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Exercise 12.1 Application of Itô’s formula. Give the semimartingale decomposition
of the following processes:

(a) Xt := t2B5
t ;

(b) Yt := exp(tBt);

(c) Zt := B3
t − 3tBt.

Solution 12.1

(a) Let f(x, y) := x2y5,

Xt = f(t, Bt) = X0 +
∫ t

0
∂xf(s,Bs)ds+

∫ t

0
∂yf(s,Bs)dBs + 1

2

∫ t

0
∂yyf(s,Bs)ds

=
∫ t

0
5s2B4

sdBs +
∫ t

0
(2sB5

s + 10s2B3
s )ds,

where the first term is the local martingale and the second term is the bounded
variation process.

(b) Let f(x, y) = exp(xy), we have

∂xf = y exp(xy); ∂yf = x exp(xy)
∂yyf = x2 exp(xy).

The Itô’s formula gives

Yt = 1 +
∫ t

0
s exp(sBs)dBs +

(∫ t

0
Bs exp(sBs)ds+ 1

2

∫ t

0
s2 exp(sBs)ds

)
.

(c) Let f(x, y) = y3 − 3xy, we have

∂xf = −3y; ∂yf = 3y2 − 3x
∂yyf = 6y.

In particular ∂xf + 1
2∂yyf = 0, we have therefore Zt is itself a local martingale (we

have already seen it in Exercise 8.3) and

Zt =
∫ t

0
∂yf(s,Bs)dBs =

∫ t

0
3B2

s − 3sdBs.
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Exercise 12.2 Geometric Brownian motion. Let b ∈ R, σ > 0, B the standard
one-dimensional Brownian motion. Let S be the solution to the stochastic differential
equation

dSt = bStdt+ σStdBt, S0 = 1. (1)

(a) Show that Yt := e−btSt solves
dYt = σYtdBt.

(b) Show that St = exp(bt) exp(σBt − σ2t/2).

Solution 12.2

(a) Since the function x→ bx and x→ σx are globally Lipschitz, the strong solution to
the SDE (1) exists for all t ≥ 0 and is unique up to 0-probability event.
Applying the Itô’s formula to Yt = f(t, St) where f(x, y) = exp(−bx)y, we have

dYt = e−btdSt − be−btStdt = e−bt(bStdt+ σStdBt)− be−btStdt = σYtdBt.

(b) The SDE for Y has also a unique strong solution given that Y0 = 1. This equation in
fact characterizes the exponential martingale E(σB), which gives that

Yt = exp(σBt − σ2t/2).

We obtain therefore

St = exp(bt)St = exp(bt) exp(σBt − σ2t/2).
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Exercise 12.3 Let D be a bounded domain in Rd with regular boundary, α be a continuous
bounded function in D. Use Itô’s formula to show that if U is continuous in D, C2 in D,

∆U(x) = −2α(x), ∀x ∈ D

and U equal to 0 on the boundary of D, then for x ∈ D,

U(x) = Ex

(∫ T

0
α(Bs)ds

)
,

where T = inf{t ≥ 0, Bt /∈ D}.

Solution 12.3
Assume that F is a solution to the above similar problem to the Dirichlet problem.

We show that it must equal to U . Let T be the hitting time of B at the boundary of D.
Consider the process

Zt = F (BT
t ) +

∫ t

0
α(BT

s )ds.

Since F is C2, we can apply Itô’s formula: for t < T ,

dZt = ∇F (Bt) · dBt + α(Bt)dt+ 1
2∆F (Bt)dt = ∇F (Bt) · dBt.

Therefore Z is a continuous local martingale. Moreover,

E

(
sup
t≥0
|Zt|

)
≤‖F‖∞ +‖α‖∞E(T ) <∞, (2)

it implies that Z is a uniformly integrable martingale. The uniform integrability follows
from

sup
t≥0

E
(
|Zt| 1|Zt|>A

)
≤ E

(
sup
t≥0
|Zt| 1supt≥0|Zt|>A

)
A→∞−−−−→ 0.

It also yields that Z is a martingale. In fact, let (τn) be a family of stopping times which
converges to ∞ almost surely, such that Zτn is a martingale. Then we have for s ≤ t,

E[Zτn
t |Fs] = Zτn

s .

The inequality (2) gives that (Zτn
s )n≥0 is a uniformly integrable family, which converges

almost surely and in L1 to Zs as n→∞, therefore E[Zt|Fs] = Zs, which says that Z is a
(u.i.) martingale. Therefore from the L1 martingale convergence theorem, Zt converges in
L1 to

Z∞ = F (BT ) +
∫ T

0
α(Bs)ds =

∫ T

0
α(Bs)ds,

since F = 0 on the boundary. One gets

F (x) = E[Z0] = E[Z∞] = E

(∫ T

0
α(Bs)ds

)
= U(x).
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Exercise 12.4 Feynman-Kac. Let f ∈ C2
b (Rd) and V ∈ Cb(Rd). Suppose that u ∈

C1,2
b (R+ × Rd) satisfies the partial differential equation

∂u

∂t
= 1

2∆u+ V × u on R+ × Rd and u(0, ·) = f on Rd.

Fix T ∈ (0,∞), consider the process

Mt = u(T − t, Bt)Et, where Et = exp
(∫ t

0
V (Bs)ds

)
.

Show that M is a local martingale, and for all T ∈ R+, x ∈ Rd we have that

u(T, x) = Ex

f(BT ) exp
(∫ T

0
V (Bs)ds

)
where B is a standard Brownian motion.

Solution 12.4 Let u̇ denote the derivative of u with respect to the first parameter and
∂iu denote the derivative of u with respect to the i-th coordinate of its second parameter,
Bi the i-th coordinate of B, for i ≤ d. By Itô’s formula, we have that

dMt =

∑
i

∂iu(T − t, Bt)dBi
t + 1

2∆u(T − t, Bt)dt− u̇(T − t, Bt)dt

Et
+ Etu(T − t, Bt)V (Bt)dt.

Since u is solution to the PDE, the drift term vanishes andM is a local martingale. We have
also that M is uniformly bounded on [0, T ] as u ∈ C1,2

b and Et is bounded by exp(T‖V ‖∞)
on [0, T ]. Therefore M is a martingale. Hence

u(T, x) = M0 = Ex(MT ) = Ex(f(BT )ET )

as desired.
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Exercise 12.5 Tanaka’s example. When f is a smooth function with f(0) = 0, recall
that

∫ t
0 sgn(f(s))df(s) = |f(t)|, where sgn(x) = 1x≥0 − 1x<0. The goal of this exercise is to

show how different things are when one replaces f by Brownian motion:

(a) Show that if X is a (one-dimensional) Brownian motion, then

Bt :=
∫ t

0
sgn(Xs)dXs

is a Brownian motion.

(b) Show that Xt =
∫ t

0 sgn(Xs)dBs.

(c) Show that if Y = −X, then Yt =
∫ t

0 sgn(Ys)dBs.

Solution 12.5

(a) The process Bt defined as
∫ t

0 sgn(Xs)dXs is a local martingale. The quadratic
variation is given by

〈B〉t =
∫ t

0
sgn(Xs)2d 〈X〉s =

∫ t

0
1ds = t.

We conclude that B is a Brownian motion from Lévy’s characterization of Brownian
motion.

(b) From Exercise 11.2,

sgn(X) ·B = sgn(X) · (sgn(X) ·X) = (sgn(X))2 ·X = X,

which means almost surely for all t ≥ 0, Xt =
∫ t

0 sgn(Xs)dBs.

(c) If Y = −X, then

Y = − sgn(X) ·B = sgn(Y ) ·B − 21X=0 ·B.

The local martingale

Zt := (1X=0 ·B)t =
∫ t

0
1Xs=0dBs

has quadratic variation 〈Z〉t =
∫ t

0 1Xs=0ds. Its expected value is given by

E(〈Z〉t) = E

(∫ t

0
1Xs=0ds

)
=
∫ t

0
P(Xs = 0)ds = 0

therefore 〈Z〉 is almost surely constantly zero which implies that Z = 0. We conclude
that Y = sgn(Y ) ·B.
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Exercise 12.6 Bessel processes. Let B be a d-dimensional Brownian motion started
from 0, d ≥ 2.

(a) Write the semimartingale decomposition of Zt :=‖Bt‖2.

(b) Using Lévy’s characterization of Brownian motion, show that there exists a (one-
dimensional) Brownian motion β such that

Zt =
∫ t

0
2
√
Zs dβs + d× t.

This is the squared Bessel SDE, and Z is called the squared Bessel process of
dimension d.

(c) Show that if X =
√
Z =‖Bt‖, then

Xt = βt + d− 1
2

∫ t

0

ds
Xs

.

The solution X is called the Bessel process of dimension d.

Notice that the Bessel SDEs still make sense when d is not integer. Let d > 2, and X be
the solution of

dXt = dβt + d− 1
2Xt

dt, X0 = 0.

(d) Show that (Mt := X2−d
t+1 )t≥0 is a local martingale for the filtration (F̃t)t≥0 :=

(Ft+1)t≥0.

(e) Show that for λ > 1, the process

M̃t := λαMλt+λ−1

has the same law as M , where α = (d− 2)/2.

(f) Assume that d ≥ 3 is an integer, show that E(M0) <∞ and deduce that E(Mt) is
decreasing with t, and M can not be a martingale.

Solution 12.6

(a) We write Bt = (B1,t, · · · , Bd,t). Using Itô’s formula,

dZt = d

 d∑
i=1

B2
i,t

 =
d∑
i=1

(2Bi,t dBi,t + dt).

That is

Zt =
d∑
i=1

∫ t

0
(2Bi,s dBi,s) + d× t.
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(b) The quadratic variation of Yt :=
∑d
i=1

∫ t
0(2Bi,s dBi,s) equals to

∫ t

0

d∑
i=1

4B2
i,s ds =

∫ t

0
4Zs ds =

∫ t

0
(2
√
Zs)2 ds.

Therefore let β = (2
√
Z)−1 · Y , we have

〈β〉t =
〈

(2
√
Z)−1 · Y

〉
t

= t,

from Lévy’s characterization of Brownian motion, we have that β is a Brownian
motion and Y = (2

√
Z) · β. Therefore almost surely,

Zt = Yt + d× t =
∫ t

0
2
√
Zs dβs + d× t.

(c) Let T = inf{t > 0, Bt = 0} which is almost surely ∞. The function z 7→
√
z is C∞

outside of {0}. Let ε > 0, from Itô’s formula, for ε ≤ t < T ,

dXt = d
√
Zt = dZt

2
√
Zt
− 1

2
d 〈Z〉t
4
√
Zt

3

= 2
√
Zt dβt + d× dt

2
√
Zt

− 1
2

d 〈Z〉t
4
√
Zt

3 .

Since d 〈Z〉t = d
〈

2
√
Z · β

〉
t

= 4Zt dt, we obtain that

dXt = dβt + d− 1
2

1
Xt

dt,

which implies that almost surely,

Xt = Xε + βt − βε + d− 1
2

∫ t

ε

1
Xs

ds.

From the definition of X, as ε→ 0, Xε → 0 almost surely, therefore the integral on
the right-hand side has a limit almost surely as ε→ 0 and we get that

Xt = βt + d− 1
2

∫ t

0

1
Xs

ds.

(d) We use the Itô’s formula to M :

dMt = (2− d)X1−d
t dXt + (2− d)(1− d)

2 X−dt d 〈X〉t

= (2− d)X1−d
t dβt + (2− d)X1−d

t

d− 1
2Xt

dt+ (2− d)(1− d)
2 X−dt dt

= (2− d)X1−d
t dβt = (2− d)M

1−d
2−d
t dβt.

which shows that M is a local martingale.

7 / 9



Brownian Motion and Stochastic Calculus Exercise sheet 12

(e) First notice that the process X̃t := λ−1/2Xλt solves the same equation as X. In fact

dX̃t = λ−1/2 dXλt = λ−1/2( dβλt+
d− 1
2Xλt

dλt) = λ−1/2 dβλt+
d− 1
2X̃t

dt = dβ̃t+
d− 1
2X̃t

dt,

where β̃t = λ−1/2βλt, and X̃0 = 0. Therefore

M̃t = X̃2−d
t+1 = λ(d−2)/2X2−d

λt+λ = λαMλt+λ−1

has the same law as Mt and

E(Mt) = E(M̃t) = λαE(Mλt+λ−1).

(f) We show the integrabiliby of M0 when d ≥ 3 is an integer, so that we have the
interpretation of the Bessel process as the norm of the standard Brownian motion B
starting from 0, and

M0 =‖B1‖2−d .

As B1 has a density in Rd, we have for all u ≥ 1

P(M0 ≥ u) = P(‖B1‖2−d ≥ u) = P(‖B1‖ ≤ u1/(2−d)) ≤ Cud/(2−d) = C

ud/(d−2) .

Therefore
E(M0) ≤ 1 +

∫ ∞
1

P (M0 ≥ u) du <∞.

Since α > 0, we have λα > 1 as λ > 1. From (e), which shows that for 0 ≤ t < s,
and λ = (s+ 1)/(t+ 1) > 1, we have

E(Mt) = λαE(Ms) > E(Ms),

since similarly E(Ms) is bounded by E(M0) therefore finite, the strict inequality
makes sense. In consequence M is not a martingale.
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Exercise 12.7 Let σ : R→ R>0 be a continuous function (not necessarily bounded). The
goal of the exercise is to show that any (weak) solution to the one-dimensional stochastic
differential equation

dXt = σ(Xt)dBt, X0 = 0 (3)

cannot explode. i.e. T =∞ where T be the explosion time of the solution (here it means
that X is defined for all t ≥ 0).

(a) Show that there exists a Brownian motion β such thatXt = β〈X〉t , and that 〈X〉t →∞
as t→ T .

(b) Using dBt = (1/σ(Xt))dXt and the fact that the one-dimensional Brownian motion
is recurrent, show that T =∞ almost surely.

Solution 12.7

(a) If (X,B) is a solution to (3), then X is a local martingale. From Corollary 4.15, there
exists such a Brownian motion β. Since {Xt, t < T} = {β〈X〉t , t < T} is unbounded,
therefore 〈X〉t →∞ as t→∞.

(b) Since σ(x) > 0 for all x ∈ R and dBt = (1/σ(Xt))dXt,

t = 〈B〉t =
∫ t

0

1
σ(Xs)2d 〈X〉s =

∫ t

0

1
σ(β〈X〉s)2d 〈X〉s =

∫ 〈X〉t
0

1
σ(βr)2dr.

From the recurrence of one dimensional Brownian motion (that β visits every real
number infinitely many times), it is not hard to see that the right-most integral goes
to ∞ as 〈X〉t → 〈X〉T =∞ almost surely. Therefore T =∞ almost surely.

Hand in before: June 1.

Location: During the exercise class or in the tray outside of HG E 65.

Office hours (Präsenz): Mon. and Thu., 12:00-13:00 in HG G 32.6.

Class assignment:

Students Time & Date Room Assistant
Al-Fr Fri 8-9 HG E 21 Martin Stefanik
Ga-Lag Fri 9-10 HG E 21 Martin Stefanik
Lan-Sche Fri 8-9 LFW E 13 Mayra Bermudez
Scho-Zim Fri 12-13 HG E 22 Yilin Wang
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