Appendix A: Separation theorems in IR"

These notes provide a number of separation theorems for convex sets in IR". We start with
a basic result, give a proof with the help on an auxiliary result and then continue with a

number of more refined results.

Theorem A.1. Let V be a linear subspace of IR™ and ) # K C IR™ be convex and compact.
If K and V are disjoint, KNV = (), then K and V can be strictly separated by a hyperplane:

There exists a linear mapping f : IR"™ — IR with
f(x) >0, Vo € K,
f(z) =0, Ve e V.

In particular, f # 0.

Before we can start proving this, we need an auxiliary result.

Proposition A.2. Let ) # C C IR"™ be convex and closed with 0 ¢ C. Then there exist a

linear mapping f : IR™ — IR and o > 0 with
f(x) > a, Vo e C,

i.e. C' and the hyperplane {f = 0} C IR™ are disjoint. In particular, f # 0.

Proof. Choose r > 0 with U,.(0) N C # ). Because C is closed, this intersection is compact,

and so the continuous function z +— |z| has a minimum over z € U,.(0) N C' in some point x.
This xg is the projection of the point 0 on C, and it minimises of course |z| also over all of C.
(We only take the intersection U,.(0) NC' to have a compact set in order to argue the existence

of a minimiser.) For x € C and « € [0, 1], we have ax + (1 — &)z = a(z — z9) + x9 € C

because C' is convex, and therefore

lz0)? < |20 + alz — 20)|* = |z0|® 4+ 20(x — 20) 20 + |2 — 20|
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Because this holds for all « € [0, 1], we must have
0 < (x —x0)T0 =202 — |T0|?,

and so it is enough to take f(z) := xg-x and a := |zg|?* (which is > 0 since xy € C cannot be

0). q.e.d.

Proof of Theorem A.1. Take the algebraic difference
C=K-V:i={c=k—-—v|keKveV}.

This is convex like K, and closed because K is compact. Indeed, if ¢,, = k,, — v,, — ¢, there
exists a subsequence still denoted by (k) with k,, — k for some k € K; so (v,,) also converges
to some limit v which is in V because V is closed (this uses that the linear subspace V is
finite-dimensional), and so ¢ = k — v € C. Finally, K NV = () implies that 0 ¢ C, and so
Proposition A.2 yields the existence of a linear f : IR™ — IR and a > 0 with f(x) > 2« for

all z € C'. Thus we have, using linearity, that
f(k)—f(v) >2a >« forall k € K and allv € V.

Taking ko € K fixed and \v instead of v with A € IR yields f(v) = 0 for all v € V, and hence

also f(k) > « for all k € K. q.e.d.

Remark. The same argument still works in almost the same way if we replace the linear
subspace V by a convex cone. More precisely, we can use the above argument with all A > 0,

and the conclusion is then only that f(v) <0 for all v € V.

A slightly different version of the separation result is as follows.

Theorem A.3. Let U C IR™ be convex and closed, and () # K C IR"™ convex and compact.

If KNU =0, then there exist 8 € IR and a linear mapping f : IR" — IR with
f(x) > B, Vo € K,

fx)<B, Vzel.



In particular, we have again f % 0.

Proof. As in the proof of Theorem A.1, the set C := K — U is convex and closed and 0 ¢ C

so there exist &« > 0 and f : IR™ — IR linear with f(z) > « for all x € C, or

fk) > a+ f(u) for all k € K and all u € U.

Because f is continuous and K is compact, f attains a minimum < in some point kg € K; so

we obtain

f(k) >~ = f(ko) > a+ f(u) for all u € U,

and

d:=sup f(u) <vy—a< oo
uelU

For 3 := 6 + 5, we therefore get

flky>y>a+6>p forall k e K

because o > 0, and

flu)y<di<p for all u e U

again because a > 0. q.e.d.

Before the formulation of the next result, we recall the definition of the interior B° of a
set B C IR™:

B° :={z € B|U.(z) C B for some ¢ > 0}.
Theorem A.4. Let A C IR™ be convex and B C IR"™ convex with B® # (). If AN B° = (),
then there exist $ € IR and a linear mapping f : IR" — IR, f # 0, with

f(x) > B, Ve e A,

fx) <8, VreB.



Proof. 1) Suppose first in addition that A and B are both closed. Take 29 € B° # () and
set By, = ~x9+ (1 — L)B = {z = Ltag+ (1 — =)b | b € B}. Like B, the set B, is
convex and closed, and xy € B° implies that B,, C B° by Lemma A.5 below. Therefore
K = By, N Uy (20) is convex and compact, nonempty because g € K,y,, and K,, N A = ()
due to ANB° = () by assumption. Since A is closed, Theorem A.3 therefore gives the existence

of B, € IR and a linear f,, : IR" — IR with

fm(x) > B, Ve € K,,,

fm(x) < Bm,  Vre A

If we write f,, as fm(x) = ¢pex with ¢, € IR™, then f,, # 0 yields ¢,, # 0 and we can
assume by scaling that |c,,| = 1. Because zy € K,, for all m, we moreover obtain for fixed

Yo € A that

Cm- Yo = fm(y0> < Bm < fm(xO) = Cm X0,

and so the sequence (8,,) is bounded.
Now choose a convergent subsequence (¢, B,) with limit (¢, 5) and set f(x) := c-x.

Then we obtain for z € A that

f(z) <cx <B.

For x € B°, we have x € K,,,» for m’ large enough; indeed, if we define b by the requirement

that z = -5z + (1 — -1)b, solving for b gives b = (14— )z xo so that [b—x| < ¢ for

_m’ 1

m/ large and hence b € Us(x) C B. Therefore ¢, +x > [, for m’ large enough, this yields

and continuity then gives this for x € B as well. Finally, |c| = 1 implies that f # 0.
2) In general, A and B are convex with B° # (). Then the closures A and B of A and
B are also convex, and we have (B)° D B° # (). If we also have AN (B)° = (), the argument

in Step 1) shows that one can separate with f and 3 the sets A and B, and hence of course
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also the smaller sets A and B. So it only remains to argue that we do have AN (B)° = (),
and we now show that this follows from A N B° = ().

First, because B° # (), we have (B)° = B°. Indeed, the inclusion “D” is obvious. For
the converse, if € (B)°, there is ¢ > 0 with U.(z) C B and x € B. Lemma B.5 below shows
that for any by € B° and any y € B, the point by + Ay — by) = Ay + (1 — A)by is still in
B° for any A € [0,1). So if we take by € B° # () and choose y := by + (1 4+ n)(x — by), then
ly — x| = n|z — by| < & for n > 0 small enough implies that y € U.(z) C B and therefore
x € B°. This gives the inclusion “C”.

Now suppose that AN (B)° # (. Then (B)° = B° implies that there exists some
r € AN B°, and so there exist ¢ > 0 with U.(z) C B and a sequence (z,,) C A with z,, — .
So for sufficiently large n and small § > 0, we have z,, € Us(x) and Us(z,,) C B, so that
T, € AN B°. But this contradicts our assumption that AN B° = (), and so we have indeed

AN (B)° = . This completes the proof. q.e.d.

Finally, we provide the auxiliary result used in the proof of Theorem A.4.

Lemma A.5. Suppose that B C IR" is convex with B® # (). If by € B°, then for every

x € B (the closure of B), the entire “interval”
bo+ (x —00)[0,1) :={y=Ax+ (1 —=XN)bp |0 <X < 1}

is still contained in B°.

Proof. If by € B°, then there exists ¢ > 0 with U.(by) C B. Take x € B, fix A € [0,1) and

set y = Az + (1 — A)by. Define § := % and note that because x € B, there exists z € Us(z)

3
with 2z € B. If we then set b’ := by + 25 (v — 2), then V/ € Us(bo) € Bandy = Az + (1 - A)V

with b € B°, z € B and Ug (V') C Uc(bg) € B. But Ug(d') C B and z € B together imply

that U ¢ (y) € B, because v —y| < (1 — A)§ implies that |15 — 22— b/| < £, hence

- Ar=we Us(b') C B and therefore v = Az + (1 — A\)w € B. So we obtain y € B°,
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and this completes the proof.



