Appendix D: The Kreps—Yan theorem

This section contains an important separation theorem proved independently by D. Kreps
and J.-A. Yan around the same time. It is a crucial ingredient for proving most versions
of the fundamental theorem of asset pricing and also comes up in the Bichteler-Dellacherie
characterisation of semimartingales as good integrators in stochastic analysis.

We begin by recalling some concepts and results from functional analysis. Fix a proba-
bility space (2, F, P). For p € [1,00), the dual of the space LP is (L?)* = L4 with ¢ conjugate
to p, meaning that }l? + % = 1. This is not true for p = oco.

If we fix conjugate numbers p, ¢ both in [1, 00], the dual pairing between LP and LY is
given by

(Y,Z):=E[YZ] forY elLr Zec L.

For p € [1,0), the weak topology on LP, denoted by o(LP, L7), is the coarsest topology
on LP which makes all the linear functionals Y — (Y, Z) continuous for all Z € L. So a
sequence (Y, )nenw € LP converges to Y in o(LP, L?) if and only if lim,,_, . E[Y,Z] = E[Y Z]
for each Z € L1.

For p € (1, oo|, the weak* topology on LP, denoted by o(LP, L?), views LP as the dual of
L7 (which explains why we must take p > 1); it is the coarsest topology on LP which makes
all the linear functionals Y — (Y, Z) continuous for all Z € L9.

It is clear from the above definitions that for 1 < p < 0o, the weak and the weak* topology
coincide. For p = 1, there is only the weak topology on L', with Y,, — Y in o(L!, L>) if
and only if lim,,,~ E[Y,Z] = E[Y Z] for each Z € L*°. For p = oo, there is only the weak*
topology on L™, with Z,, — Z in o(L*°, L') if and only if lim,, ,o, E[Y Z,] = E[Y Z] for each
Y € L.

Finally, a convex subset of LP, for p € [1,00), is weakly closed, i.e. closed for the weak
topology o(LP?, L9), if and only if it is (strongly) closed in L?, i.e. for the norm-topology on
LP. Note that p = oo is again not allowed here.

After these preliminaries, we are now in a position to formulate and prove the announced
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separation result.

Theorem D.1. (Kreps/Yan) Fix conjugate p,q € [1,00] and suppose that C C LP is a
convex cone with C' O —L% and C N LY = {0}. If C is closed in o(L?, L?) (meaning that it

is weak™ closed if p = 00), then there exists a probability measure ) ~ P with % € L7 and

EqlY] <0 forallY € C.

Proof. The proof consists of a combination of a separation argument with an exhaustion
argument and goes as follows.

1) For any fixed = € L% \ {0}, the assumption gives z ¢ C. The Hahn-Banach theorem
thus allows us to strictly separate x from C: there exists some z, € L? with (z, z,) > a and
(Y,2;) <aforallY € C. Because C is a cone, we may take a = 0. Choosing Y := —1I;, oy,
which is in C' because C' 2 —L, next gives —FE[z. Iy, <oy] = (Y,2;) < 0 and therefore
z; > 0, and because the separation is strict, we must have z, # 0 to avoid (z, z,) = 0. So we
can and do normalise z, to have E[z;] = 1, for each z.

2) Now consider the family G of all sets ', := {2, > 0} € F, where x runs through
L% \ {0}. For any set A € F with P[A] > 0, we have P[ANT,] > 0 for some I'; € G; indeed,

I, € L% \ {0} and therefore we can take x = I4 and use that
0< E[[AZIA] = E[IAZIA[{Z[A>O}] = E[[AZIAIFIA]

to conclude that we must have P[ANT,] > 0. By Lemma D.2 below, this implies that the
family G contains a countable subfamily of sets whose union has probability 1. So there is a

sequence (Zp)nen in L% such that

p G r, | =p G{zmn >0}] —1.
n=1 n=1

Defining z := )~ 27"z, therefore yields a random variable z > 0 P-a.s. which is in L4

like all the z,, , and we also have E[Yz] = >  27"E[Yz, ] < 0 for all Y € C. Finally,
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monotone integration gives E[z] = > 07 | 27" F|[z, ] = 1 so that dQ := z dP gives the desired

n=1

probability measure. q.e.d.

The following abstract result provides the missing step in the proof of Theorem D.1.

Lemma D.2. Let A # () be an index family and G = (I'x)xea a family of sets in F such
that any set A € F with P[A] > 0 has a nontrivial intersection with some I'y € G, meaning
that P[JANT,] > 0. Then there exists an at most countable subfamily (I'x, )nen of sets in

G whose union has probability 1.

Proof. Suppose first that G is closed under countable unions. Then supyc, P[A,] is attained
in some I'y« € G, because we can approximate the supremum along a sequence (I'x, )memn
and take I'x« := |J°_, I'y,,, which is in G by the above closedness assumption. If we had
PIS.] > 0, we could find a set I'y € G with P[I'{. NT"y] > 0 by the assumption on G, and
so we should get P[['y UT\+] > P[['x«], contradicting the maximality of T'x«. So I'y~ has
probability 1 and we can take the family consisting of this single set.

In general, we consider the family G’ formed by all countable unions of sets from G; this
family satisfies the same assumption as G. Applying the above argument to G’ then gives the

assertion. q.e.d.



