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Exercise 12.1 Application of It6’s formula. Give the semimartingale decomposition
of the following processes:

(a) X;:=t’Bp;
(b) Y; := exp(tBy);
(c) Z; = B} — 3tB,.

Solution 12.1

(a) Let f(z,y) = 2%y’
t t 1 t
X = f(6B) = Xo+ [ 0uf (s, B)ds+ [ 0,0(s. B)AB.+ 3 [ 0,05, Bu)ds
0 0 0
t t
:/ 5SQB§dBS—|—/ (2sB2 + 10s°B3)ds,
0 0

where the first term is the local martingale and the second term is the bounded
variation process.

(b) Let f(z,y) = exp(xy), we have

Ouf = yexp(zy); 0y f = zexp(zy)
Oyy | = 1% exp(zy).

The It6’s formula gives
t t 1t
Y, =1 +/ sexp(sBs)dBs + / Bsexp(sBs)ds + 5/ s2exp(sBs)ds | .
0 0 0

(c) Let f(z,y) =y — 3zy, we have

O f = —3y; c?z,f:3y2 — 3z
Oyy f = 6y.

In particular 9, f + %Oyy f =0, we have therefore Z; is itself a local martingale (we
have already seen it in Exercise 8.3) and

t t
Zt:/ 8yf(s,BS)dBS:/ 3B? — 3sdB,.
0 0
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Exercise 12.2 Geometric Brownian motion. Let b € R, ¢ > 0, B the standard
one-dimensional Brownian motion. Let S be the solution to the stochastic differential
equation

dSt == bStdt + O'StClBt7 SQ =1. (1)

(a) Show that Y; := e~*S; solves
dY;J = O'Y;det.

(b) Show that S; = exp(bt) exp(0cB; — 0%t/2).
Solution 12.2

(a) Since the function z — bx and x — oz are globally Lipschitz, the strong solution to
the SDE (1) exists for all £ > 0 and is unique up to 0-probability event.

Applying the It6’s formula to Y; = f(¢,S:) where f(z,y) = exp(—bx)y, we have

dY; = e "dS; — be ! S;dt = e b (bS;dt + 0 S;dBy) — be Pt Sydt = oYydB.

(b) The SDE for Y has also a unique strong solution given that Yy = 1. This equation in
fact characterizes the exponential martingale £(o B), which gives that

Y; = exp(o By — 0°t/2).
‘We obtain therefore

S, = exp(bt)S; = exp(bt) exp(cB; — 02t /2).
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Exercise 12.3 Let D be a bounded domain in R? with regular boundary, a be a continuous
bounded function in D. Use It&’s formula to show that if U is continuous in D, C? in D,

AU(z) = —2a(x), VreD

and U equal to 0 on the boundary of D, then for x € D,

U(z) = E, </0T a(BS)ds> ,

where T' = inf{t > 0, B; ¢ D}.

Solution 12.3

Assume that F' is a solution to the above similar problem to the Dirichlet problem.
We show that it must equal to U. Let T be the hitting time of B at the boundary of D.
Consider the process

t
Z; = F(BT) +/ a(BI)ds.
0
Since F is C?, we can apply Ito’s formula: for t < T,
1

Therefore Z is a continuous local martingale. Moreover,

2 (ggl&\) <1F o+l E(T) < o0, @

it implies that Z is a uniformly integrable martingale. The uniform integrability follows
from
A—oc0

ilzlgE (|Zt| 1|Zt\>A) <F (?g%)'Zt’ 1supt>0Zt|>A> —0.

It also yields that Z is a martingale. In fact, let (7,,) be a family of stopping times which
converges to co almost surely, such that Z™ is a martingale. Then we have for s < ¢,

Bz Fs] = Z5.

The inequality (2) gives that (ZI"),>0 is a uniformly integrable family, which converges

almost surely and in L' to Zg as n — oo, therefore E[Z;|F,] = Z,, which says that Z is a

(u.i.) martingale. Therefore from the L' martingale convergence theorem, Z; converges in
L' to

Zo = F(Br) + /OT o(By)ds = /OT o(By)ds,

since F' = 0 on the boundary. One gets

T
F(e) = EZ] = E|Zo] = E (/0 a(BS)ds> — U(x).
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Exercise 12.4 Feynman-Kac. Let f € CZ(RY) and V € Cy(R?Y). Suppose that u €
C’; 2(R, x RY) satisfies the partial differential equation

1
ng fAu—i—quon]Rer]R and u(0,-) = f on RY

Fix T € (0,00), consider the process
t
M; = u(T —t, B;)E;, where E; = exp / V(Bs)ds | .
0
Show that M is a local martingale, and for all T € R, x € R? we have that

F(Br) exp ( I v<BS>ds>

where B is a standard Brownian motion.

u(T,z) = E,

Solution 12.4 Let u denote the derivative of u with respect to the first parameter and
0;u denote the derivative of u with respect to the i-th coordinate of its second parameter,
B the i-th coordinate of B, for i < d. By It&’s formula, we have that

+ Etu( — t, Bt)V(Bt)dt

Since u is solution to the PDE, the drift term vanishes and M is a local martingale. We have
also that M is uniformly bounded on [0,7] as u € C’;’Q and FE; is bounded by exp(T'||V]| )
on [0,T]. Therefore M is a martingale. Hence

u(T, .CU) = M() = Ex(MT) = Ex(f(BT)ET)

as desired.
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Exercise 12.5 Tanaka’s example. When f is a smooth function with f(0) = 0, recall
that [j sgn(f(s))df(s) = | f(t)], where sgn(z) = 1,50 — l,<0. The goal of this exercise is to
show how different things are when one replaces f by Brownian motion:

(a) Show that if X is a (one-dimensional) Brownian motion, then

t
B; = / sgn(Xs)dXs
0
is a Brownian motion.
(b) Show that X; = [ sgn(X)dBs.

(c) Show that if Y = — X, then Y; = [ sgn(Y;)dB;.
Solution 12.5

(a) The process B, defined as [jsgn(X;)dX;s is a local martingale. The quadratic
variation is given by

(B)t:/otsgn(Xs)zd(X>8:/Ot Ids = t.

We conclude that B is a Brownian motion from Lévy’s characterization of Brownian
motion.

(b) From Exercise 11.2,
sgn(X) - B = sgn(X) - (sgn(X) - X) = (sgn(X))*- X = X,
which means almost surely for all ¢ > 0, X; = f(f sgn(X;)dBs.

(c) f Y ==X, then
Y =—sgn(X) - B=sgn(Y) -B—2lx—-B.

The local martingale
t
Zt = (1X:0 . B)t = /0 1Xs=UdBS
has quadratic variation (Z), = fg 1x,=ods. Its expected value is given by
t t
E((2),) = E / Lx.ods | = / P(X, = 0)ds = 0
0 0

therefore (Z) is almost surely constantly zero which implies that Z = 0. We conclude
that Y =sgn(Y) - B.
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Exercise 12.6 Bessel processes. Let B be a d-dimensional Brownian motion started
from 0, d > 2.

(a) Write the semimartingale decomposition of Z; := || By||*.

(b) Using Lévy’s characterization of Brownian motion, show that there exists a (one-
dimensional) Brownian motion /5 such that

t
Z :/ 2/ Z;dBs +d x t.
0

This is the squared Bessel SDE, and Z is called the squared Bessel process of
dimension d.

(c) Show that if X =+/Z =||By||, then

d—1 rt ds

Xi = B +

2 Jo Xy

The solution X is called the Bessel process of dimension d.
Notice that the Bessel SDEs still make sense when d is not integer. Let d > 2, and X be
the solution of Jo1

X = —_— Xo=0.
d t dﬁt"i’ 2Xt dt> 0 0

(d) Show that (M; := Xf_;ld)tzo is a local martingale for the filtration (F;)i>o :=
(Ft+1)20-

(e) Show that for A\ > 1, the process
Mt = A" Mypa—1
has the same law as M, where oo = (d — 2) /2.

(f) Assume that d > 3 is an integer, show that E(Mp) < co and deduce that E(M;) is
decreasing with ¢, and M can not be a martingale.

Solution 12.6
(a) We write By = (Bi4,-- -, Bgy). Using It6’s formula,
d d
dZ = d (> B}, | =) (2Bi1dB;; + dt).
i=1 i=1

That is

d rt
Zi=> /0 (2B; sdB; ) +d x t.
=1
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(b)

The quadratic variation of Y; := Zle fot (2B; s dB; 5) equals to

d

t t t

/ > 4B? ds = / 4Z,ds = / (2v/Z)* ds.
0 i ’ 0 0

Therefore let = (2v/Z)~' - Y, we have

(8),=(@v2)"-Y) =t,

from Lévy’s characterization of Brownian motion, we have that § is a Brownian
motion and Y = (2v/Z) - 8. Therefore almost surely,

t
Zt:Yt+d><t:/ 2\/st,85+d><t.
0

Let T' = inf{t > 0, B; = 0} which is almost surely co. The function z — /z is C*
outside of {0}. Let £ > 0, from Itd’s formula, for e <t < T,
dz 1d(Z
ax, = dyz = 3% 14 >§
20VZy 247,
_2VZydBi+dx At 1d(Z),

2vV'Zy 247"
Since d(Z), = d <2ﬁ : 5>t — 47, dt, we obtain that
d—11
X, = e
d t dﬁt + 2 Xt dtv

which implies that almost surely,

d—1 [t 1
X=X — — | —ds.
t e+ B — B+ 9 . X, S
From the definition of X, as ¢ — 0, X. — 0 almost surely, therefore the integral on
the right-hand side has a limit almost surely as € —+ 0 and we get that

d—1 rt 1

X; = — | —ds.

t = P+ 5 ) X. ds

We use the It0’s formula to M:
2—-d)(1—-d
ar = (2 - jx;tax, + =D g ),
-1 2 — 1-—
= (2-d)X} 4B + (2 - d) g*d‘gX dt + ( d); d) X, dat

t

1-d
=2-d)X}/ dpf = (2 - d) M dB;.

which shows that M is a local martingale.
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(e)

First notice that the process X't = \"12x A+ solves the same equation as X. In fact
~ d—1 d—1 ~ d—1
dX, = A Y2dX,, = AV (B4 ——— dAt) = AV 2 dBy+——=— dt = df+——= dt,
: At (dBxe 5%, ) Bt 3é By 3é

where 8; = A71/23,,, and X, = 0. Therefore
M= X} = A(d72)/2X,%t_+d,\ = A*Mxp12-1
has the same law as M; and

E(M;) = E(M;) = \*E(Mxgir—1)-

We show the integrabiliby of My when d > 3 is an integer, so that we have the
interpretation of the Bessel process as the norm of the standard Brownian motion B
starting from 0, and

My =By,

As Bj has a density in R?, we have for all v > 1

—qy . C

P(My > u) = P([B1]*™ > u) = P(IBy|| <u!/ =) < Cu/C~ = 05,

Therefore ~
E(Mp) <1 +/ P(My > u)du < oo.
1

Since a > 0, we have A* > 1 as A > 1. From (e), which shows that for 0 <t < s,
and A= (s+1)/(t+1) > 1, we have

E(M;) = \*E(Ms) > E(Mj),

since similarly E(Mjy) is bounded by E(Mj) therefore finite, the strict inequality
makes sense. In consequence M is not a martingale.
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Exercise 12.7 Let 0 : R — R+ be a continuous function (not necessarily bounded). The
goal of the exercise is to show that any (weak) solution to the one-dimensional stochastic
differential equation

dXt = O'(Xt)dBt, XO =0 (3)

cannot explode. i.e. T'= oo where T be the explosion time of the solution (here it means
that X is defined for all ¢ > 0).

(a) Show that there exists a Brownian motion /3 such that X; = 3/, , and that (X), — oo
ast —T.

(b) Using dB; = (1/0(X;))dX: and the fact that the one-dimensional Brownian motion
is recurrent, show that 7" = co almost surely.

Solution 12.7

(a) If (X, B) is a solution to (3), then X is a local martingale. From Corollary 4.15, there
exists such a Brownian motion . Since {X;,t < T} = {6<X>t,t < T} is unbounded,
therefore (X)), — oo as t — oc.

(b) Since o(x) > 0 for all z € R and dB; = (1/0(X}))d Xz,

t 1 t 1 X 1

From the recurrence of one dimensional Brownian motion (that g visits every real
number infinitely many times), it is not hard to see that the right-most integral goes
to oo as (X), = (X)p = oo almost surely. Therefore T" = oo almost surely.

Hand in before: June 1.
Location: During the exercise class or in the tray outside of HG E 65.
Office hours (Présenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students | Time & Date Room Assistant
Al-Fr Fri 8-9 HG E 21 Martin Stefanik
Ga-Lag Fri 9-10 HG E 21 Martin Stefanik
Lan-Sche Fri 8-9 LFW E 13 | Mayra Bermudez
Scho-Zim Fri 12-13 HG E 22 Yilin Wang

9/9



