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Start of lecture 1

1. Introduction

The goal of this course is to present the theory of complex representations of general linear
group over p−adic field. More precisely, denote

G = GLn, the invertible elements in matrix algebra Mn×n,

F = p−adic field which is a finite field extension of Qp,

π : G(F)→ GL(V), where V is vector space over complex field C, most of time infinite dimensional.
We want to classify those π’s which are irreducible, smooth, admissible. We shall see later on what
the latter two words mean.

1.1. Motivation. Apart from pure representation theory interest, one of the main motivation and
source of applications for this study is its relation to the theory of modular forms and automorphic
forms. They are related in the following way.
(1.1)

Modular forms
holomorphic of weight k

Level N

→
{

Automorphic forms
Automorphic representations

}
→

{
Representations of GL2(R)

and GL2(Qp) for all primes p

}
Better knowledge of representations of GL2(R) and GL2(Qp) will give more insights into the left

two areas.

Example 1.1.

holomorphic weight k ←→ Discrete series representation of weight k of GL2(R),

Level N =
∏

i

pci
i ←→ Representations of GL2(Qpi) of level pci

i ,

Fourier expansion of modular forms ←→Whittaker model of representations of GL2,

Certain integrals of modular forms←→
product of local integrals on GL2

involving matrix coefficient and Whittaker model.
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It is also directly related to local Langlands correspondence, which relates π to certain n−dimensional
Galois representations. It is has been a main topic in math for several decades and has great influ-
ences.

1.2. Plan for the course. The main tool in this course to study representations of G(F) is the
induction of an irreducible representation σ from a subgroup H

IndG
H σ,

By general reciprocity, one can show that any irreducible smooth π is a subrepresentation of IndG
H σ

for some H and σ. But this is almost useless as we lack detailed information. So our task is
basically threefold

(1) Specify H and σ (and also the type of induction) with explicit parametrization.
(2) Show that IndG

H σ is nice. This means it is irreducible if possible, or otherwise one can
uniquely identify π from it.

(3) Show that all π’s we care about occur in this way.
There are two main types of induction in this course, the parabolic induction and the compact in-
duction. These two construction methods gives a dichotomy of representations: non-supercuspidal
representations and supercuspidal ones. The parabolic induction is parallel to what one can do
for GLn(R), while the compact induction is special for p−adic setting. We will cover these two
methods following the historical order.

We will assume p , 2 to avoid a lot of technical problems. Some of the results will not hold
when p = 2.

If time allows, we will cover more topics. Priority will be given to Whittaker model/Kirillov
model, level and newform theory. Further more we can talk about Langlands correspondence,
L-functions, etc,.

The main reference is [1] and [2]

2. p−adic field

The easiest case of a p−adic field is F = Qp. It is the completion of the rational fieldQWRT(with
respect to) p−adic norm || · ||p. For x = pi ·q ∈ Q, where q is rational of form m

n ∈ Qwith (mn, p) = 1
and m, n, i ∈ Z, we define the p−adic evaluation

(2.1) vp(x) = i,

and p−adic norm

(2.2) ||x||p = p−vp(x) = p−i.

Define vp(0) = +∞ and ||0||p = 0. The p−adic valuation satisfies the following properties

(2.3)

vp(xy) = vp(x) + vp(y)
vp(x + y) ≥ min{vp(x), vp(y)}.

Correspondingly

(2.4)


||x||p ≥ 0 with equality iff x = 0,
||xy||p = ||x||p||y||p,
||x + y||p ≤ max{||x||p, ||y||p}.
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The last property is called strong triangle inequality, as the usual triangle inequality is ||x + y||p ≤
||x||p + ||y||p and max{||x||p, ||y||p} ≤ ||x||p + ||y||p.

Exercise 2.1. Check the strong triangle inequality for || · ||p.

In particular || · ||p is a norm. Just like R is the completion of Q with respect to the standard
absolute value norm, p-adic field Qp is the completion of Q with respect to || · ||p.

2.1. p-adic digits. One way to present a p−adic number is to use p-adic digits. A real number
can be written like

x = 1.234 · · · = 1 × 100 + 2 × 10−1 + 3 × 10−2 + 4 × 10−3 + · · ·

With a proximation 1.234.
A p-adic number can be written as

x = 1 × p0 + 2 × p1 + 3 × p2 + · · ·

with a proximation 1 × p0 + 2 × p1 + 3 × p2. Higher powers= smaller error.

Exercise 2.2. For x = 1× p0 + 2× p1 + 3× p2, compute the first three digits for x−1 with general p.

For any x ∈ Qp we can write x =
∑
n

an pn, an = 0 for n negative enough. To make the expression

unique, we can also require that 0 ≤ an < p, here 0 · · · p − 1 are fixed lifts of Z/pZ to Z.
The ring of integers is Zp = {x|an = 0 for n < 0}. It has a unique maximal prime ideal pZp,

generated by one element.
In general, we can have F a finite field extension of Q, and extend p−adic norm and valuation

onto F and F is the completion of F WRT the extended p−adic norm. In particular the p−adic
norm on F the the composition of || · ||p with the field norm from F to Q.

We make the following definitions

Definition 2.3. The ring of integers is OF = {x ∈ F, ||x||F ≤ 1}. This is a P.I.D. (Think about Zp, or
p-adic numbers starting with p0 digits.)

OF has a unique maximal ideal P = {x ∈ F, ||x||F < 1}, which is generated by one element
P = $OF. Usually we fix $ and call it a uniformizer. (Think about pZp, with the uniformizer just
p.)

The residue field is k = OF/P. (Think about Fp, the finite field with p elements.) Let q = |k|.
Then q = p f where f is the inertial degree of F/Qp.

The group of units is U = O∗F. It has subgroups UF(n) = 1 +$nOF.

Remark 2.4. In general one can still write elements in F in digits.

x =
∑
n∈Z

an$
n,

where an ∈ k̃, the set of fixed lifts of elements from k to OF. p−adic valuation vF(x) is such that
||x||F = min{n, an , 0}. In particular vF($) = 1. A not so trivial fact is that

(2.5) ||x||F = |k|−vF(x).
4



2.2. Totally disconnected topology for F. Just as for R, we think of the norm map to be con-
tinuous, and consider the preimage of open/closed subset of R (the image of norm map) to be
open/closed. For example we define the open balls in F to be

(2.6) Br(x0) = {x ∈ F, ||x − x0||F < r}.

In particular any set of form x0 + $iOF or x0UF(i) is an open set. Note that when i > vF(x0),
x0 +$iOF = x0UF(i − vF(x0)). They actually form a topological basis.

But for p−adic fields, this set is also closed, because the image of || · ||F is discrete in R. (For
example when F = Qp, it is { 1

pi }.) So

(2.7) {x ∈ F, ||x − x0||F < r} = {x ∈ F, ||x − x0||F ≤ r − δ}

is open and closed. As a result, F is totally disconnected.

2.3. Hensel’s lemma.

Definition 2.5. x ≡ y mod $n iff x − y ∈ $nOF.

Theorem 2.6. Let f ∈ OF[x]. If there exists x ∈ OF such that f (x) ≡ 0 mod $ and its derivative
f ′(x) . 0 mod $, then there exists a unique y ∈ OF such that y ≡ x mod $ and f (y) = 0.

This theorem is about uniquely lifting solution of polynomial equation from residue field to F.

Proof. Let’s work with Qp. We shall prove by induction the following: If there exist xi ∈ Zp such
that f (xi) ≡ 0 mod pi and f ′(xi) . 0 mod p, then there exists xi+1 ∈ Zp such that xi+1 ≡ xi

mod pi−1, f (xi+1) ≡ 0 mod pi+1, f ′(xi+1) . 0 mod p. By the condition, we can assume that
f (xi) ≡ api mod pi+1 for some integer a. The basic tool is the Taylor expansion,

(2.8) f (x + upi) = f (x) + f ′(x)upi + · · · ≡ 0 mod pi+1

as higher order terms will have larger p−powers. Since f ′(x) . 0 mod p, we can find proper
u ∈ Z such that f ′(x)u ≡ −a mod p. Then xi+1 = xi + upi has the required properties.

Note that ||xi+1 − xi||p = p−i. Using the completeness of F, there exists y ∈ Zp which is the limit
of {xi}. Then by Taylor expansion again f (y) ≡ 0 mod pi for any i, thus f (y) = 0.

�

Exercise 2.7. Check uniqueness. Hint: use Taylor expansion again.

Remark 2.8. Essentially we are figuring out y digit by digit.

With the help of Hensel’s lemma, we have the following structure of F∗.

Lemma 2.9.
(2.9) F∗ ' Z × k∗ × UF(1).

Proof. For any x ∈ F∗, we can first write it as x = $iu with i = vF(x) and u ∈ O∗F. Thus

F∗ ' Z × O∗F,

with Z identified with {$i}. We also have a short exact sequence

1→ UF(1)
ι
−→ O∗F

pr
−→ k∗ → 1

where ι is the natural inclusion and pr is the quotient map which ignores higher digits. The main
point of this Lemma is that this exact sequence splits, i.e., there exists an injective group homo-
morphism f : k∗ → O∗F such that pr ◦ f is the identity map.
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We note that k∗ is a cyclic group, so any a ∈ k∗ satisfies aq−1 = 1 in k, where q = |k| is a power
of p. This implies that the polynomial equation xq−1 − 1 has a solution a ∈ k∗, with its derivative
(q − 1)xq−2 . 0 mod p as (pi − 1, p) = 1. Thus we can apply Hensel’s lemma and obtain ã ∈ O∗F
such that ã ≡ a mod $, ãq−1 = 1. The map f : a 7→ ã is then an injection. pr ◦ f is identity as
ã ≡ a mod $. It is a group homomorphism because of the following. ã1a2, ã1ã2 both satisfy the
equation xq−1 = 1 and have same image in the residue field, so they must be equal using uniqueness
from Hensel’s lemma. �

2.4. Classify quadratic extensions of F when p , 2. First of all, quadratic extensions E over F
are parametrized by F∗/(F∗)2. Here (F∗)2 = {x2, x ∈ F∗}. This is because in general we can write
E = F(

√
D) = F[x]/(x2 − D) for D ∈ F∗ a non-square, and D, d2D will give the same quadratic

extension.
Now we use Lemma 2.9, and get

(2.10) F∗/(F∗)2 = Z/2Z × k∗/(k∗)2 × UF(1)/UF(1)2

We can pick representatives {1, $} for Z/2Z.
k∗/(k∗)2 is not trivial as 2|(q−1) = |k∗|, and it has at most two elements. Pick for it representatives

{1, ξ} for some ξ ∈ F∗ which is a lift of a non-square element in k∗.
UF(1)/UF(1)2 is trivial. To prove this, we need to show that for any a ∈ UF(1), the equation

x2 − a = 0 has solution in UF(1). This is true because x2 − a ≡ x2 − 1 ≡ 0 mod $ has a solution
x ≡ 1 mod $. Then we can use Hensel’s Lemma.

To summarise, we have the following quadratic field extentions of F:
(1) E = F(

√
ξ). $ is also a uniformizer for E. The residue field kE is a quadratic field extension

of k. In this case E is called an inert quadratic extension over F.
(2) E = F(

√
$), or F(

√
$ξ). The uniformizer $E can be chosen (though not necessary) so that

$2
E = $. The residue field kE = k. In this case E is called a ramified quadratic extension

over F.
(3)* E = F(1) ' F × F. E is not a field in this case. But we still call it split quadratic extension

over F.
Start of lecture 2

2.5. Additive characters on F.

Definition 2.10. Let C1 be the set of complex numbers with absolute value 1. ψ : F→ C1 is called
an additive character on F if it is continuous and satisfies

(2.11) ψ(x + y) = ψ(x) · ψ(y).

Lemma 2.11. If ψ is an additive character over F, then it is locally constant, i.e., there exists n ∈ Z
such that for any y ∈ $nOF, ψ(y) = 1. Then ψ(x + y) = ψ(x) for any x ∈ F.

Proof. Let γ = {z ∈ C1, arg(z) < 2π
p } be an open arc in C1. Since ψ is continuous, the preimage of

γ is open, and in particular contains $nOF for some n. Then we claim that ψ($nOF) = 1.
Suppose that ψ(y) , 1 for some y ∈ $nOF, then by (2.11)

ψ(piy) = ψ(y)pi

for any i ∈ Z>0. On the left hand side piy is always in $nOF, so ψ(piy) should still be inside γ. But
on the other side ψ(y)pi

will eventually leave γ. Contradiction.
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Now the lemma follows immediately by using (2.11). �

Corollary 2.12. The images of ψ are roots of unity. In particular we can think of ψ as an element
of F̂ = Hom(F,Q/Z), the Pontryagin dual.

Remark 2.13. We can think that the topology on p−adic field is so different from the complex
topology, that requiring continuity is as strong as requiring locally constant. This also happens for
the representations of G. In this course we shall not distinguish the following notions: continuous,
smooth, locally constant.

Definition 2.14. Suppose that ψ is not the trivial charactrer. The level c(ψ) of ψ is defined to be
the smallest integer c such that ψ($cOF) = 1.

Example 2.15. For Qp, we can define ψ0(x) = e2πix. c(ψ) = 0. In general for F a finite extension of
Qp, we can define an additive character ψ0(x) = e2πiTr(x) where Tr is the trace map from F to Qp.

Further more for any a ∈ F, ψa(x) = ψ0(ax) is also an additive character on F.

Proposition 2.16. Any additive character on F is of form ψa for some a ∈ F.

Remark 2.17. I.e., F̂ = F.

Sketch of proof. If ψ is trivial, we can pick a = 0. Otherwise, let c = c(ψ), c0 = c(ψ0). Then ψ is
a nontrivial character on $iOF/$cOF ' k with i < n, which is a finite group. Then we need the
following lemmas

Lemma 2.18. For any finite abelian groups H, its Pontryagin dual Ĥ ' H.

The proof of this lemma amounts to checking for cyclic groups and the using that all finite
abelian groups are direct product of cyclic ones.

Lemma 2.19. Suppose that c = c(ψ). Then we have the following identification

$−nOF/$−mOF
'
−→ ̂$m+cOF/$n+cOF(2.12)

a 7→ ψa

To prove this, one need to show that the map given above is injective, and then do a counting on
both sides using the previous lemma.

By this result, we have ψ|$iOF/$cOF(x) = ψ0(aix) for some ai ∈ F with vF(ai) = −c + c0. One can
show that {ai}i→−∞ is a convergent sequence, and its limit a is the require element in the lemma. �

Exercise 2.20. Fill in the details for this proof.

2.6. Multiplicative character on F∗.

Definition 2.21. A multiplicative character χ on F∗ is a continuous function χ : F∗ → C1 such that

(2.13) χ(xy) = χ(x) · χ(y).

One can expect that the continuity implies that χ is locally constant.

Definition 2.22. When χ is nontrivial, the level c = c(χ) is the smallest integer such that χ(y) = 1
for any y ∈ UF(c). Then χ(xy) = χ(x) for any x ∈ F∗.

Definition 2.23. For any x ∈ R, let bxc denote the largest integer n ≤ x, dxe denote the smallest
integer n ≥ x.
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Lemma 2.24. Let χ be nontrivial with c = c(χ) ≥ 2. Then there exists αχ ∈ F∗ such that

(2.14) χ(1 + x) = ψαχ(x)

for any x ∈ $dc/2eOF.

Proof. For any x1, x2 ∈ $
dc/2eOF,

(2.15) χ((1 + x1)(1 + x2)) = χ(1 + x1 + x2 + x1x2) = χ(1 + x1 + x2).

The last equality follows from that c(χ) = c ≤ vF(x1x2). This means that x 7→ χ(1+ x) is an additive
character on $dc/2eOF. Thus there exists αχ with required property. �

3. Structure of GLn

3.1. Subgroups. Here we consider the group G = GLn. One can define the determinant and trace
for elements in G as usual.

The center of GLn is

Z = {g, gh = hg for any h ∈ GLn} = {aI, a ∈ F∗}

.
The diagonal torus is

T =


∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . .

...
0 0 · · · ∗

 .
The parabolic subgroup we care about is an upper triangular block matrices associated to a

partition n = n1 + n2 + · · · nk. For n = (n1, · · · , nk),

Pn =


∗ ∗ · · · ∗

0 ∗ · · · ∗
...

...
. . .

...
0 0 · · · ∗

 .
It has a unipotent subgroup

Nn =


I ∗ · · · ∗

0 I · · · ∗
...

...
. . .

...
0 0 · · · I

 ,
and a Levi subgroup

Mn =


∗ 0 · · · 0
0 ∗ · · · 0
...

...
. . .

...
0 0 · · · ∗

 .
Note that when all ni = 1, B = Pn is also called Borel subgroup, and T = Mn in this case.

The Weyl group is defined to be W = NG(T )/Z(T ), where NG(T ) is the normalizer of T in G, and
Z(T ) is the centralizer of T (in this case is T itself). In the case G = GLn, W ' S n, the permutation
group of n elements, and a set of representatives can be chosen as a permutation of rows for the
identity matrix.
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Example 3.1. When n = 2, W = {I,
(
0 1
1 0

)
}.

3.2. Compact open subgroups. Up to this point, all constructions are parallel to those for GLn(R).
Now specific for p−adic field, we have a standard maximal compact open subgroup

K = GLn(OF) = {g ∈ Mn×n(OF), det g ∈ O∗F}.

Note that W ⊂ K.
K has a filtration of normal compact open subgroups KI(n) = I +$nMn×n(OF). gKI(n)’s provide

a topological basis for GLn.
Later on we will introduce more compact open subgroups.

Proposition 3.2. Any compact open subgroup of GLn is a subgroup of g−1Kg for some g ∈ GLn.

This result follows from the following results. The basic idea is to work over a vector space on
which the groups act, and change the problem of conjugating into that of choosing proper basis.

Definition 3.3. Let V be a n−dimensional vector space over F. An OF−lattice L in V is an OF
module such that

(1) L is a finitely generated OF−module,
(2) L ⊗OF F = V .

Lemma 3.4. There exists an OF generators {v1, · · · , vn} which is also a basis for V.

Proof. As L is finitely generated OF−module, we can choose a set of generators {v1, · · · , vk}such
that k is minimal. It’s easy to see that k ≥ n by (2) above. Suppose that k > n. Then they are
linearly dependent on V , i.e., there exists coefficients ai such that

(3.1)
∑

1≤i≤k

aivi = 0.

By multiplying the whole equation with proper $n, we can assume that ai ∈ OF and say, a1 ∈ O∗F.
Then we can write

(3.2) v1 = −
∑

2≤i≤k

a−1
1 aivi,

with all coefficients in OF, contradicting the minimality of k. Thus k = n. �

Lemma 3.5. For any OF−lattice L, its stabilizer StabGL = {g, gL = L} (consequently, g−1L = L) is
a compact open subgroup, conjugated to K.

Proof. By the previous lemma, we can pick an OF basis {v1, · · · , vn}. One can easily check that
under this basis, StabGL is exactly as K, which is compact and open. Changing basis amount to a
conjugation, thus the conclusion. �

Lemma 3.6. Any compact open subgroup H ⊂ StabGL for some OF−lattice L.

Proof. We first construct an OF module with possibly infinite many generators

(3.3) L = OF span of {all column vectors for any k ∈ H}.

Then L ⊗OF F = V as the identity matrix I ∈ H whose column vectors already span V over F. Now
we check that L is actually finitely generated by using compactness. For any g = (g1, · · · , gn) ∈ H
with gi being column vectors, it gives arise to a finitely generated OF−module

(3.4) g 7→ OFg1 ⊕ · · · ⊕ OFgn.
9



Then any g′ ∈ g · (GLn(OF) ∩ H) give rise to the same OF module, because multiplication on right
by an element in GLn(OF) will give OF liner combinations of gi’s. Each g · (GLn(OF) ∩ H) is an
open subset of H and covers H, thus by compactness, we can just choose a finite number of g to
cover H. So L is finitely generated.

Now we show that H ⊂ StabGL. By definition for any h ∈ H, we need to show that hL ⊂ L and
h−1L ⊂ L. But as L is generated by column vectors of g ∈ H, this is equivalent to that

(3.5) hg ∈ H, h−1g ∈ H,

which is clearly true. �

Start of lecture 3

3.3. Decomposition results.

Theorem 3.7 (Bruhat decomposition).

GLn =
∐
w∈W

BwB.

Proof. This is essentially reducing to echelon form using Gauss elimination and row ordering in
linear algebra. We briefly show for n = 2 case. If g ∈ GL2 is already in B, done. Otherwise

g =

(
g1 g2

g3 g4

)
with g3 , 0. Then

(3.6)
(
1 −g1g−1

3
0 1

)
g =

(
0 − det(g)/g3

g3 g4

)
,

and

(3.7)
(
0 1
1 0

) (
1 −g1g−1

3
0 1

)
g =

(
g3 g4

0 − det(g)/g3

)
.

That is

(3.8) g =

(
1 g1g−1

3
0 1

) (
0 1
1 0

) (
g3 g4

0 − det(g)/g3

)
�

Theorem 3.8 (Iwasawa decomposition).
GLn = BK.

Proof. Proof for n = 2 case. Let g =

(
g1 g2

g3 g4

)
. As

(
0 1
1 0

)
∈ K and

(3.9) g
(
0 1
1 0

)
=

(
g2 g1

g4 g3

)
,

we can assume that v(g4) ≤ v(g3). In particular g4 , 0. Then

(3.10) g
(

1 0
−g3g−1

4 1

)
=

(
det(g)g−1

4 g2

0 g4

)
∈ B.

�

Exercise 3.9. Prove the theorem for general n using induction.
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Theorem 3.10 (Cartan decomposition). Let I = (i1, i2, · · · , in) such that i j ∈ Z≥0 and i j ≥ i j+1.
Denote

diag($I) =


$i1 0 · · · 0
0 $i2 · · · 0
...

...
. . .

...
0 0 · · · $in

 .
Then

(3.11) GLn =
∐

I

Kdiag($I)K.

Proof. Consider the case n = 2. By permuting rows and columns, we can assume that g4 has lowest
valuation in g. Then

(3.12)
(
1 −g2g−1

4
0 1

)
g
(

1 0
−g3g−1

4 1

)
=

(
det(g)g−1

4 0
0 g4

)
Further we have

(3.13)
(
a 0
0 b

)
=

(
$v(a)−v(b) 0

0 $v(b)

) (
a0 0
0 b0

)
.

Here a = a0$
v(a) and b = b0$

v(b). One just have to note that v(det(g)g−1
4 ) ≥ v(g4). �

3.4. Embedding of field. Let E = F(
√

D) be a quadratic field extension over F. Then it can be
embedded into M2×2 by

(3.14) ι : a + b
√

D 7→
(

a b
bD a

)
.

Exercise 3.11. Prove that all other embeddings will differ from this by a conjugation. Hint: it
suffice to show this for a generator, eg.

√
D. To do this, start with a general embedding and work

with the 2−dimensional vector space on which the matrices act. Show that after choosing proper
basis, the action of

√
D is given as above.

One can easily check that this embedding is consistent with norm and trace maps, i.e.,

(3.15) TrM2×2 ◦ ι = TrE/F,

(3.16) det ◦ι = NmE/F.

4. Haar measure

Let G be a group over p−adic field. Let C∞c (G) be the space of functions f : G → C which are
locally constant and compactly supported. G acts on C∞c (G) by left and right translations.

Definition 4.1. A left Haar measure on G is a non-negative measure such that

(4.1)
∫

f (x)dLx =

∫
f (g−1x)dLx,

for any f ∈ C∞c (G) and g ∈ G. A right Haar measure on G is defined similarly to have the property

(4.2)
∫

f (x)dRx =

∫
f (xg)dRx.

It basically is saying that we can do change of variable for integrals.
11



Lemma 4.2 (Without proof). Left/right Haar measures exist and are always 1−dimensional.

Definition 4.3. Let dLx be a left Haar measure. Modular character ∆G(g) : G → R>0 is such that

(4.3) ∆G(g)
∫

f (xg)dLx =

∫
f (x)dLx.

G is called unimodular if any left Haar measure is also a right Haar measure, or equivalently
∆G = 1.

Formally we can write

(4.4) ∆G(g)dL(xg−1) = dLx, or dL(xg) = ∆G(g)dLx.

Note that it’s indeed a character as

(4.5) ∆G(g1g2)dLx = dL(xg1g2) = ∆G(g2)dL(xg1) = ∆G(g1)∆G(g2)dLx.

Proposition 4.4. Any finite group is unimodular. Any compact open subgroup of GLn(F) is also
unimodular.

Proof. When G is finite, the counting measure

(4.6)
∫

f dx =
∑
g∈G

f (g)

is automatically left and right Haar measure.
When G is a compact open subgroup of GLn(F), we define a measure µ on G such that Vol(G, dx) =

1 and Vol(H, dx) = 1
[H:G] for any compact open subgroup H. f ∈ C∞c (G) is locally constant so there

exists a normal compact subgroup H such that

(4.7) f (xh) = f (x) = f (hx)

for any x ∈ G. Then

(4.8)
∫

f dx =
1

[H : G]

∑
x∈G/H

f (x).

We have

(4.9)
∫

f (gx)dx =

∫
f (xg)dx =

∫
f (x)dx

because multiplication by g on left or right just permutes elements in G/H. �

The second part of the proof used the key feature of p−adic analysis, that is, the continuous func-
tions are always locally constant. So checking the left/right-invariance of a measure is equivalent
to checking how the volume of an open set behaves under left and right actions.

4.1. Measures on F and F∗. Abelian groups are always unimodular since the left translation is
the same as right translation.

We normalise the Haar measure dx on F so that

(4.10) Vol(OF, dx) = 1.

Then automatically we have

(4.11) Vol($nOF, dx) =
1
qn .

12



This is because OF can be written as

(4.12) OF =
∐

ai

∑
0≤i<n

ai$
i +$nOF

 ,
and every piece

∑
0≤i<n ai$

i +$nOF should have same volume.
Recall in the real case, d∗x = |x|−1dx. Here we claim that d∗x = |x|−1

F dx is a Haar measure on F∗.
Note that

Vol(y$nOF, dx) =
1

qvF(y)+n = |y|FVol($nOF, dx).

One can formally write d(yx) = |y|Fdx, and formally verify that

(4.13) |yx|−1
F d(yx) = |yx|−1

F |y|Fdx = |x|−1
F dx.

Thus d∗x defined above is a Haar measure on F∗.
We normalise the Haar measure d∗x on F∗ so that

(4.14) Vol(O∗F, d
∗x) = 1.

Then for a similar reason we have

(4.15) Vol(UF(n), d∗x) =
1

(q − 1)qn−1 .

Exercise 4.5. Check this result.

4.2. Measures on GLn and P. The discussion here is a direct analogue of real case, with p−adic
norm in place of absolute value.

Let dA denote the measure on Mn×n which is a product of Haar measures on F.

Lemma 4.6. G = GLn(F) is unimodular, with the Haar measure given by dg = | det(g)|−n
F dA.

Proof. We formally check that this is a left Haar measure. For any h ∈ G, and x ∈ Fn consider as
column vector, with dx a product of Lebesgue measures,

(4.16) d(hx) = | det(h)|Fdx.

Consider A ∈ Mn×n as n column vectors. Then

(4.17) d(hA) = | det(h)|nFdA.

Thus

(4.18) d(hg) = | det(hg)|−n
F d(hA) = | det(g)|−n

F dA = dg.

Checking it’s right Haar measure is similar. �

We shall normalise the Haar measure on G so that Vol(K) = 1.

Lemma 4.7. For n = (n1, · · · , nk) and

p =


M1,1 N1,2 · · · N1,k

0 M2,2 · · · N2,k
...

...
. . .

...
0 0 · · · Mk,k

 ∈ Pn

(4.19) ∆Pn(p) =
∏
1≤i≤t

| det(Mi,i)|

∑
j<i

n j−
∑
j>i

n j

F

13



Example 4.8. When n = (1, 1),

(4.20) ∆Pn(
(
a m
0 b

)
) = |

b
a
|F.

Proof. We shall prove the case n = (1, 1).
Recall that formally

(4.21) dL(gh) = ∆P(h)dLg.

First we need to figure out dLg.

Writing h =

(
a m
0 b

)
, g =

(
x n
0 y

)
, we have that

hg =

(
x′ n′

0 y′

)
=

(
ax an + ym
0 by

)
.

So d∗x′d∗y′dn′ = |a|Fd∗xd∗ydn, and dLg = |x|−1
F d∗xd∗ydn is a left Haar measure.

Then when we write

gh =

(
x′ n′

0 y′

)
=

(
ax xm + nb
0 by

)
,

(4.22) dL(gh) = |ax|−1
F |b|Fd

∗xd∗ydn = |
b
a
|FdLg.

Thus ∆G(h) = |ba |F. �

Exercise 4.9. Prove the general case. Hint: In general let dAi, j be the product Haar measure on
Ni, j and dgi be the Haar measure on Mi,i. Then

(4.23) dg =
∏

i

| det(Mi,i)|
−

∑
j>i

n j

F dgi

∏
i, j

dAi, j

is a left Haar measure.

Remark 4.10. In practice the Haar measure on GLn given above is not so convenient to use. Using
Iwasawa decomposition GLn = BK, one can expect that dg = dLbdk for b ∈ B, k ∈ K. There is
an ambiguity, as B ∩ K = B(OF) is not empty. But we can normalise the Haar measures so that
Vol(B(OF)) = 1 and the redundant integrals on the common part does not matter. This decomposi-
tion of integral is very useful if we further know that the function f to integrate is also K−invariant
(in which case f is called spherical), then we can essentially reduce the integral to one only on B.

Start of lecture 4

5. Basic representation theory

5.1. Basic representation definitions. A representation ρ of group G is a group homomorphism
ρ : G → GL(V) where V is a vector space over C.

A subrepresentation U of V is a subspace which is closed under the action of G (ρ(G)U ⊂ U).
When such subrepresentation exists, one can also define the quotient representation of G on V/U.
ρ is called irreducible if V has no proper subrepresentations(i.e., U = {0} or V for any subrepre-

sentations).
A representation is called semisimple if it is a direct sum of irreducible representations.

14



In general there exists a filtration of V 0 = V0 ( V1 ( V2 ( · · · ⊂ V such that Vi are closed under
the action of G and Vi+1/Vi are irreducible representations. If there exists Vn = V , we say V is of
finite length and n is the length of the representation ρ.

We also say V is glued together from Vi+1/Vi and Vss = ⊕Vi+1/Vi.

Lemma 5.1 (Schur’s lemma/Without proof). Let ρ1, ρ2 be irreducible representations of G. Then
HomG(ρ1, ρ2) = 0 or C, with the latter iff ρ1 ' ρ2.

Lemma 5.2. Let ρ be an irreducible representation of an abelian group G. Then ρ is 1−dimensional.

Proof. For any x, y ∈ G, ρ(x)ρ(y) = ρ(y)ρ(x) implies that ρ(x) ∈ HomG(ρ, ρ) for any x. By Schur’s
lemma, HomG(ρ, ρ) is 1−dimensional. So ρ(x) is a constant multiple of identity map for any x.
Then ρ must be 1−dimensional to be irreducible. �

Now if (π,V) is a representation of G = GLn, and Z ' F∗ is the group of centers of G, then
π|Z = ⊕χ is a direct sum of multiplicative characters. Let Vχ be the subspace of V on which Z acts
by χ. Then each Vχ is a subrepresentation of V , as π(g)π(z) = π(z)π(g) = χ(z)π(g). In particular if
π is irreducible, then π|Z will be a single character. Denote it by wπ, called central character of π.

Lemma 5.3. Any representation (ρ,V) of a finite group is semisimple.

Proof. Let U ⊂ V be any subrepresentation. Let ϕ : V → U be any projection map, meaning that
ϕ|U is the identity map. Define

(5.1) ϕ̃(v) =
1

#G

∑
g∈G

π(g)ϕ(π(g−1)v).

Then ϕ̃|U is still the identity map, and ϕ̃ is further a homomorphism of G−representations. Then
V = U ⊕ kerϕ is a decomposition of G−representations. �

Corollary 5.4 (Inverse Schur’s lemma). When ρ is semisimple, then

(5.2) ρ is irreducible⇔ HomG(ρ, ρ) = C.

Beware that in general representations of GLn(F) are not necessarily semisimple.

5.2. Smooth and admissible. For groups over p−adic field, we care about the following types of
representations.

Definition 5.5. (ρ,V) of G is called smooth if for any v ∈ V , there exists a compact open subgroup
K of G such that ρ(K)v = v.

This is the direct generalization of continuity/smoothness of additive/multiplicative characters.
Equivalently, let VK denote the subspace of V which is ρ(K)−invariant, then ρ is smooth if and

only if

(5.3) V =
⋃

K

VK .

Definition 5.6. ρ is called admissible if VK is finite dimensional for any compact open subgroup
K.

In this course we will classify irreducible smooth admissible representations of GLn. For sim-
plicity denote Irr(G) to be the set of such representations. One don’t have to worry about being
admissible too much, because of the following result.

15



Proposition 5.7 (Partial proof later on). Any smooth irreducible representation of GLn is admissi-
ble.

This result follows from the classification result for representations of GLn. But to start with,
we impose this condition. We will soon see that it is related to contragredient representation.

Lemma 5.8. Let (ρ,V) be a smooth representation of a compact open subgroup K. Then ρ is
semisimple.

Sketch. As in the proof of Lemma 5.3, we can for any projection map ϕ : V → U on to a subrep-
resentation, we can define

(5.4) ϕ̃(v) =
1

Vol(K)

∫
K

π(k)ϕ(π(k−1)v)dk.

The integral is essentially a finite sum by the representation being smooth. �

5.3. Induction and compact induction.

Definition 5.9. Let H be a subgroup of G and (σ,W) be an irreducible smooth representation of H.
Define the smooth induced representation IndG

H σ to be the space of smooth functions f : G → W
such that

f (hg) = σ(h) f (g) for any h ∈ H, g ∈ G.

The action of G on this space is by right translation π(g) f (x) = f (xg).
Define the compactly induced representation c − IndG

H σ to be the space of functions f as above
with additional condition that the support of f is compact in H\G. It is naturally a subrepresenta-
tion of IndG

H σ (though not necessarily different).

Remark 5.10. These two functors satisfy many nice properties one would expect. For example
they send short exact sequeces(s.e.s) to s.e.s. They are transitive.

The compact induction is most useful when H is an open subgroup. In that case H is open and
closed (with complement being union of H cosets), and H\G has discrete topology. Then any
f ∈ c − IndG

H σ having compact support is actually supported on a finite number of H−cosets. We
can give a explicit basis for c − IndG

H σ as follows. Fix a set of representative gi ∈ H\G and a basis
w j ∈ W, let

(5.5) fgi,w j(g) =

σ(h)w j, if g = hgi,

0, otherwise.

Lemma 5.11. If H is an open subgroup of G, then { fgi,w j}i, j form a basis for c − IndG
H σ.

5.4. Frobenius reciprocity. Thus we have two functors Ind, c − Ind : Rep(H) → Rep(G). There
is naturally a functor in the opposite direction, that is, the restriction of a representation of G to H
(forgetting how the other elements act). We shall simply write π|H for the restriction. The following
two lemmas tell us how inductions are related to the functor of restriction.

Lemma 5.12 (Frobenius Reciprocity 1).

(5.6) HomG(π, IndG
H σ) = HomH(π|H, σ).
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Proof. There is a canonical H−homomorphism

ασ : IndG
H σ→ W(5.7)

f 7→ f (1)
π(h) f 7→ f (1 · h) = f (h) = σ(h) f (1)

For any φ ∈ HomG(π, IndG
H σ), we associate φ̃ ∈ HomH(π|H, σ) by the following. For any v ∈ π,

φ(v) ∈ IndG
H σ and

(5.8) φ̃(v) = ασ ◦ φ(v).

For the inverse direction, let ψ̃ : V → W be an H−homomorphism. Then we associate ψ ∈
HomG(π, IndG

H σ) satisfying
ψ(v) : g 7→ ψ̃(π(g)v).

�

Exercise 5.13. Check that ψ(v) ∈ IndG
H σ, ψ is a G−homomorphism, and the association ψ← ψ̃ is

inverse to φ→ φ̃.

Lemma 5.14 (Frobenius Reciprocity 2). Suppose that H is an open subgroup of G.

(5.9) HomG(c − IndG
H σ, π) = HomH(σ, π|H).

Proof. There exists a canonical H−homomorphism

βσ : W → c − Indσ(5.10)
w 7→ f1,w,

where f1,w is similarly defined as in (5.5). Now for φ ∈ HomG(c − IndG
H σ, π), we associate φ̃ ∈

HomH(σ, π|H) by

(5.11) φ̃(w) = φ ◦ βσ(w).

For ψ̃ ∈ HomH(σ, π|H), we associate ψ : c − IndG
H σ→ V satisfying

(5.12) ψ( f1,w) = ψ̃(w).

Then it extends uniquely to be a G− homomorphism. One can easily check that ψ ← ψ̃ is inverse
to φ→ φ̃. �

Corollary 5.15 (Useless). Any irreducible representation π can be realised as a subrepresentation
of IndG

H σ or a quotient representation of c − IndG
H σ for some subgroup H and irreducible σ.

5.5. Mackey theory. For simplicity suppose that G is finite. Let H,K be two subgroups of G,
(σ,W) be an irreducible representation of H, and ρ = IndG

H σ.

Theorem 5.16 (Mackey).

(5.13) ρ|K ' ⊕g∈H\G/K IndK
K∩Hg σg|K∩Hg ,

here Hg = g−1Hg and σg is the representation of Hg which is realised on W and defined by

(5.14) σg(hg)w = σ(h)w.
17



Proof. For any g ∈ H\G/K, we shall find a subspace of V which is K−isomorphic to σg,K :=
IndK

K∩Hg σg|K∩Hg . As G is finite, we can explicitly describe a basis { fgi,w j} as in (5.5) for gi being
representatives of H\G and {w j} basis of W. When Hgi ⊂ HgK, we can further assume that
gi = gki. Then to g we associate a subspace

(5.15) Vg = ⊕Hgki⊂HgK ⊕ j C fgki,w j .

Note that we have a bijection

(5.16) H\HgK
'
−→ (Hg ∩ K)\K

with elements gki sent to ki.
On the other hand, σg,K has a basis f ′ki,w j

. We define a linear map from Vg to σg,K , sending fgki,w j

to f ′ki,w j
. We need to check that it’s a K-isomorphism. For any k ∈ K, suppose that

(5.17) gkik = hgk j.

Here h = hk,i, j ∈ H depends on all parameters. Then

(5.18) ρ(k−1) fgki,w j = fgk j,σ(h−1)w j .

On the other hand, (5.17) can be rewritten as

(5.19) kik = g−1hgk j.

(5.20) σg,K(k) f ′ki,w j
= f ′k j,σg(g−1h−1g)w j

= f ′k j,σ(h−1)w j
.

So it’s indeed K−isomorphism. �

Corollary 5.17. Let σ be an irreducible representation of H and π = IndG
H σ be semisimple. Then

π is irreducible if and only if

(5.21) HomH(σ, IndH
H∩Hg σg) , 0⇔ g ∈ H.

Exercise 5.18. Prove this corollary. Hint: use Corollary 5.4, Frobenius reciprocity and the theorem
above.

This result is not so useful in the course as π is not necessarily semisimple.
Start of lecture 5

5.6. Contragredient representation. In general for a representation (π,V), we can define its dual
representation on V∗ := HomC(V,C) via

(5.22) < π∗(g)v∗, v >=< v∗, π(g−1)v > .

Here < ·, · > is the natural pairing between V and V∗. This representation in our setting is usually
too large and not smooth. We shall consider the smooth part of it

(5.23) V̌ =
⋃

K

(V∗)K ,

which is G−invariant as conjugation by g ∈ G gives another compact open subgroup. Let

(5.24) π̌ = π∗|V̌ .

Definition 5.19. The representation (π̌, V̌) is called the contragredient representation, or smooth
dual of (π,V).

18



Example 5.20. Let χ be a character of F∗ = GL1(F). Then associated V , V∗ = V̌ are 1−dimensional,
and

(5.25) χ̌(x) = χ(x−1) = χ−1(x).

Lemma 5.21. G/K is countable. As a result, smooth irreducible representation π of G has count-
able dimension.

Proof. There are different ways to show the first claim. For example by Iwasawa decomposition

G/K ' B/(B ∩ K).

The right hand side is countable. For simplicity consider G = GL2, in which case

(5.26) B/(B ∩ K) =

(
F∗ F
0 F∗

)
/

(
O∗F OF
0 O∗F

)
.

Note that F∗/O∗F ' $
Z, F/OF can be represented by elements from finite field extension of Q. Both

are countable and so is B/(B ∩ K).
Any vector v ∈ π is fixed by some K′ by smoothness. Then by irreducibility π is spanned by

π(g)v, g ∈ G/K′, which is also countable as [K : K′] < ∞. �

We note that if dim V = ∞ but countable, then V∗ is not countable. (Think about digits for real
numbers.)

Lemma 5.22. Restricting to VK induces isomorphism V̌K ' (VK)∗

Proof. To prove that the map V̌K → (VK)∗ is injective, let f1, f2 ∈ V̌K such that

(5.27) < VK , f1 − f2 >= 0.

For any v ∈ V , as f1 − f2 is K−invariant, we have that

(5.28) < v, f1 − f2 >=
1

Vol(K)

∫
< v, π̌( f1 − f2) > dk =<

1
Vol(K)

∫
π(k−1)vdk, ( f1 − f2) >= 0

as
∫
π(k−1)v ∈ VK . Thus f1 = f2.

On the other hand, define

V(K) = {v ∈ V,
∫

K
π(k)vdk = 0}.

Then V = VK ⊕ V(K), as

v =
1

Vol(K)

∫
K
π(k)vdk + (v −

1
Vol(K)

∫
K
π(k)vdk)

where 1
Vol(K)

∫
K
π(k)vdk ∈ VK and (v − 1

Vol(K)

∫
K
π(k)vdk) ∈ V(K).

Then for any linear functional on VK , we can extend it to be a linear functional on V by taking
0 on V(K). It will be smooth as it’s fixed by K. �

In the following lemma we show how admissibility comes into play.

Lemma 5.23. Let π be smooth. π→ ˇ̌π is isomorphism if and only if π is admissible.
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Proof. It is clear that π ↪→ ˇ̌π. To see that the injection is also surjective, we use that both sides are
smooth, so it suffice to show that

(5.29) VK ↪→ ˇ̌VK = (V̌K)∗ = (VK)∗∗

is surjection for any compact open subgroup K. Here we have used the lemma above for the
right hand side. If π is admissible, then VK is finite dimensional and the map is surjective for
finite dimensional dual spaces. On the other hand, if VK is infinite dimensional but countable,
VK → (VK)∗∗ is not surjective as (VK)∗∗ is not countable. �

Lemma 5.24. Let π ∈ Irr(G). Then π̌ ∈ Irr(G).

Proof. We just need to prove that π̌ is irreducible. If not, there is a s.e.s of nontrivial representations

0→ V1 → π̌→ V2 → 0.

By taking smooth dual, we get
0→ V̌2 → π→ V̌1 → 0,

contradicting the condition on π. �

Let v ∈ (π,V) and v′ ∈ (π̌, V̌).

Definition 5.25. The matrix coefficient associated to v and v′ is defined as the following function
on G.

(5.30) Φv,v′(g) =< π(g)v, v′ > .

6. Parabolic induction theory

Before we start, first note that there is a simple way to product new representation for matrix
groups, which is twisting by a character. More precisely, let (π,V) be a representation of GLn and
χ be a multiplicative character of F∗. Then the twisted representation (π ⊗ χ,V) is defined on the
same space, with the action

(6.1) (π ⊗ χ)(g)v = χ(det(g))π(g)v.

6.1. Parabolic induction and Jacquet functor. Here we develop a variant of induced represen-
tation and restriction functor related to parabolic subgroups. Let G = GLn, P = Pn, M = Mn,
N = Nn as defined in Section 3.1. Note that P = MN and N is a normal subgroup of P.

In particular M ' GLn1×· · ·×GLnk . Let (σi,Vi) ∈ Irr(GLni) and (σ,V) = ⊗i(σi,Vi) ∈ Irr(M). On
the other hand let θ be a character of N which is normalised by P, meaning that θ(n) = θ(p−1np).

Define a representation σθ of P on V by

(6.2) (σθ)(mn) = σ(m)θ(n), m ∈ M, n ∈ N.

It is well defined by our assumption on θ.
We first define the parabolic induction to be π = IndG

P σθ. Later on we will make slight refine-
ment for this definition.

The analogue of the restriction functor in this case is called Jacquet functor, defined as follows.
For (π,V) ∈ Irr(G), let V(N, θ) = {θ(n)v − π(n)v, n ∈ N, v ∈ V}, which is closed under the action
of P. Let πN,θ be the representation of P on the space VN,θ = V/V(N, θ) by restriction and quotient.
πN,θ is called Jacquet module associated to (N, θ). It is the maximal quotient of π on which N acts
by θ.

Recall that there is a Haar measure on N (which is the product of Lebesgue measures).
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Lemma 6.1. Let v ∈ V. Then v ∈ V(N, θ) if and only if there exists a compact open subgroup N0

of N such that

(6.3)
∫
N′

θ−1(n)π(n)vdn = 0

for any N0 < N′.

Proof. We shall prove for θ = 1 here. Suppose first that v =
∑

i π(ni)vi − vi ∈ V(N). Then there
exists a compact open subgroup N0 containing all ni, and

(6.4)
∫
N′

π(n)vdn =
∑

i

∫
N′
π(nni)vidn −

∑
i

∫
N′
π(n)vidn = 0.

On the other hand for any v ∈ V , it is fixed by some compact open subgroup N1 of N0. So v ∈ VN1

and the finite group N0/N1 acts on VN1 . Then similar to the Jacquet module, we have

(6.5) VN1
N0

= VN1/VN1(N0/N1)

is the maximal quotient of VN1 on which N0/N1 acts trivially. But as N0/N1 is finite, so any of its
representation is semisimple and we have

(6.6) VN1 = VN1(N0/N1) ⊕ VN0 .

The N0−projection map onto VN0 is given by

(6.7) ϕ : w 7→ Vol(N0)−1
∫

N0

π(n)wdn.

Then the condition on v is saying that v ∈ kerϕ = VN1(N0/N1) ⊂ V(N). �

Exercise 6.2. Prove the lemma for general θ. Hint: consider the twist π|N ⊗ θ−1.

Lemma 6.3. Let σ be admissible. Then π = IndG
P σθ is admissible.

Proof. Let H be any compact open subgroup of K (replace H by H ∩ K if necessary). We shall
show that πH is finite dimensional. By Iwasawa decomposition G = BK, there are finite number
of double P − Hcosets in G. Let {gi}1≤i≤k be the collection of representatives and we can further
assume that gi ∈ K. Let J ⊂ H be a normal compact open subgroup. Note that J ∩ M is a compact
open subgroup of M.

By the definition of induced representation,

(6.8) π = { f : G → V, f (pg) = σ(p) f (g)}.

Then elements f in πH are uniquely determined by the values f (gi) ∈ V . Further more for j ∈ J∩M

(6.9) π( j) f (gi) = f ( jgi) = f (gi(g−1
i jgi)) = f (gi)

as g−1
i jgi ∈ J and f is J−invariant. Thus the space πH is spanned by functions f supporting on

PgiH such that f (gi) ∈ V J∩M. So πH is finite dimensional as (σ,V) is also admissible.
�

The parabolic induction and Jacquet functor has usual good properties, like transitivity and
sending s.e.s to s.e.s.

In the following we will only be interested in the situation when θ = 1. Then we simply omit θ
in the notations above.
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6.2. Contragredient representation and normalised induction.

Proposition 6.4. Let σ̌i be the contragredient representation of σi, and σ̌ = ⊗σ̌i. Then the contra-
gredient representation of IndG

P σ is IndG
P(σ̌ ⊗ ∆−1

P )

Partial proof. We shall only show how to establish a G−invariant pairing between f ∈ IndG
P σ and

f ′ ∈ IndG
P(σ̌ ⊗ ∆−1

P ). Let [·, ·] be the pairing between σ and σ̌. Define the pairing by the integral

(6.10) < f , f ′ >=

∫
K

[ f (k), f ′(k)]dk

We need to show that this integral is G−invariant, i.e. for Φ(g) := [ f (g), f ′(g)] and any h ∈ G

(6.11)
∫

K
Φ(k)dk =

∫
K

Φ(kh)dk.

Note that the function Φ(g) satisfies for p ∈ P that

(6.12) Φ(pg) = [ f (pg), f ′(pg)] = [σ(p) f (g),∆−1
P (p)σ̌(p) f ′(g)] = ∆−1

P (p)Φ(g).

Let C∞(G,∆−1
P ) denote the space of functions on G satisfying Φ(pg) = ∆−1

P (p)Φ(g).
On the other hand for ϕ ∈ C∞c (G), we have

(6.13)
∫

G
ϕ(gh)dg =

∫
G
ϕ(g)dg.

By Iwasawa decomposition and properly normalised Haar measures,

(6.14)
∫

G
ϕ(g)dg =

∫
K

∫
P
ϕ(pk)dL pdk,

with ϕ̃(g) :=
∫
P
ϕ(pk)dL p satisfying

(6.15) ϕ̃(p′g) =

∫
B

ϕ(pp′k)dL p = ∆P(p′−1)
∫
B

ϕ(pk)dL p = ∆−1
P (p)ϕ̃(g).

So if the map

C∞c (G)→ C∞(G,∆−1
P )(6.16)

ϕ 7→ ϕ̃

is surjective, then we can find ϕ with ϕ̃ = Φ, and
∫

K
Φ(k)dk =

∫
G
ϕ(g)dg is G−invariant.

To see that the map is surjective, we check the H−invariant part for any compact open sub-
group H. For any g ∈ P\G/H. The functions Φ ∈ C∞(G,∆−1

P ) supported on PgH is at most
1−dimensional. On the other hand let ϕ ∈ C∞c (G) be the constant function supported only on gH.
Then ϕ̃ is supported only on PgH. It is nontrivial because

(6.17) ϕ̃(g) =

∫
P
ϕ(pg)dL p = Vol(P ∩ gHg−1, dLP),

which is nonzero as P ∩ gHg−1 is an open subgroup of P.
What we haven’t checked is that the pairing defined above is non-degenerate. To do this, we

need to check that the pairing between H−invariant parts are non-degenerate. We skip this step
here. �
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In the light of this result, from now on we refined the parabolic induction as follows

(6.18) iM,G σ := IndG
P(σ ⊗ ∆

−1/2
P )

Then the contragredient representations of iM,G σ is iM,G σ̌.
Similarly let rG,M be the normalized Jacquet functor

(6.19) rG,M π = πN ⊗ ∆
1/2
P .

Start of lecture 6

6.3. Frobenius reciprocity and primitive classification.

Lemma 6.5 (Frobenius reciprocity 3).

(6.20) HomG(π, iM,G σ) = HomM(rG,M π, σ).

Proof. By Frobenius reciprocity 1 in Lemma 5.12,

(6.21) HomG(π, IndG
P(σ ⊗ ∆

−1/2
P )) = HomP(π|P, σ ⊗ ∆

−1/2
P )

Note that ∆P is trivial on N. We have a map

HomM(πN , σ ⊗ ∆
−1/2
P ) ↪→ HomP(π|P, σ ⊗ ∆

−1/2
P )

by composing elements from HomM(πN , σ ⊗ ∆
−1/2
P ) with the projection map V → V/V(N) = VN .

On the other hand, as N acts trivially on σ⊗∆
−1/2
P , any map in HomP(π|P, σ⊗∆

−1/2
P ) factor through

πN . Finally

(6.22) HomM(πN , σ ⊗ ∆
−1/2
P ) = HomM(πN ⊗ ∆

1/2
P , σ) = HomM(rG,M π, σ)

�

Definition 6.6. Let π ∈ Irr(G). If πN , 0 for some nontrivial unipotent subgroup N, then by
Lemma 6.5 we can find σ ∈ Irr(M) such that

(6.23) HomG(π, iM,G σ) , 0,

i.e., π is a subrepresentation of iM,G σ. Such π is called non-supercuspidal. On the other hand, if
πN = 0 for any non-trivial unipotent subgroup, it can’t be constructed as a subrepresentation of
iM,G σ, and π is called supercuspidal.

By convention, all the characters χ of GL1 will be considered as supercuspidal representations.
Also note that if π is (non-)supercuspidal, so will be π ⊗ χ for any character χ.

The goal now is to construct and classify the non-supercuspidal representations using supercus-
pidal ones. First of all, if πN , 0 is not supercuspidal, then we can find another unipotent subgroup
N′ in M such that (πN)N′ , 0. In particular we can assume WLOG that πN , 0 is supercuspidal. Let
M = GLn1 × · · · × GLnk in that case. Then there exists σ = ⊗σi with σi ∈ Irr(GLni) supercuspidal
such that π ↪→ iM,G σ. The main questions are

(1) Can the set of representations {σi} be used to parametrise π?
(2) Can we say something about when iM,G σ is irreducible?
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6.4. Variant of Mackey theorem and supercuspidal support. Here we need a variant of Mackey
theorem in the context of parabolic induction. Two main modifications are required. The first is
to use parabolic induction and Jacquet functor to replace the usual induction and restriction. The
second is related to the fact that parabolically induced representations are in general not semisimple
for parabolic subgroups.

First of all we set up notations carefully. Let α = (α1, · · · , αk) be a partition of n, and Mα '

GLα1 × · · ·GLαk be the corresponding Levi subgroup. G can be thought of Mα where α = (n). Let
α β be two partitions of n. Let α ∩ β be the partition corresponding to Mα ∩ Mβ. β will be called a
sub-partition of α if β ∩ α = β (or equivalently Mβ < Mα).

When Mβ < Mα < G, let iMβ,Mα
: Rep(Mβ) → Rep(Mα) be the normalised parabolic induction,

where the parabolic subgroup is chosen to be Pβ ∩ Mα which is upper triangular. Similarly let
rMα,Mβ

: Rep(Mα)→ Rep(Mβ) be the normalised Jacquet functor associated to Pβ ∩ Mα.
As in Mackey theorem, we will be interested in rG,Mβ

iMα,Gσ. It is expected that it can be ’de-
composed’ according to the double coset decomposition Pβ\G/Pα. Using Bruhat decomposition
and obvious inclusion of Weyl groups into corresponding parabolic subgroups, one can see that
there exists an injection from Pβ\G/Pα to WMβ

\W/WMα
, where WMβ

< Pβ is the Weyl group of Mβ.
(Actually one can prove that Pβ\G/Pα = WMβ

\W/WMα
. But we shall not do it here as we only need

an injection)
Note that Mw

α is usually not a block wise diagonal matrix. But we can pick a set of special
representatives.

Lemma 6.7. A set of representatives of WMβ
\W/WMα

can be chosen as follows.

Wβ,α = {w ∈ W,w(i) < w( j) if i < j and i, j comes from same block of Mα;(6.24)

w−1(i) < w−1( j) if i < j and i, j comes from same block of Mβ}(6.25)

Then for w ∈ Wβ,α, Mα∩Mw−1

β is block-wisely diagonal, and Mw
α ∩Mβ is also block-wisely diagonal.

Proof.

(6.26) Wβ,α = WMβ
\W/WMα

is clear as WMβ
,WMα

can change ordering in the preimage and image. For the second part of the
lemma, we shall only prove that Mα ∩ Mw−1

β is block-wisely diagonal. It suffice to look at a single
block Mαi from Mα. (6.24) would guarantee that the preimage of Mβ j in Mαi , if nontrivial, will be
a block along the diagonal. Thus Mαi ∩ Mw−1

β is block-wisely diagonal. �

Theorem 6.8 (Geometric lemma in [1]). Let α, β be any two partitions of n. Then

(6.27) (rG,Mβ
iMα,Gσ)ss =

⊕
w∈Wβ,α

iMw
α∩Mβ,Mβ

(rMα,Mα∩Mw−1
β

σ)w

Remark 6.9. It would seem more consistent with Mackey theorem if we write rMw
α ,Mw

α∩Mβ
σw instead

of (rMα,Mα∩Mw−1
β

σ)w, but Mw
α is not block-wisely diagonal in general.

Example 6.10. Let n = 2 and α = β = (1, 1), χ1⊗χ2 be a character on M = Mα. Then Wβ,α = {1, ω}

for ω =

(
0 1
1 0

)
. Note that (χ1 ⊗ χ2)ω = (χ2 ⊗ χ1) By the theorem above we have

(6.28) (rG,M iM,G(χ1 ⊗ χ2))ss = (χ1 ⊗ χ2) ⊕ (χ2 ⊗ χ1).
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The unnormalised version says

(6.29) (Ind(χ1| · |
1/2 ⊗ χ2| · |

−1/2))N = (χ1| · |
1/2 ⊗ χ2| · |

−1/2) ⊕ (χ2| · |
1/2 ⊗ χ1| · |

−1/2).

Theorem 6.11. Let σi be supercuspidal representations of Mi and πi = iMi,Gσi. If π1 and π2 have
common composition factor, (i.e., (πi)ss have common irreducible subrepresentation) then there
exist w ∈ W such that M2 = Mw

1 and σ2 = σw
1 .

Proof. Let π0 be such a common composition factor. Let M0 be a Levi subgroup such that rG,Mπ0

is supercuspidal. Then rG,M0π0 is a common composition factor of rG,M0πi as rG,M0 sends s.e.s to
s.e.s. By Theorem 6.8, we have

(6.30) (rG,M0πi)ss =
⊕

w∈WM0 ,Mi

iMw
i ∩M0,M0(rMi,Mi∩Mw−1

0
σi)w.

But since σi is supercuspidal, we have that rMi,Mi∩Mw−1
0
σi = 0 unless Mi = Mi ∩ Mw−1

0 . As a result
we can write

(6.31) (rG,M0πi)ss =
⊕

w∈WM0 ,Mi ,Mi=Mi∩Mw−1
0

iMw
i ∩M0,M0σ

w
i ,

Let ρ be a composition factor of rG,M0π0, which is automatically supercuspidal. Then ρ is also
a composition factor for one of iMw

i ∩M0,M0σ
w
i . We need a lemma for which we will postpone the

proof.

Lemma 6.12. Let σ an irreducible supercuspidal representation of M. Then iM,G σ doesn’t have
any supercuspidal composition factor/subquotient.

By this Lemma, we must have Mw
i ∩ M0 = M0. So we can further write

(6.32) (rG,M0πi)ss =
⊕

w∈WM0 ,Mi ,M
w
i =M0

σw
i .

Then we have that (M0, ρ) = (Mw
i , σ

w
i ), and the claim in the theorem follows immediately. �

Corollary 6.13. For π ∈ Irr(G), suppose that π is a composition factor of iM,G σ for a supercuspidal
representationσ ' ⊗σαi of block-wisely diagonal Mα ' GLα1×· · ·×GLαk . Then the set {(GLαi , σαi)}
are uniquely determined by π up to a permutation of blocks.

Definition 6.14. The set {σαi} is called the cuspidal support of π. This parametrises all π ∈ Irr(G)
in terms of supercuspidal ones.

6.5. Criterion for irreducibility.

Theorem 6.15. Let σ ' ⊗σαi be supercuspidal representation of the block-wisely diagonal sub-
group Mα ' GLα1 × · · · × GLαk . Then π = iM,G σ is irreducible if and only if σαi ; σα j ⊗ | · |F for
any i, j.

We shall give the proof in the case of GL2. In this case, σ = χ1 ⊗ χ2, and the theorem claims

that π is irreducible if and only if χi = χ j| · |. Let P1 =

(
∗ ∗

0 1

)
, G1 =

(
∗ 0
0 1

)
' GL1, P0 = {I}. Let θ

be a nontrivial character of N. To avoid confusion, we shall not do any normalisation in this proof.
We shall study the following functor: Ψ− : Rep(P1) → Rep(G1) is the functor which takes V

to VN = V/V(N), just like Jacquet module. Ψ+ : Rep(G1) → Rep(P1) is the extension by the
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trivial character on N as in (6.2). Φ− : Rep(P1) → Rep(P0) be the functor which takes V to
VN,θ = V/V(N, θ). Let Φ+ : Rep(P0)→ Rep(P1) taking any vector space V to c− IndP1

N V ⊗θ, where
we let N acts on V by θ. Then we have the following results.

Lemma 6.16. Let ρ be a representation of P1. If Ψ−ρ = Φ−ρ = 0, then ρ = 0.

Proof. When restricting to the action of N which is abelian, ρ is a direct sum of characters of N.
Then we have the following direct sum of P1−representations.

(6.33) ρ = ρ1 ⊕ (⊕θ′ρθ′),

where N acts trivially on ρ1 and by nontrivial characters on (⊕θ′ρθ′). Ψ−ρ = 0 implies that ρ1 = 0.
On the other hand, Φ−ρ = 0 implies that ρθ = 0. Suppose that ρθ′ , 0. Then there exists a nontrivial
v ∈ ρθ′ such that N acts on v by θ′. By Proposition 2.16, θ = θ′a for some a ∈ F∗. Then

(6.34) ρ(n)ρ(
(
a−1 0
0 1

)
)v = ρ(

(
a−1 0
0 1

)
)ρ(an)v = ρ(

(
a−1 0
0 1

)
)θ′a(n)v = θ(n)ρ(

(
a−1 0
0 1

)
)v.

Thus ρθ , 0, contradiction. �

Proposition 6.17. (1) Ψ±,Φ± are exact.
(2) Ψ+ is adjoint to Ψ−. Φ+ is left adjoint to Φ−.
(3) Φ−Ψ+ = 0, Ψ−Φ+ = 0.
(4) Ψ−Ψ+,Φ−Φ+ are isomorphic to identity maps.
(5) For any representation π of P1, we have the natural s.e.s

(6.35) 0→ Φ+Φ−π→ π→ Ψ+Ψ−π→ 0.

We first show a result of this proposition

Corollary 6.18. Φ+ and Ψ+ send irreducible representations to irreducible representations of P1.

Proof. Let π = Φ+σ be reducible. So there exists s.e.s

(6.36) 0→ π1 → π→ π2 → 0.

Ψ−πi = 0 as Ψ−π = 0. So Φ−πi are nontrivial by Lemma 6.16, and we get s.e.s

(6.37) 0→ Φ−π1 → Φ−π→ Φ−π2 → 0.

Using that Φ−π = Φ−Φ+σ ' σ, we conclude that σ should also be reducible. �

Start of lecture 7

Proof of Proposition 6.17. We will not check all the details. For example (1) is always expected.
We also remark that Ψ+ is really not induction, so the first part in (2)-(4) are direct. Second part
of (2) is not directly Lemma 5.14, as H is assumed to be open in G in Lemma 5.14. But we shall
assume it’s true without justification here.

Let σ be any 1−dimensional vector space. Then

ρ = Φ+σ = { f locally constant and compactly supported, f (nx) = θ(n) f (x)}.

They can be identify with functions f ′ : F∗ → C by restricting on the diagonal

(6.38) f ′(x) = f (
(
x 0
0 1

)
).
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Then the action of ρ can be described as follows

ρ(
(
b u
0 1

)
) f ′(x) = f (

(
x 0
0 1

) (
b u
0 1

)
) = f (

(
1 ux
0 1

) (
bx 0
0 1

)
) = θ(ux) f ′(bx).(6.39)

Note that we can choose a basis for ρ to be f ′a,m = char(a(1 + $mOF)), the characteristic function
of a neighbourhood of a ∈ F. WLOG, we assume that θ is unramified.

Now we show that ρ = ρ(N) and thus Ψ−Φ+σ = 0. For this we choose the basis in such a way
that m > 1. We claim that then every f ′a,m ∈ V(N). This is because we can choose u ∈ N such that

θ(ua$mOF) = 1, but θ(ua) , 1. Then ρ(
(
1 u
0 1

)
) f ′a,m(x)− f ′a,m = (θ(ua)− 1) f ′a,m is a nonzero multiple

of f ′a,m. Done.
Now we further use this description to study Φ−Φ+σ. This time we look at the elements such

that

(6.40) m ≥ max{vF(a − 1) + 1 − vF(a), 0}.

Then ρ(
(
1 u
0 1

)
) f ′a,m(x) = θ(ux) f ′a,m is constant on the support when vF(u) = −vF(a) − m.

(6.41) ρ(
(
1 u
0 1

)
) f ′a,m(x) − θ(u) f ′a,m = (θ(ua) − θ(u)) f ′a,m

is a nonzero multiple of f ′a,m as vF(u(a − 1)) = −vF(a) − m + vF(a − 1) ≤ −1 and θ(u(a − 1)) , 1.
This implies that f ′a,m ∈ V(N, θ) as long as a . 1 and m ≥ max{vF(a − 1) + 1 − vF(a), 0}.

Now if a = 1, any f ′1,m will give a nontrivial image in VN,θ = V/V(N, θ), and they give the
same image in VN,θ as f ′1,m’s differ by characteristic functions near a . 1, which are in V(N, θ). So
dim VN,θ = 1 and Φ−Φ+σ ' σ.

Now we prove part (5). While it’s possible to prove it using the the second part of (2), we shall
circumvent the using of it. From the proof of Lemma 6.16, we have a direct sum decomposition for
P1 representations π = π1 ⊕ (⊕πθ′). We actually want to show that the short exact sequence in (5)
splits. Let π2 = (⊕πθ′). It’s obvious to see that π1 = Ψ+Ψ−π and π2 = π(N). We need to identify π2

with Φ+Φ−π2. This identification could follow from Frobenius reciprocity for compact inductions,
but as we haven’t verified it, we do as follows. Let Φ̂+ : Rep(P0) → Rep(P1) taking any vector
space V to IndP1

N V ⊗ θ. Then we have a standard Frobenius reciprocity for smooth induction

HomP1(π2, Φ̂
+Φ−π2) = HomP0(Φ

−π2,Φ
−π2),

and a map ϕ : π2 → Φ̂+Φ−π2 corresponding to the identity map on the right hand side. Note that
π2 = π2(N) so the image of ϕ is in Φ+Φ−π2(N).

First of all, we show that Φ̂+σ(N) = Φ+σ. By the proof for Ψ−Φ+ = 0 above, we already have
that Φ+σ ⊂ Φ̂+σ(N). On the other hand for any f ∈ Φ̂+σ, we can use the model above, identifying

f with f ′ on F∗, which is now no longer compactly supported. But as ρ(
(
1 n
0 1

)
) f ′(x) = θ(nx) f ′(x)

while f ′ has to be smooth and thus fixed by some compact subgroup of N, we have that f ′(x) = 0

when vF(x) → −∞. ρ(
(
1 n
0 1

)
) f ′(x) − f ′(x) = 0 as vF(x) → ∞ because θ(nx) → 1. So we get that

Φ̂+σ(N) ⊂ Φ+σ. Done.
Thus we actually have ϕ : π2 → Φ+Φ−π2.
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Exercise 6.19. Show that ϕ is a bijection. Hint: apply Φ− and Ψ− to kerϕ and cokerϕ and use
Lemma 6.16.

�

Lemma 6.20. There exists a non-degenerate pairing between 1−dimensional representations V1

and V2 of G1, if and only if there exists a P1−invariant pairing between Ψ+V1 and Ψ+V2.

Exercise 6.21. Prove this lemma.

Lemma 6.22. For π = IndG
P(χ1| · |

1/2 ⊗ χ2| · |
−1/2), we have that Φ−(π|P1) is 1−dimensional.

Proof. The map

(6.42) α : f ∈ π 7→ f (1)

gives a homomorphism of P1 representations, where N acts trivially on the image. Thus Φ−(Imageα) =

0. For any f ∈ kerα, f (1) = 0 and f = 0 in a neighbourhood of form BN′ where N′ is a compact
open subset of lower diagonal matrices. Using that

(6.43)
(
1 0
x 1

)
=

(
−x−1 1

0 x

)
ω

(
1 x−1

0 1

)
∈ BωN,

we get that f is compactly supported functions on N when restricting to ωN. So we have identified
kerα with

W = { f̃ = f |ωN , compactly supported smooth functions on N}.
By Example 6.10, we have that

(6.44) Ψ−(kerα) ⊂ Ψ−π = χ1| · |
1/2 ⊕ χ2| · |

1/2,

and Ψ−Imageα is 1−dimensional. So Ψ−W = WN is also 1−dimensional. On the other hand we
have the following twisting

W → W(6.45)

f̃ 7→ f̃ θ(x)(6.46)

It maps W(N, 1) to W(N, θ) as π(n) f̃ (x) − f̃ (x) is mapped to

θ(x)π(n) f̃ (x) − θ(x) f̃ (x) = θ(x) f̃ (x + n) − θ(x) f̃ (x)(6.47)

= θ(n−1)π(n)θ f̃ (x) − θ(x) f̃ (x)

= θ(n−1)(π(n)θ f̃ (x) − θ(n)θ(x) f̃ (x))

Thus W/W(N, θ) ' W/W(N) should also be 1−dimensional. �

Proof of Theorem 6.15 in case of GL2. Now let π = IndG
P(χ1| · |

1/2 ⊗ χ2| · |
−1/2), and π̌ = IndG

P(χ−1
1 | ·

|1/2 ⊗ χ−1
2 | · |

−1/2). (To avoid confusion, we will use unnormalised version here.)
If π is not irreducible, then it has at least two composition factors. When restricting to P1,

only one of them will have nontrivial image under Φ−. Let ρ be the composition factor of π with
Φ−ρ = 0. Let ρ̌ be the contragredient representation of ρ. It is a composition factor of π̌, and the
G−invariant pairing directly gives a G−invariant pairing between ρ and ρ̌ which is non-degenerate.

But by assumption, ρ = Ψ+Ψ−ρ, so the pairing above gives a nontrivial P1−invariant pairing
between ρ and Ψ+Ψ−ρ̌, and thus by Lemma 6.20 a nontrivial G1−invariant pairing between Ψ−ρ
and Ψ−ρ̌.
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By Example 6.10, we have that

(6.48) Ψ−ρ ⊂ Ψ−π = χ1| · |
1/2 ⊕ χ2| · |

1/2,

(6.49) Ψ−ρ̌ ⊂ Ψ−π̌ = χ−1
1 | · |

1/2 ⊕ χ−1
2 | · |

1/2.

So there is a nontrivial G1−invariant pairing between Ψ−ρ and Ψ−ρ̌ if and only if

(6.50) χ1| · |
1/2 = (χ−1

2 | · |
1/2)−1, or χ2| · |

1/2 = (χ−1
1 | · |

1/2)−1.

Note that the other two pairs are impossible. In summary, if π is not irreducible, then

(6.51)
χ1

χ2
= | · |±1.

Now we show that when χ1
χ2

= | · |±1, π is indeed reducible. We only have to look at the case
χ1
χ2

= | · |−1, as we can get the other case by taking a contragredient. Then let χ1 = χ| · |−1/2

and χ2 = χ| · |1/2, we have by definition π = χ ⊗ IndG
P(1 ⊗ 1). There exist a 1−dimensional

subrepresentation spanned by f ∈ π, f (g) = χ(det g). It apparently satisfies

f (
(
a m
0 b

)
g) = χ(ab)χ(det g) = χ(ab) f (g).

�

Remark 6.23. (1) For π = IndG
P(χ1| · |

1/2 ⊗ χ2| · |
−1/2), we have that Ψ−π is 2−dimensional and

Φ−π is 1−dimensional. Thus π|P1 has length at most 3 by Proposition 6.17 (5) and Corollary
6.18. In particular π is at most length 3 when it’s not irreducible. It’s possible to reduce the
length down to 2, but we shall not pursue it here.

(2) The proof for irreducibility can be generalised to GLn with some more works. But the
proof for reducibility is limited to GL2.

(3) Note that the proof above for contradiction doesn’t work if π is irreducible, as π|P1 is in
general not contragredient to π̌|P1 . It is related to that Φ+σ should be contragredient to
IndG

N θ instead of c − IndG
N θ.

7. Compact induction theory

7.1. Alternative description of supercuspidal representations. Definition 6.6 is often not easy
to use. The main result of this subsection is the following.

Proposition 7.1. Let π ∈ Irr(G) and π̌ be its contragredient representation and Φv,v̌(g) =< π(g)v, v̌ >
be the matrix coefficient associated to v ∈ π, v̌ ∈ π̌. TFAE

(1) π is supercuspidal.
(2) Φv,v̌ is compactly supported mod center for some pair (v, v̌).
(3) Φv,v̌ is compactly supported mod center for any pair (v, v̌).

Proof. We shall give the proof in the GL2 case. The general case can be proven similarly.
(3)⇒ (2) is obvious.
(2)⇒ (3): recall from Lemma 5.24 that π and π̌ are all irreducible. Thus any other v′ ∈ π, v̌′ ∈ π̌

are of form

(7.1) v′ =
∑

aiπ(gi)v, v̌′ =
∑

b jπ̌(g j)v̌
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Thus

(7.2) Φv′,v̌′ =
∑

aib jΦv,v̌(g−1
j ggi)

is still compactly supported mod center.

(1) ⇒ (3): recall the Cartan decomposition GL2 = Z
∐

K
(
$i 0
0 1

)
K. v̌ smooth implies that

there exists N1 compact open subgroup of N which fixes π̌(K)v̌. π supercuspidal implies that there
exist N2 compact open such that

(7.3)
∫

N′
π(n)v′dn = 0

whenever N2 < N′ and v′ ∈ π(K)v, according to Lemma 6.1. Then for any g ∈ GL2 whose Cartan

decomposition corresponds to t =

(
$i 0
0 1

)
with i large enough such that N2 < t−1N1t, we have for

some nonzero constants c1,

< π(g)v, v̌ >=< π(t)v′, v̌′ > = c1

∫
N1

< π(t)v, π̌(n−1)v′ > dn(7.4)

= c1

∫
N1

< π(t−1nt)v, π̌(t−1)v′ > dn

= 0.

(3) ⇒ (1): Let KI(n) = I + $nM2×2(OF). For any v ∈ π, v is fixed by some KI(n). Then for

t =

(
$i 0
0 1

)
when i is large enough, < π(t)v, v̌ >= 0 for any v̌ ∈ π̌KI (n). This implies that

(7.5)
∫

g∈KI (n)
π(g)π(t)vdg ∈ πKI (n)

has to be zero. But on the other hand,

(7.6)
∫

g∈KI (n)
π(g)π(t)vdg =

∫
g∈KI (n)

π(t)π(t−1gt)vdg

is equivalently an integral over

t−1KI(n)t/KI(n) ∩ t−1KI(n)t =

(
1 +$n $n−i

$n+i 1 +$n

)
/

(
1 +$n $n

$n+i 1 +$n

)
which is actually the same as an integral on some compact open N0 < N. Then (i) follows by
Lemma 6.1. �

Start of lecture 8

We show a sequence of results following from the proposition above.

Lemma 7.2. Let π be smooth, irreducible and supercuspidal. Then π is admissible.

Proof. Suppose that π is not admissible. Then there exists a compact subgroup K, such that πK

is infinite dimensional but countable by Lemma 5.21, and π̌K ' π̌K is uncountable. The resulting
matrix coefficients formed by πK and π̌K would be uncountable. But on the other hand, such
matrix coefficients are bi−K−invariant and also compactly supported, they must be countable.
Contradiction. �
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Lemma 7.3. Let π ∈ Irr(G) be supercuspidal, with unitary central character. Then π has a
G−invariant unitary pairing (called unitary) given by

(7.7) (v1, v2) =

∫
Z\G

< π(g)v1, v̌ > < π(g)v2, v̌ >dg

for any nonzero v̌ ∈ π̌.

Proof. The integral is convergent by Proposition 7.1. It is unitary by the symmetry. It is G−invariant
by a change of variables. It is nontrivial when we take v1 = v2 to be some element such that
< v1, v̌ >, 0. �

Lemma 7.4. For any supercuspidal representation π ∈ Irr(G), there exist a character χ such that
π ⊗ χ has unitary central character.

Proof. Recall that a multiplicative character χ is unitary if and only if |χ| = 1. Also recall that
F∗ = $Z × O∗F. For any character χ, its values on O∗F are always roots of unity and in particular
satisfies |χ| = 1. Then one can easily choose a twist so that |wπ($)| = 1 too. �

Lemma 7.5 (Formal degree). Let π ∈ Irr(G) be supercuspidal. Then there exists a nonzero constant
cπ such that

(7.8) I(v1, v2, v̌1, v̌2) =

∫
Z\G

< π(g−1)v1, v̌1 >< π(g)v2, v̌2 > dg = cπ < v1, v̌2 >< v2, v̌1 >

for any vi ∈ π and v̌i ∈ π̌. dπ = 1
cπ

is called the formal degree of π.

Proof. The integral I(v1, v2, v̌1, v̌2) in (7.8) gives an element of HomG(π ⊗ π̌,C)2 as

(7.9) I(π(g)v1, v2, v̌1, π(g)v̌2) = I(v1, π(g)v2, π(g)v̌1, v̌2) = I(v1, v2, v̌1, v̌2)

by change of variables. But on the other hand HomG(π ⊗ π̌,C) = HomG(π, ˇ̌π) = C by Schur’s
lemma. Thus there exists a constant cπ such that

(7.10) I(v1, v2, v̌1, v̌2) = cπ < v1, v̌2 >< v2, v̌1 > .

We need to show that this constant is nonzero. First of all, note that

I(v1, v2, v̌1, v̌2) =

∫
Z\G

< π(g−1)v1, v̌1 >< π(g)v2, v̌2 > dg(7.11)

=

∫
Z\G

< π ⊗ χ(g−1)v1, v̌1 >< π ⊗ χ(g)v2, v̌2 > dg

Applying same argument again we get that cπ = cπ⊗χ. By Lemma 7.4, we can assume WLOG that
π is unitary after a proper twist. Being unitary allow us to identify π with π̌ via unitary pairing. In
particular let v3, v4 be such that (v, v3) =< v, v̌1 >, (v, v4) =< v, v̌2 >. Then we have

cπ(v1, v4)(v2, v3) =

∫
Z\G

(π(g−1)v1, v3)(π(g)v2, v4)dg(7.12)

=

∫
Z\G

(π(g)v3, v1)(π(g)v2, v4)dg.(7.13)

31



Now taking v2 = v3 and v1 = v4, then the right hand side of the equality above is nonzero. Thus
cπ , 0. �

Remark 7.6. All the discussion above applies to representations whose matrix coefficient belongs
to L2(Z\G). Such representations which are not supercuspidal exist. They are called discrete series
representations.

Lemma 7.7. Let σ an irreducible supercuspidal representation of M. Then iM,G σ doesn’t have
any supercuspidal composition factor/subquotient.

Proof. From Definition 6.6, we know that iM,G σ can’t have supercuspidal subrepresentation, as

(7.14) HomG(ρ, iM,G σ) = HomM(rG,M ρ, σ) = 0.

Suppose now that W is a subrepresentation of iM,G σ, and ϕ : W → V is a surjection to a supercus-
pidal representation (ρ,V). We shall construct a G−map from V back to W as follows. Let v0 ∈ V
be a nontrivial element, and w0 ∈ W be any preimage of v0 under the map ϕ. Let Φv,v̌0 be the matrix
coefficient associated to v and some fixed v̌0 ∈ ρ̌ such that < v0, v̌0 >, 0. Then define the map

(7.15) ϕ̃(v) =

∫
Z\G

Φv,v̌0(g
−1)π(g)w0dg.

The integral is convergent as Φv,v̌0 is compactly supported mod center by Proposition 7.1. It is
G−equivalent as

(7.16) ϕ̃(ρ(h)v) =

∫
Z\G

< ρ(g−1h)v, v̌0 > π(g)w0dg =

∫
Z\G

< ρ(g−1)v, v̌0 > π(hg)w0dg = π(h)ϕ̃(v).

It is nontrivial because

(7.17) < ϕ(ϕ̃(v0)), v̌0 >=

∫
Z\G

Φv0,v̌0(g
−1) < ϕ(π(g)w0), v̌0 > dg = cπ < v0, v̌0 >

2, 0.

Then we get a contradiction as iM,G σ can’t have supercuspidal subrepresentation. �

7.2. General results for compact induction.

Definition 7.8. Let π ∈ Rep(G), J be compact open subgroup of G, and ρ ∈ Rep(J). We say ρ
occurs in π, or π contains ρ if HomJ(ρ, π|J) , 0.

This directly implies that HomG(c − Ind ρ, π) , 0 by Frobenius reciprocity.

Definition 7.9. Let Ji be two compact open subgroups of G, ρi ∈ Irr(Ji). We say g ∈ G intertwines
ρ1 with ρ2 if HomJg

1∩J2
(ρg

1, ρ2) , 0. Here recall that Jg
1 = g−1J1g, and ρg

1(g−1 jg) = ρ1( j). Note that
if g intertwines ρ1 with ρ2, then g−1 intertwines ρ2 with ρ1. We simply say g intertwines ρ (with
itself) when ρ1 = ρ2 = ρ.

Let J be a compact open subgroup of G, Λ ∈ Irr(J) and π = c − IndG
J Λ. Recall that we can

explicitly give a basis for π as in (5.5)

(7.18) fgi,w j(g) =

Λ( j)w j, if g = jgi for j ∈ J,
0, otherwise.

Here gi are representatives for J\G and w j are basis for Λ. Let < ·, · >J be a J−invariant pairing
between Λ and Λ̌. Let π′ = c − IndG

J Λ̌ and f ′gi,w′j
be a basis of π′.
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Lemma 7.10. The pairing given by

(7.19) < fgi,w, f ′g j,w′ >= δi, j < w,w′ >J

extends to a G−invariant pairing between π and π′. In particular if π is irreducible smooth, then
it’s supercuspidal.

Proof. For any g ∈ G, multiplication on right by g permutes the cosets Jgi. So let

(7.20) gig = ag,igs(i)

for s(i) a permutation of i’s and ag,i ∈ J. Then

< π(g) fgi,w, π(g) f ′g j,w′ > =< fgs(i),Λ(ag,i)w, f ′gs( j),Λ(ag, j)w′ >= δs(i),s( j) < Λ(ag,i)w,Λ(ag, j)w′ >J(7.21)

=

< w,w′ >J=< fgi,w, f ′g j,w′ >, if i = j,
0 =< fgi,w, f ′g j,w′ >, if i , j.

So this pairing is G−invariant. In particular we can choose w,w′ such that < w,w′ >J, 0 and
< f1,w, f ′1,w′ >, 0. Then the matrix coefficient Φ associated to f1,w, f ′1,w′ satisfies

(7.22) Φ(g) =

< Λ( j)w,w′ >J, if g = j ∈ J,
0, otherwise.

Apparently Φ is compactly supported on J. By Proposition 7.1, π is supercuspidal when it is
irreducible. �

Proposition 7.11. For π = c− IndG
J Λ, suppose that g intertwines Λ iff g ∈ J. Then π is irreducible

and supercuspidal.

Proof. By the lemma above, we just have to show that π is irreducible. This is the analogue of
Corollary 5.17.

The main tool is again an analogue of Mackey’s theory. For another open compact subgroup J′,

(7.23) c − IndG
J Λ|J′ = ⊕g∈J\G/J′ IndJ′

J′∩Jg(Λg|J′∩Jg)

Exercise 7.12. Verify this version of Mackey’s theory. Hint: as we can explicitly give basis for
compact inductions when J is open, the proof for Mackey’s theory for finite groups should carry
through. Unlike parabolic induction, we don’t have to take semi-simplification for restriction to
compact open subgroups.

Taking J′ = J, we have that

(7.24) HomJ(Λ, π|J) = ⊕g∈J\G/J HomJ(Λ, IndJ
J∩Jg(Λg|J∩Jg)) = ⊕HomJg∩J(Λ,Λg).

We have used the Frobenius reciprocity in the last equality. Then HomJg∩J(Λ,Λg) , 0 iff g inter-
twines Λ iff, by the condition, g ∈ J. Thus only the coset representative 1 occurs on the RHS and
HomJ(Λ, π|J) is 1−dimensional as Λ is irreducible. Note that at this point we can’t yet claim that π
is irreducible by using reciprocity and that dim HomG(π, π) = 1, as π in general is not semi-simple.

Suppose that π is not irreducible and σ is a subrepresentation of π. Then we have

(7.25) 0 , HomG(σ, π) ⊂ HomG(σ, IndG
J Λ) = HomJ(σ|J,Λ) = HomJ(Λ, σ|J)

so σ|J contains Λ. By the previous argument, we have that Λ occurs in π|J with multiplicity 1, and
πΛ := { f1,w,w ∈ Λ} is such a copy, generating the whole representation π by G action. Thus σ|J
contains πΛ and σ = π. �
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Lemma 7.13. Let π be irreducible smooth. Assume that π contains representations ρi of Ki for
i = 1, 2. Then there exists g which intertwines ρ1 with ρ2.

Proof. If π contains ρ1 of K1, then by Frobenius reciprocity, we have that HomG(c−IndG
K1
ρ1, π) , 0,

and any nontrivial element ϕ1 in it is surjective as π is irreducible. π contains ρ2 of K2 implies that
HomK2(π|K2 , ρ2) , 0, and let ϕ2 be a nontrivial element in it. Then ϕ2 ◦ ϕ1 gives a non-trivial
element of HomK2(c − IndG

K1
ρ1|K2 , ρ2) , 0. By Mackey’s theory and Frobenius reciprocity again,

we get that

(7.26) 0 , ⊕g∈K1\G/K2 HomK2(IndK2

K2∩Kg
1
(ρg

1|K2∩Kg
1
), ρ2) = ⊕g∈K1\G/K2 HomK2∩Kg

1
(ρg

1, ρ2)

Thus one of the terms on the RHS is nonzero, meaning that some g intertwines ρi. �
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7.3. Lattice chain and filtration of compact subgroups. The goal now is to construct various
compact subgroups, and proper representations for them (preferably characters) so that the con-
dition in Proposition 7.11 is satisfied. For simplicity we shall only work with GL2 from now on.
Similar theory exists for GLn and classical groups.

Recall the relation between compact open groups and lattices, which motivates the considera-
tions in this section.

Let V = F⊕F, so G = AutFV . Let A = EndFV , the ring of endomorphisms of V . Recall we have
considered the OF−lattice L in V in Definition 3.3. For simplicity we shall just say lattice L.

Definition 7.14. An OF lattice chain L = {Li}i∈Z is a collection of lattices such that Li+1 ( Li and
xLi = L j for any x ∈ F∗.

Lemma 7.15. There exists an integer e = eL, called the ramification index of the lattice chain L,
such that

(7.27) xLi = Li+evF(x).

Proof. Let x = u$k where k = vF(x). Then uLi = Li as Li is OF lattice and u ∈ O∗F. On the
other hand there exists a function e(i) such that $Li = Li+e(i). We just have to show that e(i) is
independent of i. For Li+1 ( Li, we have by multiplying with $,

Li+1+e(i+1) ( Li+e(i).

So e(i + 1) ≥ e(i). If e(i + 1) > e(i), then we have a tower of lattices Li+1+e(i+1) ( Li+e(i+1) ( Li+e(i).
Multiplying with $−1 gives us another lattice between Li and Li+1, which is impossible. Thus
e(i) = e(i + 1) for any i. �

We can classify lattice chains by eL up to a change of basis.

Lemma 7.16. eL = 1 or 2.
(1) If eL = 1, then there exists g ∈ G, s.t. gLi = $iOF ⊕$iOF for i ∈ Z.
(2) If eL = 2, then there exists g ∈ G, s.t. gL2i = $iOF ⊕$iOF, gL2i+1 = $iOF ⊕$i+1OF .

Proof. L0/$L0 = L0/Le is a vector space over the residue field k, which is always 2−dimensional.
Li/Le for 0 ≤ i ≤ e form a flag variety of this vector space, so 1 ≤ e ≤ 2. Choose a basis
first so that gL0 = OF ⊕ OF. Then if e = 1, gLi = $igL0 = $iOF ⊕ $iOF. If e = 2, then
gL2i = $igL0 = $iOF ⊕ $iOF. gL1/gL2 is a k−subspace of gL0/gL2 ' k ⊕ k. Then there exists
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h ∈ GL2(k) such that hg(L1/L2) ' k ⊕ 0. Pick any lift h of h in GL2(OF). Then h stabilise L2i and
hgL1 = OF ⊕$OF. �

Definition 7.17. LetUL =
⋂

i
EndOFLi = {x ∈ A, xLi ⊂ Li,∀i ∈ Z}, called chain order associated to

L.

Then as a corollary for the classification of L, we have the following result

Lemma 7.18. There exists g ∈ G s.t.

(7.28) gULg−1 =


OF OF
OF OF

 , if eL = 1, OF OF
$OF OF

 , if eL = 2.

Proof. By a change of basis, we can assume thatL is as in the standard form. Consider for example

the case (2) in Lemma 7.16. Let h =

(
a b
c d

)
∈ gULg−1. Then hL0 ⊂ L0 implies that a, b, c, d ∈ OF,

this step actually proved the eL = 1 case. On the other hand, hL1 ⊂ L1 implies that a, d ∈ OF,

b ∈ $−1OF, and c ∈ $OF. Thus we get h ∈
(

OF OF
$OF OF

)
. �

Definition 7.19. AUL lattice is a OF lattice which is also closed under the action ofUL.

Lemma 7.20. If L is anUL lattice, then L ∈ L.

Proof. Let eL = 2. We shall work with the standard form ofUL after change of basis. In particular

UL contains the element g1 =

(
1 0
0 0

)
and g2 =

(
0 0
0 1

)
. Then by the condition g1L+g2L ⊂ L, hence

L = g1L + g2L is of form $aOF ⊕$bOF. As L is invariant under the action of
(
1 OF
0 1

)
(as column

vectors), we have a ≤ b. Its invariance under
(

1 0
$OF 1

)
implies that b ≤ a + 1. Then either a = b

or a + 1 = b. Either way, we have L ∈ L. The case eL = 1 is similar and easier. �

By this lemma, we can recover the lattice chainL from chain orderU. We shall denote eU = eL.
We also denoteUi to be the standard chain orders in (7.28) with eU = i for i = 1, 2.

Definition 7.21. With the standard form forU, let

Π =


$, if eU = 1, 0 1
$ 0

 , if eU = 2.

Let B = ΠU = UΠ, and Bn = ΠnU = UΠn,∀n ∈ N.
Let UU = U0

U
= U∗, Un

U
= 1 + Bn,∀n ≥ 1.

Note that we have ΠnLi = Li+n.
Alternatively, Bn =

⋂
i∈ZHomOF(Li, Li+n).

Remark 7.22. One way to understand these objects is that they are analogue of various objects for
p−adic field. More specifically, A is like p-adic field,U ring of integers, Π uniformizer, Bn ideals,
Un
U

neighbourhood of identity.
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Definition 7.23. Define the group

(7.29) KU = {g ∈ G, gUg−1 = U}.

WhenU = UL for a lattice chain L, KU can be alternatively defined as

KU = AutOF(L) = {g ∈ G, gL ∈ L,∀L ∈ L}.

Exercise 7.24. Show that these two definitions coincide. Hint: make use of the fact thatU and L
can determine each other.

Lemma 7.25. There exists a Z−valued function k(g) on KU such that gLi = Li+k(g) for any Li ∈ L.

Proof. For fixed g ∈ KU, by the second description there exists Z−valued function kg(i), such that
gLi = Li+kg(i). One can show as in the proof of Lemma 7.15 that kg(i) will be a constant function
for any i. �

Lemma 7.26. KU normalises all U i
U

.

Proof. For i > 0, U i
U

= 1 + Bi. KU normalise B because of the following. Let u ∈ B =

∩HomOF(Li, Li+1) and g ∈ KU. By the above lemma, gLi = Li+k(g) for any Li ∈ L, ugLi ∈ Li+k(g)+1,
and g−1ugLi ∈ Li+1. Thus g−1ug ∈ B.

One can similarly prove the case i = 0. �

It is convenient to understandU, B and KU from quadratic extensions.

Lemma 7.27. Let E be a quadratic field extension over F, embedded into A. Then V can be viewed
as 1−dimensional E−space. The collection of all OE−lattices in V form an OF−lattice chain L.
Then

(1) eL = e(E/F) (so every L arises in this way), and L is the unique lattice chain in V which
is stable under the action of E∗.

(2) U = UL is the unique chain order such that E∗ ⊂ KU.
(3) For B = BL, xU = BvE(x),∀x ∈ E∗, and KU = E∗UU.

Proof. For any v ∈ V, v , 0, L = {$i
EOEv, i ∈ Z} is the set of OE−lattices in V (i.e., the ideals).

Then L = E∗L for any L ∈ L. $Li = Li+eL = $e(E/F)+i
E OEv and thus eL = e(E/F). As E can be

unramified or ramified, all L arise in this way.
If L′ is also stable under E∗, then L ∈ L′ must be stable under O∗E, which makes L an OE−lattice

(as any element in OE can be written as, for example, a difference of two elements in O∗E). Then as
L = E∗L, we must have L′ = L.

(2) is immediate by the relation betweenU and L.
For the first part of (3), one can pick Π = $E. For the second part of (3), it’s obvious that
E∗UU ⊂ KU. For the inverse direction, note that when we take Π = $E. By definition and lemma
above, gLi = Li+k(g) for any i. Thus Π−k(g)gLi = Li implies that Π−kg ∈ UU and g ∈ E∗UU.

�

Exercise 7.28. Fill in the details for this proof.

Start of lecture 10

7.4. Type theory.
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7.4.1. Characters and stratum.

Lemma 7.29. For 1 ≤ m < n ≤ 2m, we have the identification

Bm/Bn '
−→ Um

U/U
n
U(7.30)

x 7→ 1 + x

Now we give the analogue of Lemma 2.19.
For an additive character ψ of F and a ∈ A, define the character ψa on A by

(7.31) ψa(x) = ψ(Tr(ax)),∀x ∈ A.

Take from now on ψ to be level 1, i.e., ψ is constant 1 on $OF, but not on OF. The purpose for
this unconventional assumption is to make the formulae uniform for eL = 1 or 2.

For an order Q in A, let Q∗ = {x ∈ A, ψx(y) = 1,∀y ∈ Q}.

Proposition 7.30. Let B = BL andU = UL.
(1) (Bn)∗ = B1−n.
(2) For 0 < m < n ≤ 2m, the following map

B1−n/B1−m → ̂Um
U
/Un
U

(7.32)

a + B1−m 7→ (x 7→ ψa(x − 1)).

Proof. We shall give the proof only in the case eU = 2. The case eU = 1 is similar and easier. For

(1), let x =

(
x1 x2

x3 x4

)
, y =

(
y1 y2

y3 y4

)
, and we have

(7.33) ψ(Tr(xy)) = ψ(x1y1 + x4y4 + x2y3 + x3y2).

By assumption on the level of ψ, one can easily see that forB0 =

(
OF OF
$OF OF

)
, (B0)∗ =

(
$OF OF
$OF $OF

)
=

B1, and in general
(Bn)∗ = (ΠnB0)∗ = Π−nB1 = B1−n.

For (2), note that by the previous lemma, we have

Bm/Bn '
−→ Um

U/U
n
U(7.34)

x 7→ 1 + x.

So ̂Um
U
/Un
U
' B̂m/Bn. Note that A ' F4 and Â ' F̂4 ' F4, and by (7.33), all characters in Â is of

form ψa. Then (2) follows from (1) directly. �

In particular we shall care about characters on Un
U
/Un+1
U

.

Definition 7.31. The depth of π is

(7.35) l(π) = min{n/eU, π contains the trivial character of Un+1
U }.

Definition 7.32. A stratum in A is a triple (U, n, a) whereU is a chain order in A, n is an integer
and a ∈ B−n. The strata (U, n, a1) and (U, n, a2) are equivalent if a1 ≡ a2 mod B1−n.

One can easily see by Proposition 7.30 that when n ≥ 1, a stratum defines a non-trivial character
ψa = ψa(x− 1) on Un

U
/Un+1
U

, and two strata are equivalent if they correspond to the same character.
We shall mainly focus on such cases.

The following lemma is easy, but will be used multiple times.
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Lemma 7.33. Suppose that π contains a character ψa ∈
̂Um1
U
/Un
U

for a ∈ B1−n/B1−m1 and m1 ≤ n ≤
2m1. Let m2 be such that n/2 ≤ m2 < m1. Then ψa can be extended to Um2

U
/Un
U

. More precisely,
there exists an element v ∈ πψa and a′ ∈ B1−n/B1−m2 such that a′ ≡ a mod B1−m1 and Um2

U
/Un
U

acts on v by ψa′ .

Proof. By condition, let

(7.36) W = πψa = {v′ ∈ π, π(x)v′ = ψa(x − 1) for x ∈ Um1
U1
} , ∅.

In particular Un
U

acts trivially on W. For any v′ ∈ W, 1 + x ∈ Um2
U

and 1 + y ∈ Um1
U

, we have

(7.37) π((1 + y)(1 + x))v′ = π((1 + y)(1 + x)(1 + y)−1(1 + y))v′ = ψa(y)π((1 + y)(1 + x)(1 + y)−1)v′.

As m2 ≥ n/2, we have by Taylor expansion that

(7.38) (1 + y)(1 + x)(1 + y)−1 ≡ 1 + x mod Bn

and π((1 + y)(1 + x)(1 + y)−1)v′ = π(1 + x)v′. Thus π(1 + x)v′ ∈ W and the action of Um2
U

on W is
closed.

Further as Um2
U
/Un
U

is abelian, W decomposes into characters ψa′ for Um2
U
/Un
U

. As the restriction
of ψa′ to Um1

U
/Un
U

must be ψa, we get the congruence a′ ≡ a mod B1−m1 . �

Lemma 7.34. Let (Ui, ni, ai) be two strata. An element g ∈ G intertwines ψa1 of Un1
U1

with ψa2 of
Un2
U2

iff the intersection g−1(a1 + B
1−n1
1 )g ∩ (a2 + B

1−n2
2 ) is non-empty.

Proof. By taking conjugation by g for a stratum, we can assume WLOG that g = 1. For ⇐, if
a ∈ (a1 + B

1−n1
1 ) ∩ (a2 + B

1−n2
2 ), then ψa = ψai on Uni

Ui
, and ψa1 = ψa2 on the common support. For

⇒, if ψ(Tr(a1x)) = ψ(Tr(a2x)) for x ∈ Bn1
1 ∩ B

n2
2 , then

(7.39) a1 − a2 ∈ (Bn1
1 ∩ B

n2
2 )∗ = B

1−n1
1 + B

1−n2
2

by Proposition 7.30 (1). This implies that (a1 + B
1−n1
1 ) ∩ (a2 + B

1−n2
2 ) , ∅. �

7.4.2. Fundamental stratum and depth.

Lemma 7.35 (Lemma-Definition). A stratum is called fundamental if a+B1−n contains no nilpotent

element of A (eg. conjugates of
(
0 1
0 0

)
). Equivalently, there exists r ≥ 1 s.t. ar ∈ B1−rn.

Proof. We first note that the second definition is actually a property for any element in a +B1−n, as
it also implies that (a + b)r = ar + rar−1b + · · · ∈ B1−rn for b ∈ B1−n. Further more, the statements

remain true after conjugation. For ⇒, we just pick a =

(
0 n
0 0

)
by condition (as any nilpotent

element is conjugate to such form), and ar ∈ B1−rn is obvious. For⇐, we note that multiplying by
a power of p also preserve the equivalence, while changing the stratum (U, n, a) to (U, n−eU, pa).
So we reduce the problem into three cases: (U1, 0, a), (U2, 0, a), (U2, 1, a). One can check case

by case. For the case (U2, 0, a), we have a =

(
a1 0
0 a2

)
∈ B0/B1 for some ai ∈ OF/$OF. Then

ar ∈ B1−rn iff a1 ≡ a2 ≡ 0 mod $OF, in which case a + B1 = B1 automatically contains nilpotent

elements. For the case (U2, 1, a), we have a =

(
0 $−1a1

a2 0

)
∈ B−1/B0 for some ai ∈ OF/$OF.

Then ar ∈ B1−rn iff one of ai ≡ 0 mod $, in which case the coset contains a nilpotent element. �
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Exercise 7.36. Check the case (U1, 0, a).

Note that we actually get a trivial stratum in the case (U2, 0, a).

Corollary 7.37. Any nontrivial, non-fundamental stratum is conjugate to one of the followings:

(U1, n, p−n

(
0 1
0 0

)
), (U2, 2n − 1, p−n

(
0 1
0 0

)
).

The motivation of study of fundamental stratum is its relation with depth of a representation.

Proposition 7.38. Let π be an irreducible smooth representation of G which contains a stratum
(U, n, a) with n ≥ 1. (Recall that it associates to a character when n ≥ 1.) Then this stratum is
fundamental iff l(π) = n/eU.

For the proof, we need the following lemmas.

Lemma 7.39. If (U, n, a) is a non-fundamental stratum contained in π with n ≥ 1, then there exists
another chain order U′ and n′ s.t. a + B1−n ⊂ B′−n′ and n′/eU′ < n/eU. In particular π contains
the trivial character of Un′+1

U′
and l(π) < n/eU.

Proof. By the proof of Lemma 7.35 and Corollary 7.37, we can just check for standard cases.

For (U1, 0,
(
0 1
0 0

)
) we have

(
0 1
0 0

)
+ B1 ⊂ B2 and −1/2 < 0.

For (U2, 1,
(
0 1
0 0

)
) we have

(
0 $−1

0 0

)
+ B0

2 ⊂

(
$−1 0

0 1

)
B0

1

(
$ 0
0 1

)
and 0 < 1/2.

Note that a+B1−n ⊂ B′−n′ in particular implies that B1−n ⊂ B′−n′ and Bn ⊃ B′1+n′ by taking ∗ and
Lemma 7.30(1), thus Un

U
⊃ Un+1

U′
. Now a + B1−n defines a character on Un

U
, its restriction to Un+1

U′

is trivial as a + B1−n ⊂ B′−n′ and any element in B′−n′ gives trivial character on Un+1
U′

by Lemma
7.30(1). Then l(π) < n/eU. �

Lemma 7.40. If (U, n, a) is fundamental contained in π and (U′, n′, a′) is another stratum con-
tained in π, then n/eU ≤ n′/eU′ .

Proof. By Lemma 7.13 and 7.34, we get, after a conjugation,

(7.40) a′ ∈ a + B1−n.

Suppose that n/eU > n′/eU′ . Then −n′eU > −neU′ and there exists r ≥ 1 such that

(7.41) p−rn′eUU′ ⊂ p1−rneU′U.

On the other hand for x := (a′)reUeU′ , we have that

(7.42) x ∈ (B′)−reUeU′n′ ⊂ p−rn′eUU′ ⊂ p1−rneU′U = B1−reUeU′n

contradicting that (U, n, a) is fundamental.
�

Proof of Proposition 7.38. One just have to note that if π contains a trivial character for Un+1
U

with
n ≥ 1, then it automatically contains a stratum (U, n, a) for some a ∈ B−n by Lemma 7.33. �

Remark 7.41. Whether l(π) = 0 divides the situation into two cases. When l(π) > 0, there exists
a fundamental stratum which defines a character on the corresponding compact open subgroup,
starting from which we can further construct π by compact induction.

When l(π) = 0, π can be constructed by compact induction from a representation of K which is
inflated from a representation of GL2(k).

We shall mainly focus on the case l(π) > 0 first, and discuss the case l(π) = 0 if time allows.
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7.4.3. Classifying fundamental stratum. From definition, we have that l(π) ∈ 1
2Z. If l(π) < Z, then

l(π) = n
2 for an odd integer n, and eU = 2.

Lemma 7.42. (1) Let n = 2k + 1 be odd, then (U2, n, a) is fundamental iff a ∈ B−n/B1−n if

of form
(

0 b$−k−1

c$−k 0

)
+ B1−n for b, c ∈ O∗F. In that case, (U2, n, a) is called a ramified

simple stratum.
(2) If l(π) = n

2 < Z, then π contains a ramified simple stratum.

Proof. For (1) when n = 2k + 1, we have B−n =

(
$−kOF $−k−1OF
$−kOF $−kOF

)
, B1−n =

(
$−kOF $−kOF
$−k+1OF $−kOF

)
.

Thus a is always of form
(

0 b$−k−1

c$−k 0

)
+ B1−n for b, c ∈ OF. If any of b, c, say c < O∗F, then(

0 b$−k−1

c$−k 0

)
+ B1−n =

(
0 b$−k−1

0 0

)
+ B1−n,

which is not fundamental as
(
0 b$−k−1

0 0

)
is nilpotent.

(2) Follows directly from definition and Proposition 7.38. �

Note that in this case a satisfies the quadratic equation a2 ≡ bc$−2k−1 and F[a] is a ramified
quadratic field extension.

The following lemma shows that we don’t have to consider the case eU = 2 and n even.

Lemma 7.43. If l(π) = k ∈ Z>0, then π contains a fundamental stratum (U1, k, a).

Proof. By Proposition 7.38, π contains a stratum as claimed, or a stratum of form (U2, n, a) for
n = 2k, k ≥ 1. This implies that there exists v ∈ π such that π(x)v = ψa(x − 1)v for any x ∈ U2k

U2

while U2k
U2

acts trivially. Note however

Uk
U1
⊃ U2k

U2
⊃ U2k+1

U2
⊃ Uk+1

U1

as (
$k $k

$k $k

)
⊃

(
$k $k

$k+1 $k

)
⊃

(
$k+1 $k

$k+1 $k+1

)
⊃

(
$k+1 $k+1

$k+1 $k+1

)
.

This implies that Uk+1
U1

acts on v trivially. Let W be the subspace of elements of π which are
Uk+1
U1
−invariant. Note that Uk

U1
/Uk+1
U1

is abelian. Thus Uk
U1

acts on some v′ ∈ W by some ψa′

according to Lemma 7.33, which is nontrivial because U2k
U2

has to act nontrivially. �
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Let eU = 1 from now on. Then a = $−na0 for a0 ∈ U
∗
1. Let fa(t) ∈ OF[t] be the characteristic

polynomial of a0, with f a(t) ∈ k[t] being its reduction mod $ and characteristic polynomial of
a0 ∈ M2(k). These polynomials are conjugacy-invariant.

One can easily check that a stratum is non-fundamental iff the associated f a(t) = t2. Otherwise,
it is called an unramified fundamental stratum, which can further classified into three cases:

(1) f a(t) is irreducible of degree 2. The corresponding stratum is called unramified simple
stratum.

(2) f a(t) has distinct roots. The corresponding stratum is called split stratum.
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(3) f a(t) has repeated roots. The corresponding stratum is said to be essentially scalar.
Apparently in case (1), F[a] is an unramified quadratic field extension of F. A simple stratum is
either a ramified simple stratum or an unramified simple stratum.

Lemma 7.44. (1) A ramified simple stratum can never intertwine with an unramified funda-
mental stratum.

(2) If (U1, n, a) intertwines with (U2, n, b), then f a(t) = f b(t).

Proof. For (1), as both stratums are fundamental, one can easily get a contradiction by Lemma
7.40.

For (2), Lemma 7.34 and the condition implies that there exists g ∈ G such that g−1bg ∈ a+B1−n
1 ,

thus f a(t) = f g−1bg(t) = f b(t). �

Later on we shall construct supercuspidal representations from simple stratums. Right now we
discuss essentially scalar stratum and split stratum.

Definition 7.45. π is called minimal if l(π) ≤ l(π ⊗ χ) for any multiplicative character χ.

Thus it is sufficient to classify all minimal representations and then get all representations by
proper twisting.

Proposition 7.46. Let l(π) > 0. Then π contains an essentially scalar stratum iff there exists a χ
such that l(π ⊗ χ) < l(π)

Proof. ⇒: after conjugation, assume that π contains the essentially scalar stratum (U1, n, a =

$−n

(
α β
0 α

)
) for a ∈ O∗F. So there exists v ∈ π such that π(1 + x)v = ψa(x)v for any x ∈ Bn

1.

Let χ be a character of level n + 1 such that χ(1 + u) = ψ(−α$−nu) for any u ∈ $d
n+1

2 eOF. Then

for x =

(
x1 x2

x3 x4

)
∈ Bn

1, χ ◦ det(1 + x) = χ(1 + x1 + x4 + x1x4 − x2x3) = ψ(−α$−n(x1 + x4)).

As a result, π⊗χ(1 + x) acts on v by the character associated to $−n

(
α β
0 α

)
−$−n

(
α 0
0 α

)
+B1−n

1

which now contains a non-fundamental stratum. Thus l(π ⊗ χ) < n.
⇐: if l(π ⊗ χ) < n, then π ⊗ χ contains a trivial character of Un

1 . This is obvious if π contains
some stratum (U1, i, a) for i ≤ n−1. When l(π⊗χ) = n−1/2, for example, then it contains a trivial
character ofU2n

2 , which containsUn
1 . When twisting back, the trivial character ofUn

1 becomes the

essentially scalar stratum (U1, n, $−n

(
a 0
0 a

)
). �

From this, we get that minimal representations will not contain essentially scalar stratum. Now
we discuss split stratum.

Proposition 7.47. Suppose that, after conjugation if necessary, π contains a split stratum of form

(U1, n, a) with a ∈ T = {

(
a1 0
0 a2

)
}, then the Jacquet module πN contains the character ψa|Un

U1
∩T . In

particular π is not supercuspidal.

Proof. By assumption, we have that

(7.43) πψa = {v ∈ π, π(x)v = ψa(x − 1) for x ∈ Un
U1
} , ∅
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Suppose that all elements in πψa belongs to π(N). Then by Lemma 6.1 we have for all v ∈ πψa

(7.44)
∫

N j

π(n)vdn = 0

where N j =

(
1 $ jOF
0 1

)
. Choose j to be maximal for this property, s.t. there exists v1 ∈ π

ψa such

that

(7.45)
∫

N j+1

π(n)v1dn , 0.

Take t =

(
$ 0
0 1

)
and v2 = π(t−1)v1. On the one hand, we have

(7.46)
∫

N j

π(n)v2dn = π(t−1)
∫

N j

π(tnt−1)v1dn � π(t−1)
∫

N j+1

π(n′)v1dn′ , 0.

On the other hand, let Y = Un
U1
∩ t−1Un

U1
t = 1 +

(
$nOF $nOF
$n+1OF $nOF

)
. For any y ∈ Y , y = t−1xt for

x ∈ Un
U1

, we have

(7.47) π(y)v2 = π(t−1x)v1 = π(t−1)ψa(x − 1)v1 = ψa(x − 1)v2

and ψa(x − 1) = ψa(y − 1) as a is diagonal and y is conjugate to x by the diagonal matrix t.

Lemma 7.48. (1) Any irreducible representation of Un
U1

containing ψa(y−1) of Y is 1−dimensional.
(2) Let φ be a character of Un

U1
s.t. φ|Y = ψa(y−1). Then there exists u ∈ N s.t. φu(x) = ψa(x−1)

for x ∈ Un
U1

.

Proof. For (1), one can argue similarly as in the proof of Lemma 7.33, as ψa(y − 1) is trivial on
Un+1
U1

and Un
U1
/Un+1
U1

is abelian.

For (2), φ|Y = ψa(y− 1) implies that φ = ψδ for δ ∈ $−n

(
a1 m
0 a2

)
+B1−n

1 . As a1 . a2, there exists

n ∈ OF s.t. m + (a2 − a1)n ≡ 0 mod $. Then

(7.48)
(
1 n
0 1

) (
a1 m
0 a2

) (
1 −n
0 1

)
=

(
a1 m + (a2 − a1)n
0 a2

)
≡

(
a1 0
0 a2

)
and φu(x) = ψa(x − 1) for u =

(
1 n
0 1

)
. �

Now we return to the proof of Proposition 7.47. Let W ⊂ π be the subspace s.t. Y acts by
ψa(y − 1).

By part (1) of the lemma we have v2 ∈ W = ⊕δWψδ so that there exists vδ ∈ Wψδ s.t.

(7.49)
∫

N j

π(n)vδdn , 0.

But by part (2) of the lemma we have ψδ = ψu
a for some u ∈ N, so v3 := π(u−1)vδ is in Vψa and

(7.50) 0 =

∫
N j

π(n)v3dn = π(u−1)
∫

N j

π(u)π(n)π(u−1)vδdn � π(u−1)
∫

N j

π(n)vδdn , 0,

contradiction. �
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Corollary 7.49. Let π be an irreducible minimal supercuspidal smooth representation with l(π) >
0. Then π contains a simple stratum.

7.5. Extending to larger compact subgroup. From the last section, we saw that for a simple
stratum (U, n, a), we can associated a quadratic field extension E = F[a] which satisfies eE/F = eU
and E∗ ∈ KU.

Lemma 7.50. For any a′ ∈ a + B1−n, and E′ = F[a′], we have eE′/F = eU and E′∗ ∈ KU.

Proof. eE′/F = eU follows directly from that the ramification of E′ only depends on whether the
simple stratum is ramified or unramified. As a′ ∈ a +B1−n for a ∈ B−n\B1−n, we can write a′ = au
for some u ∈ U1

U
, while KU = E∗U0

U
. Thus a′ ∈ KU and so does E′∗. �

First of all by Lemma 7.33, if π contains a simple stratum (U, n, a) which gives a character in
Un
U
/Un+1
U

, then π contains a character ψa of Ubn/2c+1
U

/Un+1
U

. (Note there that bn/2c + 1 = d n+1
2 e.) It

is now a simple representation of a relatively large compact open subgroup, and we care about its
intertwining property.

Proposition 7.51. TFAE:
(1) g intertwines ψa of Ubn/2c+1

U
,

(2) g normalise/stabilise ψa of Ubn/2c+1
U

,

(3) g ∈ E∗Ub
n+1

2 c

U
.

Proof. (2)⇒ (1) is obvious. (3)⇒ (2): Let g = u(1 + y) for u ∈ E∗, y ∈ Bb
n+1

2 c, x ∈ Bb
n
2 c+1. Then

ψg
a(1 + x − 1) = ψa(u(1 + y)x(1 + y)−1u−1) = ψ ◦ Tr(au(1 + y)x(1 + y)−1u−1)(7.51)

= ψ ◦ Tr(a(1 + y)x(1 + y)−1)
= ψ ◦ Tr(ax) = ψa(1 + x − 1).

Here in the second line, we have used that u, a ∈ E∗ commute with each other and trace is
conjugation-invariant. In the last line we have used that

(7.52) (1 + y)x(1 + y)−1 = x + yx − xy + · · · ≡ x mod Bn+1.

(1)⇒ (3): If g intertwines ψa of Ubn/2c+1
U

with itself, it in particular intertwines the related stratum.

Lemma 7.52. Suppose that g ∈ G intertwines two simple stratum (U, n, ai) for i = 1, 2. Then g ∈
KU and it conjugates the two stratums (i.e., the two stratums become equivalent after conjugation).

Proof. By Lemma 7.34, there exists a non-trivial element γ ∈ a1 + B1−n ∩ g−1(a2 + B1−n)g. From
γ ∈ a1 + B1−n, we have that by Lemma 7.50 F[γ]∗ ⊂ KU, and L = LU is an OF[γ] lattice chain in
V . On the other hand by the same reasoning, γ ∈ g−1(a2 +B1−n)g implies that L is also an OF[gγg−1]

lattice chain, which is equivalent to that g−1L is an OF[γ] lattice chain. But the OF[γ] lattice chain
is unique by Lemma , thus g−1L = L and g ∈ KU = E∗U0

U
by definition. Then by Lemma 7.26,

g normalise Bi. a1 + B1−n ∩ g−1(a2 + B1−n)g = a1 + B1−n when non-empty and the two stratums
become equivalent after conjugation. �

At this step we actually proved that (1) ⇒ (2). By Proposition 7.30, ψa of Ubn/2c+1
U

is given by
a ∈ B−n/B−bn/2c. Now g normalise ψa iff

(7.53) g−1ag ≡ a mod B−b
n
2 c.
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As a is conjugation-invariant by elements in E∗, we can assume WLOG that g ∈ U0
U

. As a ∈ B−n,
the above equation is further equivalent to that

(7.54) aga−1 ≡ g mod Bb
n+1

2 c

as n − b n
2c = b n+1

2 c. The required result follows form the following lemma. �

Lemma 7.53. For k ≥ 1, g ∈ U0
U

, aga−1 ≡ g mod Bk iff g ∈ OE + Bk

Exercise 7.54. Prove this lemma. Hint: ⇐ is obvious as a ∈ E∗ ⊂ KU normalises Bk. For the
other direction, one can use induction and reduce the problem into one on quotient. Then the main
point of the proof is that the centraliser of E in M2 is E itself.

Remark 7.55. Using similar proof as for Lemma 7.52, one can show that if g ∈ G intertwines two
characters ψai of Ubn/2c+1

U
, then g ∈ KU and g conjugates the two characters.

Let J = E∗Ub
n+1

2 c

U
.

Proposition 7.56. Let Λ be an irreducible representation of J containing ψa of Ub
n
2 c+1
U

. Then
Λ|

U
b n

2 c+1
U

is a multiple of ψa and π = c − IndG
J Λ is irreducible supercuspidal.

Proof. By Lemma 7.13, other possible component of Λ|
U
b n

2 c+1
U

would intertwine with ψa by some

element j ∈ J, but by Proposition 7.51, any j ∈ J normalise ψa. Hence the first part of proposition.
Now let g ∈ G intertwines Λ. It in particular intertwines ψa on Ub

n
2 c+1
U

with itself, which implies
g ∈ J by Proposition 7.51. By Proposition 7.11 we get that π is irreducible and supercuspidal. �

Let
C(ψa,U) = {Λ ∈ Irr(J), Λ contains ψa of Ub

n
2 c+1
U
}.
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Proposition 7.57. For i = 1, 2, let (Ui, ni, ai) be two simple stratum, Λi ∈ C(ψai ,Ui), and πi =

c − IndG
Ji

Λi. If π1 ' π2, then n1 = n2 and there exists g ∈ G such that

(7.55) U2 = g−1U1g, J2 = g−1J1g,Λ2 = Λ
g
1.

IfU1 = U2, we can pick g ∈ U0
U1

.

Proof. By l(π1) = l(π2), we get n1 = n2 and Ui are conjugate. After proper conjugation, assume
WLOGU1 = U2 now.

By Lemma 7.13, there exists g ∈ KU which intertwines Λi. In particular it intertwines ψai of
Ubn/2c+1
U

. By Remark 7.55, g ∈ KU conjugates the two characters.
At this step we can assume after proper conjugation thatU1 = U2, n1 = n2 and ψa1 = ψa2 . Thus

the intertwining groups J1 = J2. Going through the above intertwining argument again, we see that
if g intertwines Λi, then g intertwines ψa1 itself and we get that g ∈ J and g conjugates Λ1. Thus
follows the claims in the proposition. �

Thus it remains to extend ψa of Ub
n
2 c+1
U

to an irreducible representation Λ of J.
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7.5.1. n odd. This is a particular simple case for this task, as Ub
n
2 c+1
U

= Ub
n+1

2 c

U
, so we just have to

specify how to extend to E∗.

Lemma 7.58. When n is odd and p > 2, elements in C(ψa,U) extending ψa of Ub
n
2 c+1
U

are parametrised
by characters θ satisfying c(θ) = n + 1 and

(7.56) θ(1 + x) = ψ(ax)

for any x ∈ E = F[a] with vE(x) ≥ n+1
2 . Λ = θ̃ ∈ C(ψa,U) can be explicitly given by θ̃(eu) =

θ(e)ψa(u − 1) for e ∈ E∗ and u ∈ Ub
n
2 c+1
U

Proof. First of all we show that such θ̃’s are well defined, thus giving elements in C(ψa,U). Appar-
ently by the assumption on θ, we have that θ(u) = ψa(u−1) for u ∈ E∗∩Ub

n
2 c+1
U

. So θ̃ is well-defined
as a function. To show that it’s indeed a character, let ue = eu′ as e ∈ E ⊂ KU which normalise
these compact subgroups. Then

θ̃(ue) = θ(e)ψa(u′ − 1) = θ(e)ψ ◦ Tr(ae−1ue − a)(7.57)

= θ(e)ψ ◦ Tr(e−1aue − a) = θ(e)ψ ◦ Tr(au − a)

= θ(e)ψa(u − 1) = θ̃(eu).

Here we have used that a ∈ E∗ and thus e−1a = ae−1.
On the other hand, for any Λ ∈ C(ψa,U), Λ|E∗ is a direct sum of characters of E∗, whose

restriction to E∗ ∩Ub
n
2 c+1
U

must agree with ψa. But for each eigenvector for the action of E∗, both E∗

and Ub
n
2 c+1
U

acts on it by a multiple, thus it is stable under the action of J. �

7.5.2. n even. This case is more complicated due to that Ub
n
2 c+1
U

, Ub
n+1

2 c

U
. By the classification

of simple stratum, this case only occurs when eU = 1 and E is unramified. We shall sketch the
construction and proofs.

Let E1 be the elements in OE which are congruent to 1 mod $E, H1 = E1Ub
n
2 c+1
U

, H = E1Ub
n+1

2 c

U
,

J1 = E∗Ub
n
2 c+1
U

and J as before. One can similarly define a character θ̃ on H1 and J1 as the previous
case, and show that any Λ ∈ C(ψa,U) contains some θ̃.

There are two steps to extend θ̃ to be a representation Λ of J.
The first step is called Heisenberg extension, which gives a q = |k| dimension representation of

H. In particular H/H1 is a 2−dimensional vector space over k, and there exists a polarisation B/H1

for some intermediate group H1 ⊂ B ⊂ H, in the sense that θ̃([B, B]) = 1. Thus θ̃ can be extended
to be a character of B and then η = IndH

B θ̃.

Lemma 7.59. η is an irreducible representation of H with dimension [B : H] = q. It’s independent
of polarisation and extension of θ̃ to B, and η|H1 is a multiple of θ̃. Further more IndH

H1
θ̃ = qη.

Proof. Essentially finite group version of Stone-Von Neumann theorem. �

The next step is to further extend the group action to J. One basically need to specify the action
of µE = (OE/$EOE)∗, while µF is already determined by the central character.

Lemma 7.60. There exists a q−dimension irreducible representation Λ of J such that Λ|H = η,
and

(7.58) Λ|E∗ =
⊕

θ′ |ZE1 =θ,θ′,θ

θ′.
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Proof. First of all, note that as eU = 1, [ZH : J] = q + 1, [J1 : J] = q2. The construction of Λ is
give as

(7.59) Λ = IndJ
ZH η − IndJ

ZJ1
θ̃.

Here we used the representation theoretical subtraction in Grothendieck of representations, but we
get an actual representation, which we shall not justify here. One can easily check that dim Λ =

q(q + 1) − q2 = q, and Λ|H = (q + 1)η − qη = η by using the last statement of Lemma 7.59. From
this one can also see why Λ is irreducible.

On the other hand, we have J = E∗H, By Mackey theory, we have

(7.60) IndJ
ZH η|E∗ = IndE

∗

ZE1 θ|ZE1 =
⊕
θ′ |ZE1 =θ

qθ′.

One can also check that the action of E∗ on J/J1 has to type of orbits: the orbit of 1 with stabiliser
E∗, or other q − 1 orbits of q + 1 elements with stabiliser ZE1. For g ∈ E∗\J/J1,

Jg
1 ∩ E

∗ =

E∗, if g = 1;
ZE1, otherwise.

Thus

(7.61) IndJ
ZJ1
θ̃|E∗ = θ ⊕ (q − 1)(

⊕
θ′ |ZE1 =θ

θ′),

and

(7.62) Λ|E∗ =
⊕

θ′ |ZE1 =θ,θ′,θ

θ′.

�

Exercise 7.61. Verify the action of E∗ on J/J1, and the sets Jg
1 ∩ E

∗. Hint: the two properties are
closely related, in the sense that the number of elements in the orbit of g is [Jg

1 ∩ E
∗ : E∗]. One can

check that ZE1 ⊂ Jg
1 ∩ E

∗ is always true, and Jg
1 ∩ E

∗/Z ⊂ O∗E must be either E1 or O∗E. Thus one
has only to show that there is one fixed point of the action of E∗ on J/J1, which is reduced to that
the normaliser of E in A is E itself.

It is not difficult to check that any Λ ∈ C(ψa,U) arise in this way.

7.6. Depth zero supercuspidal representations. When l(π) = 0, π has a vector fixed v by U1
U

=

1 + $M2(OF), thus for K = U0
U

(maximal compact), the representation of K generated by v is
contained in π and is essentially a representation of K/U1

U
' GL2(k). Thus we need to know the

representation theory of GL2 over finite field. Let G = GL2(k), and similarly other notations for
groups be over residue field.

The story for GL2(k) is quite parallel to the theories we have seen before: there are parabolic
induced representations from the characters on the diagonal subgroup. Some parabolically induced
representations are not irreducible, with conditions for irreducibility similar to Section 6.5. Such
K−representations will not arise from supercuspidal representations, parallel to what happens for
split stratum. These parabolically induced representations contains the trivial character of N. One
can show that the Jacquet module of π containing such representations of GL2(k) will be nonzero.

The remaining representations does not contain the trivial character of N (thus must contain
nontrivial characters of N) and are called cuspidal. They are parametrised by level 1 characters
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over unramified extension E with similar property as in Lemma 7.60. More precisely, a character
θ of E∗ is called regular iff θq , θ. Then

Lemma 7.62. Let ψ̃ : zu ∈ ZN 7→ θ(z)ψ(u) and θ be a regular character of E∗.

(7.63) σθ = IndG
ZN
ψ̃ − IndG

E∗
θ.

(1) It is irreducible and q − 1dimensional. σθ|E∗ =
⊕

θ′,θ,θq θ
′.

(2) σθ1 ' σθ2 iff θ1 = θ2 or θ2 = θ
q
1.

(3) Every cuspidal representation of G arises in this way.

Then one can inflate σθ to be a representation of K and then define π = c − IndG
K σθ.

Lemma 7.63. g ∈ G intertwines σθ iff g ∈ ZK when σθ is cuspidal.

Proof. By Bruhat decomposition, we have GL2 = ∪i≥0ZK
(
$i 0
0 1

)
K. If g ∈ G intertwines σθ, but

g < ZK, then there exists i , 0 such that t =

(
$i 0
0 1

)
intertwines two (possibly different) conjugates

of σθ of K. Let ρ be the common factor of σt
θ and σθ when restricting to Kt ∩ K =

(
O∗F OF
$iOF O∗F

)
.

Then σt
θ is trivial on (U1

U
)t =

(
1 +$OF $1−iOF
$1iOF 1 +$OF

)
, implying that ρ is trivial on

(
1 OF
0 1

)
. But ρ

is also a component of σθ on Kt ∩ K. Thus σθ contains the trivial character of N, contradicting to
cuspidality. �

Thus π is irreducible and supercuspidal by Proposition 7.11. Every depth 0 supercuspidal rep-
resentation arise in this way.

Start of lecture 13

8. New vectors and minimal vectors

In this section we introduce the classical topic on levels and newforms, and show how type
theory can be used to approach some of the topics.

Take G = GL2. Let K1($n) = {k ∈ K, k ≡
(
∗ ∗

0 1

)
mod $n}. Let π have trivial central character.

Definition 8.1. We say the representation is level c(π) = c if c is the minimal integer such that
there exists a K0($c)−invariant element in π.

Lemma 8.2. For c = c(π), the space of K0($c)−invariant elements in π is 1−dimensional. Any
nontrivial element in this space is called a newform in π (thus unique up to a constant).

8.1. Minimal vector vs. newform for supercuspidal representations. We shall show how these
notions relate to the depth and compact induction model for supercuspidal representations.

For simplicity let consider the case when n is odd. We have shown that minimal supercuspidal
representations (which is true when central character is trivial) with l(π) = n/eU arise as π =
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c − IndG
J θ̃. By explicit construction of basis in, for example, (5.5), we can in particular get an

element

(8.1) ϕθ(g) =

θ̃(g), if g ∈ J,
0, otherwise.

Furthermore one can easily check that

(8.2) π( j)ϕθ = θ̃( j)ϕθ.

Lemma 8.3. ϕθ is uniquely determined by (8.2).

Sketch of proof. One can use Mackey theory and known intertwining property to show that θ̃ of J
(and even proper subgroup of J) occurs in π|J at most once. �

Note that π(g)ϕθ can be similarly identified with θ̃g on Jg.

Definition 8.4 (Temporary). Any element of form π(g)ϕθ is called a minimal vector/micro-local
lift.

For now we use the standard embedding of E∗ in GL2.

Proposition 8.5. Let π be supercuspidal minimal with l(π) = n/eU for n odd. Then c(π) = 2(l(π) +

1) is odd or divisible by 4, and a new form can be chosen as

(8.3) ϕ0 =
∑

a∈(OF/$n+1OF)∗

π(
(
a 0
0 1

)
)ϕθ.

Proof. For simplicity, let’s consider only the case eU = 1. Let n = l(π). By definition, if ϕ0 is a

newform, then π(
(
$−b

c
2 c 0

0 1

)
)ϕ0 is invariant under

(
∗ $b

c
2 c

$d
c
2 c ∗

)
, which contains U

c
2
U1

if c is even

and Uc
U2

if c is odd. Thus n + 1 ≤ c
2 in either case. On the other hand, ϕθ is Un+1

U
−invariant, thus

ϕ =
∑

a∈(OF/$n+1OF)∗
π(

(
a 0
0 1

)
)ϕθ is still Un+1

U
−invariant as Un+1

U
is a normal subgroup of K, while ϕ is(

∗ $n+1

$n+1 ∗

)
−invariant. The averaging is non-vanishing as different translates of ϕθ form a basis.

So ϕ is nontrivial, then c ≤ 2(n + 1) and all claims are proved. �

Exercise 8.6. Prove the proposition when eU = 2.

Remark 8.7. When eU = 1 and l(π) = n is even, this approach will become slightly more compli-
cated, due to the fact that π is now induced from a q−dimensional representation Λ. Any way in
that case c(π) = 2(l(π) + 1) ≡ 2 mod 4 is still true.

Remark 8.8. A classical approach to the newform for supercuspidal representations is to use the
Kirillov model. Here we give the newform without referring to the Kirillov model. It’s possible to
prove the uniqueness of newform using Mackey theory, but we shall skip it here.

8.2. Comparing test vectors. For many problems in number theory like period integrals, sup
norm problem, QUE, etc, one has to specify a choice of test vectors. The most natural choice
for unramified representations is the spherical element. When there is ramification for the repre-
sentation, then classically people developed the theory of newforms which is in most of cases the
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first test vector people tried. However recent developments motivate us to look at the correspond-
ing problems using the minimal vector. The major advantage of the minimal vector is that we
understand its behaviour under a larger subgroup when comparing with newforms.

For example when c(π) = 4n corresponding to l(π) = 2n − 1 and c(θ) = 2n, we have that ϕ0 is
K0($c)−invariant, with [K0($c) : K] � qc. On the other hand ϕθ behaves by a character under the
action of J ∩ K = O∗EU

n
U1

, with [J ∩ K : K] � q2n =
√

qc. Thus J ∩ K is a much larger subgroup
compared to K0($c).

A more practical advantage of ϕθ is that its matrix coefficient is very simple to describe and easy
to use. In particular for the cases considered above, we have

(8.4) Φϕθ(g) =

θ̃(g), if g ∈ J,
0, otherwise.

On the other hand, the matrix coefficient for the new form is most of time involving all kinds of
epsilon factors and difficult to evaluate explicitly. There are some recent success in using minimal
vectors for period integrals and other analytic number theory problems.

8.3. newform for parabolically induced representations.

Proposition 8.9. Let π = π(χ1, χ2) and π irreducible, then we have c(π) = c(χ1) + c(χ2).

We first need a lemma.

Lemma 8.10. For every positive integer c,

GL2(F) =
∐
0≤i≤c

B
(

1 0
$i 1

)
K1($c)

Proof. First we show it’s a disjoint union. For 0 ≤ i , j ≤ c, suppose(
a1 m
0 a2

) (
1 0
$i 1

)
=

(
1 0
$ j 1

) (
k1 k2

k3 k4

)
for

(
a1 m
0 a2

)
∈ B and

(
k1 k2

k3 k4

)
∈ K1($c). Note k1, k4 ∈ O∗v and v(k3) ≥ c. By equating respective

elements of the matrices, we get a1 + m$i = k1, m = k2, a2$
i = k1$

j + k3, a2 = k2$
j + k4. Then

we can get a contradiction from the last two equation.

Next we show that every matrix of GL2 belongs to B
(

1 0
$i 1

)
K1($c) for some i. Note that

GL2(F) = BGL2(Ov) by the standard Iwasawa decomposition. As a result of this, we only have to

look at matrices of form
(
x1 x2

x3 x4

)
∈ GL2(Ov). If i = v(x3) > 0, then x4 ∈ O∗v. When i ≥ c, we have(
x1 x2

x3 x4

)
=

(
1 0
0 x4

) (
x1 x2

x3/x4 1

)
.

When 0 < i < c, we have (
x1 x2

x3 x4

)
=

( x1 x4−x2 x3
x3

$i x2

0 x4

) (
1 0
$i 1

) ( x3
x4$i 0
0 1

)
.
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When i = 0 and x4 ∈ O∗v, we can still decompose
(
x1 x2

x3 x4

)
like the case 0 < i < c. If x4 < O∗v, then

x2, x3 ∈ O∗v, and (
x1 x2

x3 x4

)
=

det x
x3

(
1 x1−x3

x3

0 1

) (
1 0
1 1

) ( x2
3

det x −1 + x3 x4
det x

0 1

)
.

�

Proof of Proposition 8.9. Let c = c(π). Let f ∈ π be the newform given in the parabolically
induced model. Then its value is left B−equivalent and right K0($c)−invariant. By the Lemma

above, f is uniquely determined by its values on the double coset representatives
(

1 0
$i 1

)
. We

shall just check for which i can f be supported. This will not only shows existence, but also the
uniqueness and the dimension of old forms.

Suppose that

(8.5)
(
a1 m
0 a2

) (
1 0
$i 1

)
=

(
1 0
$i 1

) (
k1 k2

k3 k4

)
for some k =

(
k1 k2

k3 k4

)
∈ K1($c), or equivalently

(8.6)
(
a1 + m$i m

a2$
i a2

)
=

(
k1 k2

$ik1 + k3 $ik2 + k4

)
.

Then f is supported on
(

1 0
$i 1

)
iff χ1(a1)χ2(a2) = 1 for ai satisfying the above condition. From

m = k2, we get that m ∈ OF. From a2$
i = $ik1 + k3, a2 = $ik2 + k4, we get that

(8.7) a2 ≡ 1 mod $i,

and

(8.8) k1 ≡ 1 +$ik2 mod $c−i.

From a1 + m$i = k1, we get that

(8.9) a1 ≡ 1 mod $c−i.

Now χ1(a1)χ2(a2) = 1 iff i ≥ c(χ2) and c − i ≥ c(χ1), i.e., c(χ2) ≤ i ≤ c − c(χ1). It has solution
iff c(χ1) + c(χ2) ≤ c, and resulting space of functions is c − c(χ1) − c(χ2) + 1− dimensional. By
definition of newform and level, we have

(8.10) c(π) = c(χ1) + c(χ2).

�

Definition 8.11. When c(χ1) = c(χ2) = 0, we have c(π) = 0. π is called unramified in this case,
and the newform is K−invariant, sometimes called spherical.

Remark 8.12. The relation between depth and level is no longer true for parabolically induced
representations even when they are irreducible. For example for π = π(χ1, χ2) with c(χ1) = k and
c(χ2) = 0, then the level of π is c(χ1) + c(χ2) = k while the depth of π is k − 1. The relation
c(π) = 2(l(π) + 1) holds only when c(χ1) = c(χ2) if π is irreducible.
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