tautological bundle.

Remark: We show in the next exercise that two homotopic maps give rise
to isomorphic vector bundles. It then follows that one can classify vector
bundles over M in terms of homotopy classes of maps from M to Gr(n, k).

Hint: For both parts, the extrinsic point of view from the last semester might be useful: Suppose
M ⊂ RN and E ⊂ RN × Rn with linear subspaces in Rn as fibres. Then E is a smooth vector bundle
if and only if the associated field of orthogonal projections is smooth. Recall that every intrinsically
defined vector bundle E →M admits such an embedding.

4. a) * Let M and N be smooth manifolds and let E be a smooth vector
bundle over N and let

f : [0, 1]×M → N, f(t, p) := ft(p)

be a smooth homotopy. Choose a connection ∇ on the bundle f ∗E over
[0, 1]×M . Then parallel transport along the curves γp(t) := (t, p) gives
rise to a bundle isomorphism f ∗0E

∼= f ∗1E. Fill in the necessary details
of this argument!

b) Show that every vector bundle over a contractible space is trivial.
Hint: This exercise requires some background on connections on vector bundles and parallel
transport which were not covered in the lecture. Part b) follows from the observation that the
pullback bundle under a constant map is trivial.
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5. a) Let Σ be a closed oriented surface. Show that the bundle TΣ ⊕ R ∼=
Σ× R3 is trivial.

b) Let Y be a closed oriented 3-dimensional manifold. Show that for ev-
ery 2-dimensional closed oriented submanifold Σ ⊂ Y the restriction
TY |Σ ∼= Σ× R3 is trivial.

c) ** If you have the necessary background in algebraic topology, you can
try to conclude that TY ∼= Y × R3 is trivial.

Hint: For c): First choose a triangulation of Y . Then TY can be trivialized over the 1-skeleton,
because Y is orientable. Part b) asserts that the second Stiefel–Whitney class w2(TY ) = 0 vanishes
and hence TY can be trivialized over the 2-skeleton. This trivialization extends to the total bundle,
since π2(SO(3)) = 0 is trivial.

6. Let G ⊂ U(n) be a compact real Lie group with Lie algebra g.

a) Define δ : Λkg∗ → Λk+1g∗ by

(δf)(ξ1, . . . , ξk+1) :=
∑

1≤i<j≤k+1
(−1)i+j−1f([ξi, ξj], ξ1, . . . , ξ̂i, . . . , ξ̂j, . . . , ξk+1)

+
k∑
i=1

(−1)if(ξ1, . . . , ξ̂i, . . . , xk+1).

where ξ̂i means that the corresponding entry is omitted. Every f ∈ Λkg∗

gives rise to a k-form on τf ∈ Ωk(G) defined by

(τf )g(gξ1, . . . , gξk) := f(ξ1, . . . , ξk).

Show that dτf = τδf . Moreover, τf is exact, if and only if there exists
h ∈ Λk−1g∗ with f = δh.

b) A k-form ω ∈ Ωk(G) is called bi-invariant when

L∗gω = ω = R∗gω for all g ∈ G

where Lg, Rg : G → G are defined by Lg(h) := gh and Rg(h) := hg.
Denote by φ : G→ G, φ(g) := g−1, the inversion map. Show that

φ∗ω = (−1)kω for all bi-invariant ω ∈ Ωk(G).

Conclude from this that ω is closed and [ω] ∈ Hk(G) represents a non-
trivial cohomology class when ω 6= 0.

3



D-Math
Prof. Dr. D.A. Salamon Differential Geometry II FS 18

May 31, 2018

7. Let G ⊂ U(n) be a compact real Lie group with Lie algebra g. Define a
Riemannian metric on G by

〈gξ, gη〉 := 1
2tr(ξ

∗η)

for g ∈ G and ξ, η ∈ g = T1G.

a) Every abelian Lie group G is a flat Riemannian manifold.

b) Show that σ ∈ Ω3(G) defined by

σg(gξ, gη, gζ) = 〈ξ, [η, ζ]〉

is a well-defined and bi-invariant 3-form on G.

c) Suppose G is not abelian, then H3(G) 6= 0.

d) Conclude that Sn for n 6= 0, 1, 3 cannot be equipped with the structure
of a Lie group.

Hint: For part a): We have calculated the curvature in the first semester. For part b) use the
previous exercise to show that [σ] ∈ H3(G) is well-defined and non-trivial.

8. Let π : E →M and π′ : M ′ → E ′ be oriented real rank n vector bundles over
compact oriented smooth manifolds without boundary. Let φ : M ′ →M and
Φ : E ′ → E be smooth maps with π′ ◦ Φ = φ ◦ π. Assume that the fibre
maps Φ|Ep : Ep → E ′φ(p) are orientation preserving vector space isomorphism
for every p ∈M . Prove that

τ(E) = Φ∗τ(E ′).

where τ(E) ∈ Hn
c (E) and τ(E ′) ∈ Hn

c (E ′) denote the Thom classes.

9. Let E be a rank m vector bundle over a smooth compact m-manifold M
without boundary. Let s be a section of this bundle with isolated but nec-
essarily transverse zeros. Define the index i(s, p) for every p ∈ s−1(0) and
prove the formula ∫

M
e(E) =

∑
s(p)=0

i(s, p)

where e(E) ∈ Ωm(M) is the Euler class of E.

4



D-Math
Prof. Dr. D.A. Salamon Differential Geometry II FS 18

May 31, 2018

10. The zeta-function of a smooth map f : M →M is given by

ζf (t) := exp
( ∞∑
n=1

L(fn)tn
n

)
, (1)

where L(fn) = L(f ◦ f ◦ · · · f) denotes the Lefschetz number.

a) Why is the right hand side of the equality well-defined for t sufficiently
small, i.e. why does the the sum on the right hand side of (1) converge
for small t.

b) Prove det(1− tA) = exp
(
−trace

(∑∞
n=1

tnAn

n

))
for all small t.

c) Using b) prove the formula

ζf (t) =
m∏
i=1

det
(
1− tf ∗ : H i(M)→ H i(M)

)(−1)i+1

= det(1− tf ∗ : Hodd(M)→ Hodd(m))
det(1− tf ∗ : Hev(M)→ Hev(M))

Hint: For a): For a square matrix A ∈ Rk×k it holds tr(A)n =
∑k

i=1 λ
n
i where λi are the

generalized eigenvalues of A, i.e. the diagonal entries of its Jordan normal form. For b): Recall or
proof the formulas det(exp(A)) = exp(tr(A)) and log(1−A) = −

∑∞
n=1

An

n
for the matrix

exponential and for the matrix logarithm.

11. Compute the zeta function of the previous exercise is the following cases.

a) Take f : T 2 → T 2 : (x, y)→ (ax+ by, cx+ dy) with a, b, c, d ∈ Z.

b) Take f : Sk → Sk and express the result in terms of deg(f).

c) Take f = id : M →M whereM is a compact oriented manifold without
boundary. Express the result in terms of the Euler characteristic χ(M).

12. Deduce from the Lefschetz fixed point theorem the following.

a) The Brouwer fixed point theorem: Every smooth map f : Dk → Dk

has a fixed point.

b) Every smooth map f : RP k → RP k has a fixed point for k even.

c) Prove that for every f : CP k → CP k, there is a number d ∈ Z, such
that

L(f) = 1 + d+ d2 + . . . dn.

Deduce that f has a fixed point when k is even.
Hint: For c), use the ring structure of the cohomology of CPk.
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13. Let A ∈ Cn×n be a square matrix. Prove that A has an eigenvector.
Hint: If detA 6= 0, then use A to define a map φA : CPn−1 → CPn−1. Prove that this map is
homotopic to the identity and use this to compute the Lefschetz number of φA. Understand what
the fixed points of φA are.

14. Let M be an compact m-manifold without boundary. We call ω ∈ Ω2(M) a
symplectic form if ω is closed and ω is non-degenerate. Here non-degenerate
means that for p ∈ M and a non-zero vector v ∈ TpM , there is a vector
w ∈ TpM such that ωp(v, w) 6= 0. Assume M admits a symplectic form.

a) Prove that any vector space V with a non-degenerate 2-form ω admits
an isomorphism Φ : V → R2n such that Φ∗ω0 = ω, where

ω0 :=
n∑
i=1

dx2i−1 ∧ dx2i.

b) Prove that m has to be even. Put m = 2n.

c) Prove that ω is non-degenerate if and only if ωn = ω∧ . . .∧ω (n times)
is a volume form.

d) Adapt Moser’s argument for volume forms, to prove that given any
smooth family of symplectic forms ωt with t ∈ [0, 1] and with constant
cohomology class [ωt] = a ∈ H2(M), there is a smooth family of diffeo-
morphisms ψt on M for t ∈ [0, 1] such that

ψ0 = id, ψ∗tω1 = ω0.

You may assume the fact that there is a smooth family σt ∈ Ω1(M)
such that d

dt
ωt = dσt. This can be proven using Hodge theory, which

goes beyond the scope of this course.

e) Use Moser’s argument to prove that for every point p ∈ M , there is
a chart ϕp : U → R2n such that ϕ∗pω0 = ω where ω0 is as in a). This
result is known as Darboux’s theorem. It implies that there are no local
invariants in symplectic geometry.

Have a nice summer holiday!
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