
Appendix A: Separation theorems in IRn

These notes provide a number of separation theorems for convex sets in IRn. We start with

a basic result, give a proof with the help on an auxiliary result and then continue with a

number of more refined results.

Theorem A.1. Let V be a linear subspace of IRn and ∅ 6= K ⊆ IRn be convex and compact.

If K and V are disjoint, K ∩V = ∅, then K and V can be strictly separated by a hyperplane:

There exists a linear mapping f : IRn → IR with

f(x) > 0, ∀x ∈ K,

f(x) = 0, ∀x ∈ V.

In particular, f 6≡ 0.

Before we can start proving this, we need an auxiliary result.

Proposition A.2. Let ∅ 6= C ⊆ IRn be convex and closed with 0 6∈ C. Then there exist a

linear mapping f : IRn → IR and α > 0 with

f(x) ≥ α, ∀x ∈ C,

i.e. C and the hyperplane {f = 0} ⊆ IRn are disjoint. In particular, f 6≡ 0.

Proof. Choose r > 0 with Ur(0) ∩ C 6= ∅. Because C is closed, this intersection is compact,

and so the continuous function x 7→ |x| has a minimum over x ∈ Ur(0)∩C in some point x0.

This x0 is the projection of the point 0 on C, and it minimises of course |x| also over all of C.

(We only take the intersection Ur(0)∩C to have a compact set in order to argue the existence

of a minimiser.) For x ∈ C and α ∈ [0, 1], we have αx + (1 − α)x0 = α(x − x0) + x0 ∈ C

because C is convex, and therefore

|x0|
2 ≤ |x0 + α(x− x0)|

2 = |x0|
2 + 2α(x− x0).x0 + α2|x− x0|

2.
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Because this holds for all α ∈ [0, 1], we must have

0 ≤ (x− x0).x0 = x0
.x− |x0|

2,

and so it is enough to take f(x) := x0
.x and α := |x0|

2 (which is > 0 since x0 ∈ C cannot be

0). q.e.d.

Proof of Theorem A.1. Take the algebraic difference

C := K − V := {c = k − v | k ∈ K, v ∈ V }.

This is convex like K, and closed because K is compact. Indeed, if cn = kn − vn → c, there

exists a subsequence still denoted by (kn) with kn → k for some k ∈ K; so (vn) also converges

to some limit v which is in V because V is closed (this uses that the linear subspace V is

finite-dimensional), and so c = k − v ∈ C. Finally, K ∩ V = ∅ implies that 0 6∈ C, and so

Proposition A.2 yields the existence of a linear f : IRn → IR and α > 0 with f(x) ≥ 2α for

all x ∈ C. Thus we have, using linearity, that

f(k)− f(v) ≥ 2α > α for all k ∈ K and all v ∈ V .

Taking k0 ∈ K fixed and λv instead of v with λ ∈ IR yields f(v) = 0 for all v ∈ V , and hence

also f(k) > α for all k ∈ K. q.e.d.

Remark. The same argument still works in almost the same way if we replace the linear

subspace V by a convex cone. More precisely, we can use the above argument with all λ ≥ 0,

and the conclusion is then only that f(v) ≤ 0 for all v ∈ V .

A slightly different version of the separation result is as follows.

Theorem A.3. Let U ⊆ IRn be convex and closed, and ∅ 6= K ⊆ IRn convex and compact.

If K ∩ U = ∅, then there exist β ∈ IR and a linear mapping f : IRn → IR with

f(x) > β, ∀x ∈ K,

f(x) ≤ β, ∀x ∈ U.
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In particular, we have again f 6≡ 0.

Proof. As in the proof of Theorem A.1, the set C := K−U is convex and closed and 0 6∈ C;

so there exist α > 0 and f : IRn → IR linear with f(x) ≥ α for all x ∈ C, or

f(k) ≥ α+ f(u) for all k ∈ K and all u ∈ U .

Because f is continuous and K is compact, f attains a minimum γ in some point k0 ∈ K; so

we obtain

f(k) ≥ γ = f(k0) ≥ α+ f(u) for all u ∈ U ,

and

δ := sup
u∈U

f(u) ≤ γ − α < ∞.

For β := δ + α

2 , we therefore get

f(k) ≥ γ ≥ α+ δ > β for all k ∈ K

because α > 0, and

f(u) ≤ δ < β for all u ∈ U

again because α > 0. q.e.d.

Before the formulation of the next result, we recall the definition of the interior B◦ of a

set B ⊆ IRn:

B◦ := {x ∈ B | Uε(x) ⊆ B for some ε > 0}.

Theorem A.4. Let A ⊆ IRn be convex and B ⊆ IRn convex with B◦ 6= ∅. If A ∩ B◦ = ∅,

then there exist β ∈ IR and a linear mapping f : IRn → IR, f 6≡ 0, with

f(x) ≥ β, ∀x ∈ A,

f(x) ≤ β, ∀x ∈ B.

3



Proof. 1) Suppose first in addition that A and B are both closed. Take x0 ∈ B◦ 6= ∅ and

set Bm := 1
m
x0 + (1 − 1

m
)B = {x = 1

m
x0 + (1 − 1

m
)b | b ∈ B}. Like B, the set Bm is

convex and closed, and x0 ∈ B◦ implies that Bm ⊆ B◦ by Lemma A.5 below. Therefore

Km := Bm ∩ Um(x0) is convex and compact, nonempty because x0 ∈ Km, and Km ∩ A = ∅

due to A∩B◦ = ∅ by assumption. Since A is closed, Theorem A.3 therefore gives the existence

of βm ∈ IR and a linear fm : IRn → IR with

fm(x) > βm, ∀x ∈ Km,

fm(x) ≤ βm, ∀x ∈ A.

If we write fm as fm(x) = cm .x with cm ∈ IRn, then fm 6≡ 0 yields cm 6= 0 and we can

assume by scaling that |cm| = 1. Because x0 ∈ Km for all m, we moreover obtain for fixed

y0 ∈ A that

cm .y0 = fm(y0) ≤ βm < fm(x0) = cm .x0,

and so the sequence (βm) is bounded.

Now choose a convergent subsequence (cm′ , βm′) with limit (c, β) and set f(x) := c.x.

Then we obtain for x ∈ A that

f(x) ≤ c.x ≤ β.

For x ∈ B◦, we have x ∈ Km′ for m′ large enough; indeed, if we define b by the requirement

that x = 1
m′

x0+(1− 1
m′

)b, solving for b gives b = (1+ 1
m′−1 )x−

1
m′−1x0 so that |b−x| < δ for

m′ large and hence b ∈ Uδ(x) ⊆ B. Therefore cm′
.x > βm′ for m′ large enough, this yields

f(x) = c.x ≥ β, ∀x ∈ B◦,

and continuity then gives this for x ∈ B as well. Finally, |c| = 1 implies that f 6≡ 0.

2) In general, A and B are convex with B◦ 6= ∅. Then the closures Ā and B̄ of A and

B are also convex, and we have (B̄)◦ ⊇ B◦ 6= ∅. If we also have Ā ∩ (B̄)◦ = ∅, the argument

in Step 1) shows that one can separate with f and β the sets Ā and B̄, and hence of course
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also the smaller sets A and B. So it only remains to argue that we do have Ā ∩ (B̄)◦ = ∅,

and we now show that this follows from A ∩B◦ = ∅.

First, because B◦ 6= ∅, we have (B̄)◦ = B◦. Indeed, the inclusion “⊇” is obvious. For

the converse, if x ∈ (B̄)◦, there is ε > 0 with Uε(x) ⊆ B̄ and x ∈ B̄. Lemma B.5 below shows

that for any b0 ∈ B◦ and any y ∈ B̄, the point b0 + λ(y − b0) = λy + (1 − λ)b0 is still in

B◦ for any λ ∈ [0, 1). So if we take b0 ∈ B◦ 6= ∅ and choose y := b0 + (1 + η)(x− b0), then

|y − x| = η|x − b0| < ε for η > 0 small enough implies that y ∈ Uε(x) ⊆ B̄ and therefore

x ∈ B◦. This gives the inclusion “⊆”.

Now suppose that Ā ∩ (B̄)◦ 6= ∅. Then (B̄)◦ = B◦ implies that there exists some

x ∈ Ā ∩B◦, and so there exist ε > 0 with Uε(x) ⊆ B and a sequence (xn) ⊆ A with xn → x.

So for sufficiently large n and small δ > 0, we have xn ∈ Uδ(x) and Uδ(xn) ⊆ B, so that

xn ∈ A ∩B◦. But this contradicts our assumption that A ∩ B◦ = ∅, and so we have indeed

Ā ∩ (B̄)◦ = ∅. This completes the proof. q.e.d.

Finally, we provide the auxiliary result used in the proof of Theorem A.4.

Lemma A.5. Suppose that B ⊆ IRn is convex with B◦ 6= ∅. If b0 ∈ B◦, then for every

x ∈ B̄ (the closure of B), the entire “interval”

b0 + (x− b0)[0, 1) := {y = λx+ (1− λ)b0 | 0 ≤ λ < 1}

is still contained in B◦.

Proof. If b0 ∈ B◦, then there exists ε > 0 with Uε(b0) ⊆ B. Take x ∈ B̄, fix λ ∈ [0, 1) and

set y = λx+(1−λ)b0. Define δ := 1−λ

λ

ε

2
and note that because x ∈ B̄, there exists z ∈ Uδ(x)

with z ∈ B. If we then set b′ := b0+
λ

1−λ
(x− z), then b′ ∈ U ε

2
(b0) ⊆ B and y = λz+(1−λ)b′

with b′ ∈ B◦, z ∈ B and U ε

2
(b′) ⊆ Uε(b0) ⊆ B. But U ε

2
(b′) ⊆ B and z ∈ B together imply

that U(1−λ) ε

2

(y) ⊆ B, because |v − y| < (1− λ) ε
2
implies that | v

1−λ
− λ

1−λ
z − b′| < ε

2
, hence

v

1−λ
− λ

1−λ
z =: w ∈ U ε

2
(b′) ⊆ B and therefore v = λz + (1− λ)w ∈ B. So we obtain y ∈ B◦,
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and this completes the proof. q.e.d.
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