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Start of lecture 1

1. INTRODUCTION

The goal of this course is to present the theory of complex representations of general linear
group over p—adic field. More precisely, denote

G = GL,, the invertible elements in matrix algebra M,,,

F = p-adic field which is a finite field extension of Q,,
7 : G(F) — GL(V), where V is vector space over complex field C, most of time infinite dimensional.

We want to classify those 7’s which are irreducible, smooth, admissible. We shall see later on what
the latter two words mean.

1.1. Motivation. Apart from pure representation theory interest, one of the main motivation and
source of applications for this study is its relation to the theory of modular forms and automorphic
forms. They are related in the following way.

(1.1)
Modul.ar form§ Automorphic forms Representations of GL,(R)
holomorphic of weight k » — . . .
Level N Automorphic representations and GL,(Q)) for all primes p

Better knowledge of representations of GL,(R) and GL,(Q,,) will give more insights into the left
two areas.

Example 1.1.

holomorphic weight k «— Discrete series representation of weight k of GL,(R),

1

Level N = 1_[ p;" «— Representations of GL,(Q,,) of level p{’,

Fourier expansion of modular forms «— Whittaker model of representations of GL,,

product of local integrals on GL,

involving matrix coefficient and Whittaker model.
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It is also directly related to local Langlands correspondence, which relates 7 to certain n—dimensional
Galois representations. It is has been a main topic in math for several decades and has great influ-
ences.

1.2. Plan for the course. The main tool in this course to study representations of G(F) is the
induction of an irreducible representation o from a subgroup H

Indg o,

By general reciprocity, one can show that any irreducible smooth 7 is a subrepresentation of Ind%, o
for some H and o. But this is almost useless as we lack detailed information. So our task is
basically threefold

(1) Specify H and o (and also the type of induction) with explicit parametrization.

(2) Show that Ind,(_;, o is nice. This means it is irreducible if possible, or otherwise one can
uniquely identify 7 from it.

(3) Show that all n’s we care about occur in this way.

There are two main types of induction in this course, the parabolic induction and the compact in-
duction. These two construction methods gives a dichotomy of representations: non-supercuspidal
representations and supercuspidal ones. The parabolic induction is parallel to what one can do
for GL,(R), while the compact induction is special for p—adic setting. We will cover these two
methods following the historical order.

We will assume p # 2 to avoid a lot of technical problems. Some of the results will not hold
when p = 2.

If time allows, we will cover more topics. Priority will be given to Whittaker model/Kirillov
model, level and newform theory. Further more we can talk about Langlands correspondence,
L-functions, etc,.

The main reference is [ 1] and [2]

2. p—ADIC FIELD

The easiest case of a p—adic fieldis F = Q,,. Itis the completion of the rational field Q WRT(with
respect to) p—adic norm ||-||,. For x = p'-q € Q, where ¢ is rational of form = € Qwith (mn, p) = 1
and m, n,i € Z, we define the p—adic evaluation

2.1 Vp(x) =1,
and p—adic norm
(22) Ixll, = p~"® = p™.

Define v,(0) = +o0 and ||0]|, = 0. The p—adic valuation satisfies the following properties

03 Vp(xy) = v, (x) + v, (y)
. Vv,(x +y) = min{v,(x), v,(»)}.

Correspondingly
llxll, > O with equality iff x = 0,

2.4) llxeyll, = 1l [yl

llx + I, < max{{|x]l,, [Iyll,}-
3



The last property is called strong triangle inequality, as the usual triangle inequality is [|x + y|[, <
llxll, + Iyl and max{{lxl,, lIyll,} < [lxll, + 11yl

Exercise 2.1. Check the strong triangle inequality for || - [|,,.

In particular || - ||, is a norm. Just like R is the completion of Q with respect to the standard
absolute value norm, p-adic field Q, is the completion of Q with respect to || - ||,.

2.1. p-adic digits. One way to present a p—adic number is to use p-adic digits. A real number
can be written like

x=1234--=1x10°42%x107""+3x 102 +4x 1073 +---

With a proximation 1.234.
A p-adic number can be written as

x=1xp+2xp' +3xp*+---
with a proximation 1 x p® + 2 x p! + 3 x p?. Higher powers= smaller error.
Exercise 2.2. For x = 1 x p° + 2 x p! + 3 x p?, compute the first three digits for x~' with general p.

For any x € Q, we can write x = ) a,p", a, = 0 for n negative enough. To make the expression

unique, we can also require that 0 < rclz,, < p,here 0--- p — 1 are fixed lifts of Z/pZ to Z.

The ring of integers is Z, = {xla, = 0forn < 0}. It has a unique maximal prime ideal pZ,,
generated by one element.

In general, we can have F a finite field extension of Q, and extend p—adic norm and valuation
onto F and F is the completion of F WRT the extended p—adic norm. In particular the p—adic
norm on F the the composition of || - ||, with the field norm from F to Q.

We make the following definitions

Definition 2.3. The ring of integers is Or = {x € F, ||x|[z < 1}. This is a P.I.D. (Think about Z,, or
p-adic numbers starting with p° digits.)

Or has a unique maximal ideal = {x € F,||x|lr < 1}, which is generated by one element
P = wOg. Usually we fix @ and call it a uniformizer. (Think about pZ,, with the uniformizer just
p-)

The residue field is £k = Og/P. (Think about F,, the finite field with p elements.) Let g = |k|.
Then g = p/ where f is the inertial degree of F/Q,.

The group of units is U = Of. It has subgroups Ur(n) = 1 + @"Og.

Remark 2.4. In general one can still write elements in F in digits.

X = Z a,@”",

nez

where a, € k, the set of fixed lifts of elements from & to Og. p—adic valuation vg(x) is such that
llx|lz = min{n, a, # 0}. In particular vg(w) = 1. A not so trivial fact is that

(2.5) llxll = [k,
4



2.2. Totally disconnected topology for F. Just as for R, we think of the norm map to be con-
tinuous, and consider the preimage of open/closed subset of R (the image of norm map) to be
open/closed. For example we define the open balls in F to be

(2.6) B.(xp) = {x € F, [lx — xollz < r}.

In particular any set of form xy + @'Or or xoUg(i) is an open set. Note that when i > vg(xy),
Xo + @'Or = xoUg(i — ve(x0)). They actually form a topological basis.

But for p—adic fields, this set is also closed, because the image of || - ||r is discrete in R. (For
example when F = Q,, it is {[%}.) So

2.7) {xeF|lx—xollg <r}={xeF,|x—xllzg <r— 0}
is open and closed. As a result, F is totally disconnected.

2.3. Hensel’s lemma.

Definition 2.5. x=y mod @" iff x —y € @"O.

Theorem 2.6. Let f € Og[x]. If there exists x € Og such that f(x) = 0 mod @ and its derivative
f'(x) #0 mod @, then there exists a unique y € Og such thaty = x mod @ and f(y) = 0.

This theorem is about uniquely lifting solution of polynomial equation from residue field to F.

Proof. Let’s work with Q,,. We shall prove by induction the following: If there exist x; € Z, such
that f(x;) = 0 mod p' and f'(x;) # 0 mod p, then there exists x;;; € Z, such that x;;; = x;
mod p'~!, f(xir1) = 0 mod p™!, f'(xi,1) £ 0 mod p. By the condition, we can assume that
f(x)) =ap’ mod p'*! for some integer a. The basic tool is the Taylor expansion,

(2.8) fx+up)=fx)+ fXup'+---=0 mod p™*!

as higher order terms will have larger p—powers. Since f’(x) # 0 mod p, we can find proper
u € Z such that f'(x)u = —a mod p. Then x;,; = x; + up’ has the required properties.
Note that ||x; — xill, = p~'. Using the completeness of F, there exists y € Z,, which is the limit
of {x;}. Then by Taylor expansion again f(y) =0 mod p' for any i, thus f(y) = 0.
O

Exercise 2.7. Check uniqueness. Hint: use Taylor expansion again.
Remark 2.8. Essentially we are figuring out y digit by digit.
With the help of Hensel’s lemma, we have the following structure of F*.
Lemma 2.9.
(2.9) F* ~Zx k" x Ug(1).
Proof. For any x € F*, we can first write it as x = @'u with i = vg(x) and u € 0. Thus
F*~Z x O,
with Z identified with {w'}. We also have a short exact sequence
15 U5 05 5k > 1

where ¢ is the natural inclusion and pr is the quotient map which ignores higher digits. The main
point of this Lemma is that this exact sequence splits, i.e., there exists an injective group homo-
morphism f : k* — O such that pr o f is the identity map.
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We note that k* is a cyclic group, so any a € k* satisfies a?~' = 1 in k, where g = |k| is a power
of p. This implies that the polynomial equation x?~! — 1 has a solution a € k*, with its derivative
(g—Dx72 %0 mod p as (p' — 1, p) = 1. Thus we can apply Hensel’s lemma and obtain & € (0
such that @ = a mod @, @' = 1. The map f : a — & is then an injection. pr o f is identity as
@ =a mod w. It is a group homomorphism because of the following. aja,, did, both satisfy the
equation x?~! = 1 and have same image in the residue field, so they must be equal using uniqueness
from Hensel’s lemma. O

2.4. Classify quadratic extensions of F when p # 2. First of all, quadratic extensions E over F
are parametrized by F*/(F*)?. Here (F*)> = {x?,x € F*}. This is because in general we can write
E = F(VD) = F[x]/(x> = D) for D € F* a non-square, and D, d*>D will give the same quadratic
extension.

Now we use Lemma|[2.9] and get

(2.10) F*/(F*)? = Z/2Z x k* ] (k") x Ug(1)/Ug(1)*

We can pick representatives {1, @} for Z/2Z.

k* /(k*)? is not trivial as 2|(g—1) = |k*|, and it has at most two elements. Pick for it representatives
{1, &} for some ¢ € F* which is a lift of a non-square element in k*.

Uz(1)/Ug(1)? is trivial. To prove this, we need to show that for any a € Ug(1), the equation
x> — a = 0 has solution in Ug(1). This is true because x> —a = x> — 1 = 0 mod @ has a solution
x =1 mod @w. Then we can use Hensel’s Lemma.

To summarise, we have the following quadratic field extentions of F:

(1) E = F(£). w is also a uniformizer for E. The residue field kg is a quadratic field extension
of k. In this case E is called an inert quadratic extension over F.

(2) E = F(y@), or F(\/@&). The uniformizer wg can be chosen (though not necessary) so that
wg = w. The residue field kz = k. In this case E is called a ramified quadratic extension
over F.

(3)* E=F(1) ~ FxF. Eis not a field in this case. But we still call it split quadratic extension

over F.

Start of lecture 2

2.5. Additive characters on F.

Definition 2.10. Let C! be the set of complex numbers with absolute value 1. ¢ : F — C! is called
an additive character on F if it is continuous and satisfies

(2.11) Y(x+y) = () - ().

Lemma 2.11. Ify is an additive character over F, then it is locally constant, i.e., there exists n € Z,
such that for any y € @w"Og, ¥(y) = 1. Then y(x + y) = ¥(x) for any x € F.

Proof. Lety = {z € C!,arg(z) < 27”} be an open arc in C'. Since ¢ is continuous, the preimage of
v is open, and in particular contains @”Og for some n. Then we claim that Y(@"Op) = 1.
Suppose that ¥(y) # 1 for some y € @"Og, then by (2.11))

v(p'y) = v
for any i € Z.(. On the left hand side p'y is always in @"Og, so ¥(p'y) should still be inside y. But

on the other side y(y)?" will eventually leave y. Contradiction.
6



Now the lemma follows immediately by using (2.1T)). o

Corollary 2.12. The images of Y are roots of unity. In particular we can think of  as an element
of F = Hom(F, Q/Z), the Pontryagin dual.

Remark 2.13. We can think that the topology on p—adic field is so different from the complex
topology, that requiring continuity is as strong as requiring locally constant. This also happens for
the representations of G. In this course we shall not distinguish the following notions: continuous,
smooth, locally constant.

Definition 2.14. Suppose that ¥ is not the trivial charactrer. The level c(¢¥) of i is defined to be
the smallest integer ¢ such that Y(w@w‘OF) = 1.

Example 2.15. For Q,, we can define yo(x) = e*™*. c() = 0. In general for F a finite extension of
Q,, we can define an additive character y(x) = e*"™@ where Tr is the trace map from F to Q,,.
Further more for any a € F, ¢,(x) = ¥y(ax) is also an additive character on F.

Proposition 2.16. Any additive character on F is of form , for some a € F.
Remark 2.17. Le.,F =F.

Sketch of proof. If ¢ is trivial, we can pick a = 0. Otherwise, let ¢ = c(¥), ¢y = c(fp). Then ¥ is
a nontrivial character on @'Or/@w O ~ k with i < n, which is a finite group. Then we need the
following lemmas

Lemma 2.18. For any finite abelian groups H, its Pontryagin dual H ~ H.

The proof of this lemma amounts to checking for cyclic groups and the using that all finite
abelian groups are direct product of cyclic ones.

Lemma 2.19. Suppose that ¢ = c(y). Then we have the following identification
(2.12) @ "Op/w "0z — @™ Op[w"™ O
am Yy,

To prove this, one need to show that the map given above is injective, and then do a counting on
both sides using the previous lemma.

By this result, we have ¥/ 4ip./mc0.(X) = Yo(a;x) for some a; € F with vg(a;) = —c + ¢p. One can
show that {a;};,_,_ 1S a convergent sequence, and its limit a is the require element in the lemma. O

Exercise 2.20. Fill in the details for this proof.
2.6. Multiplicative character on F*.
Definition 2.21. A multiplicative character y on F* is a continuous function y : F* — C! such that
(2.13) X(xy) = x(x) - x ()
One can expect that the continuity implies that y is locally constant.

Definition 2.22. When y is nontrivial, the level ¢ = c(y) is the smallest integer such that y(y) = 1
for any y € Ug(c). Then y(xy) = y(x) for any x € F".

Definition 2.23. For any x € R, let | x| denote the largest integer n < x, [x] denote the smallest

integer n > Xx.
7



Lemma 2.24. Let y be nontrivial with ¢ = c(y) > 2. Then there exists a,, € F* such that
(2.14) X1+ x) = o, (%)
for any x € @w'“/*10g.

Proof. For any x;, x, € @ “/?1Op,

(2.15) x((1T+x)A+x))=x(1+x1 +x+x1%) =x(1+x1 + X).
The last equality follows from that c(y) = ¢ < ve(x;x;). This means that x — (1 +x) is an additive
character on @'/?10z. Thus there exists @, with required property. m

3. StrucTurE OF GL,,

3.1. Subgroups. Here we consider the group G = GL,. One can define the determinant and trace
for elements in G as usual.

The center of GL,, is

Z ={g,gh = hg for any h € GL,} = {al,a € F*}

The diagonal torus is

* 0 - 0
0 * - 0
r=|. . :
00 *
The parabolic subgroup we care about is an upper triangular block matrices associated to a
partitionn = n; + ny + - -ng. Forn = (ny, -+, my),
ko 3k %
0 *
P,=( . .
0 0 - *
It has a unipotent subgroup
I = *
0 1 *
N, = : ;
00 - 1
and a Levi subgroup
* 0 - 0
0 = - 0
M, = )
00 --- =x

Note that when all n; = 1, B = P, is also called Borel subgroup, and T = M, in this case.
The Weyl group is defined to be W = Ng(T)/Z(T), where Ng(T) is the normalizer of 7" in G, and
Z(T) is the centralizer of T (in this case is T itself). In the case G = GL,,, W =~ §,,, the permutation

group of n elements, and a set of representatives can be chosen as a permutation of rows for the
identity matrix.
8
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3.2. Compact open subgroups. Up to this point, all constructions are parallel to those for GL,,(R).
Now specific for p—adic field, we have a standard maximal compact open subgroup

K = GL,(Or) = {g € M,;x,(Og),det g € Of}.

Example 3.1. Whenn =2, W ={I, (0 1)}.

Note that W C K.

K has a filtration of normal compact open subgroups K;(n) = I + @"M,x,(Og). gK;(n)’s provide
a topological basis for GL,.

Later on we will introduce more compact open subgroups.

Proposition 3.2. Any compact open subgroup of GL,, is a subgroup of g~ Kg for some g € GL,.

This result follows from the following results. The basic idea is to work over a vector space on
which the groups act, and change the problem of conjugating into that of choosing proper basis.

Definition 3.3. Let V be a n—dimensional vector space over F. An Oz—lattice L in V is an Op
module such that

(1) Lis a finitely generated Ogp—module,

2) L®p, F=V.
Lemma 3.4. There exists an Or generators {vy,--- ,v,} which is also a basis for V.
Proof. As L is finitely generated Or—module, we can choose a set of generators {vy,--- , v¢}such

that £ is minimal. It’s easy to see that k > n by (2) above. Suppose that k > n. Then they are
linearly dependent on V, i.e., there exists coefficients a; such that

3.1) > aw;=0.
I<i<k
By multiplying the whole equation with proper @", we can assume that a; € Or and say, a; € Of.
Then we can write
3.2) V) = — Z a;'av;,
2<i<k

with all coefficients in O, contradicting the minimality of k. Thus k = n. m]

Lemma 3.5. For any Og—lattice L, its stabilizer StabgL = {g, gL = L} (consequently, g~'L = L) is
a compact open subgroup, conjugated to K.

Proof. By the previous lemma, we can pick an Of basis {v,---,v,}. One can easily check that
under this basis, StabgL is exactly as K, which is compact and open. Changing basis amount to a
conjugation, thus the conclusion. m|

Lemma 3.6. Any compact open subgroup H C StabgL for some Ogr—lattice L.

Proof. We first construct an O module with possibly infinite many generators

3.3) L = Og span of {all column vectors for any k € H}.

Then L ®. F = V as the identity matrix / € H whose column vectors already span V over F. Now
we check that L is actually finitely generated by using compactness. For any g = (g, ,g,) € H
with g; being column vectors, it gives arise to a finitely generated Or—module

(3.4) g+ Org1 & @ Opgy.

9



Then any g’ € g - (GL,(Or) N H) give rise to the same O module, because multiplication on right
by an element in GL,(Op) will give Og liner combinations of g;’s. Each g - (GL,(Or) N H) is an
open subset of H and covers H, thus by compactness, we can just choose a finite number of g to
cover H. So L is finitely generated.

Now we show that H C Stabg L. By definition for any & € H, we need to show that AL C L and
h~'L c L. But as L is generated by column vectors of g € H, this is equivalent to that

(3.5) hge H,h'geH,
which is clearly true. O

Start of lecture 3

3.3. Decomposition results.
Theorem 3.7 (Bruhat decomposition).

GL, = U BwB.
wew
Proof. This is essentially reducing to echelon form using Gauss elimination and row ordering in
linear algebra. We briefly show for n = 2 case. If g € GL, is already in B, done. Otherwise

g= (g1 zz) with g3 # 0. Then
4

83
1 —gig3! 0 —det(g)/g;
3.6 3 = ,
G0 (0 T P
and
0 11 -gig5") (g 84
G (1 0)(0 178710 —det(g)/gs)
That is
(1 &185'\(0 1)(ss 84
(3.8) g‘(o 11 0)l0 —det(e)/es
O
Theorem 3.8 (Iwasawa decomposition).
GL, = BK.

Proof. Proof for n = 2 case. Let g = E182) Ag 01 € K and

83 &4 L0

0 1 82 &

3.9 = )
@9 ofi o)=L 5
we can assume that v(g4) < v(gs3). In particular g4 # 0. Then

1 0)_(det(®)g;' &
3.10 _ = 4 € B.
(3.10) g(—gsg41 1) ( 0 g

O

Exercise 3.9. Prove the theorem for general n using induction.
10



Theorem 3.10 (Cartan decomposition). Let I = (iy,is,- - ,i,) such that i; € Zso and i; > ij,;.

Denote _

@' 0 -+ 0

o2 ... 0
diag(w') =

0O 0 --- ggin
Then
3.11) GL, = | | Kdiag(w")K.

T

Proof. Consider the case n = 2. By permuting rows and columns, we can assume that g4 has lowest
valuation in g. Then

1 —gg;! 1 0)_ (det()g;' 0
3.12 4 _ = 4
(3.12) (o U )8 gt 1 0 g
Further we have
(3.13) a 0\ (@@® 0 \fay O
’ 0 b| 0 a®IN0 byl
Here a = ayw"® and b = byw"®. One just have to note that v(det(g)g;") > v(g4). ]

3.4. Embedding of field. Let E = F( VD) be a quadratic field extension over F. Then it can be
embedded into M,,, by

(3.14) L:a+b\/l_)|—>(bcll) Z)

Exercise 3.11. Prove that all other embeddings will differ from this by a conjugation. Hint: it
suffice to show this for a generator, eg. \D. To do this, start with a general embedding and work
with the 2—dimensional vector space on which the matrices act. Show that after choosing proper
basis, the action of VD is given as above.

One can easily check that this embedding is consistent with norm and trace maps, i.e.,
(315) TI'M2><2 oL = TI'E/F,
(3 16) detor = NmE/]p.
4. HAAR MEASURE

Let G be a group over p—adic field. Let C°(G) be the space of functions f : G — C which are
locally constant and compactly supported. G acts on C.°(G) by left and right translations.

Definition 4.1. A left Haar measure on G is a non-negative measure such that

@.1) [ rewa= [ st vae
forany f € C°(G) and g € G. A right Haar measure on G is defined similarly to have the property
42) [ reten = [ statex.

It basically is saying that we can do change of variable for integrals.
11



Lemma 4.2 (Without proof). Left/right Haar measures exist and are always 1—dimensional.

Definition 4.3. Let d; x be a left Haar measure. Modular character Ag(g) : G — R, is such that

43) As(g) f Forg)dpx = f FOdyx.

G is called unimodular if any left Haar measure is also a right Haar measure, or equivalently
Ag = 1.
Formally we can write
(4.4) Ac(9)di(xg™") = dpx, or di(xg) = Ac(g)dyx.
Note that it’s indeed a character as

4.5) Ac(g1g2)drx = dr(xg182) = Ac(g2)dr(xg1) = Ac(g1)Ac(g2)d x.

Proposition 4.4. Any finite group is unimodular. Any compact open subgroup of GL,(F) is also
unimodular.

Proof. When G is finite, the counting measure
(4.6) f fdx=) f(g)
geG

is automatically left and right Haar measure.
When G is a compact open subgroup of GL,,(F), we define a measure i on G such that Vol(G, dx) =

1 and Vol(H, dx) = [H]—G] for any compact open subgroup H. f € C’(G) is locally constant so there
exists a normal compact subgroup H such that
4.7 f(xh) = f(x) = f(hx)
for any x € G. Then
1

4.8) f dx = (x).

f [H : G] xezG/:Hf
We have
49) [ stenax= [ s = [ fas
because multiplication by g on left or right just permutes elements in G/H. O

The second part of the proof used the key feature of p—adic analysis, that is, the continuous func-
tions are always locally constant. So checking the left/right-invariance of a measure is equivalent
to checking how the volume of an open set behaves under left and right actions.

4.1. Measures on F and F*. Abelian groups are always unimodular since the left translation is
the same as right translation.
We normalise the Haar measure dx on F so that

(4.10) Vol(Og, dx) = 1.
Then automatically we have

1
(4.11) Vol(@" Op, dx) = —.
qn
12



This is because O can be written as

(4.12) Oz = ]_[ ( Z a + w”OF),

a; 0<i<n

and every piece Y., ;@ + @"Ox should have same volume.
Recall in the real case, d*x = |x|~'dx. Here we claim that d*x = le]gldx is a Haar measure on F*.
Note that

Vol(y@”" O, dx) =

g = |ylrVol(@" O, dx).

One can formally write d(yx) = |y|gdx, and formally verify that
(4.13) [yxle' d(yx) = [yxz' [yledx = |xlg'dx.

Thus d*x defined above is a Haar measure on F*.
We normalise the Haar measure d*x on F* so that

4.14) Vol(Oz,d*x) = 1.
Then for a similar reason we have
1
(4.15) Vol(Ug(n),d" x) = —.
(g—Dq"

Exercise 4.5. Check this result.

4.2. Measures on GL, and P. The discussion here is a direct analogue of real case, with p—adic
norm in place of absolute value.
Let dA denote the measure on M,,, which is a product of Haar measures on F.

Lemma 4.6. G = GL,(F) is unimodular, with the Haar measure given by dg = | det(g)|7"dA.

Proof. We formally check that this is a left Haar measure. For any /& € G, and x € F" consider as
column vector, with dx a product of Lebesgue measures,

(4.16) d(hx) = | det(h)|pdx.

Consider A € M,,,, as n column vectors. Then

(4.17) d(hA) = | det(h)[zdA.

Thus

(4.18) d(hg) = | det(hg)lz"d(hA) = | det(g)[z"dA = dg

Checking it’s right Haar measure is similar. O

We shall normalise the Haar measure on G so that Vol(K) = 1.

Lemma 4.7. Forn = (ny,--- ,n;) and
My Nip -+ N
0 My -+ Ny
p= ) ) . ) €EP,
0 0 - My
X nj—Xn;j
(4.19) Apy(p) = | [ 1detmsipll

1<i<t

13



Example 4.8. Whenn = (1, 1),

a m b
(420) Ap,x(o b)) = s
Proof. We shall prove the case n = (1, 1).
Recall that formally
(4.21) di(gh) = Ap(h)dyg.

First we need to figure out d, g.

Writing h = (a m), g= (x ;l), we have that

0 b 0
(X' n) _ [ax an+ym
=fo )= (5 )
Sod*x'd*y'dn’ = |algd* xd*ydn, and d; g = |x|Igld*xd*ydn is a left Haar measure.

Then when we write
= x n'\_(ax xm+nb
=10 y/7\o by )

£3 * b
(4.22) di(gh) = laxlz'|bled" xd"ydn = |~led1g.
Thus Ag(h) = |2z O

Exercise 4.9. Prove the general case. Hint: In general let dA; ; be the product Haar measure on
N; j and dg; be the Haar measure on M;;. Then

— an
(4.23) dg = | |I1det(M;l, ™" dg; | | dai,
i ij

is a left Haar measure.

Remark 4.10. In practice the Haar measure on GL,, given above is not so convenient to use. Using
Iwasawa decomposition GL,, = BK, one can expect that dg = d;bdk for b € B,k € K. There is
an ambiguity, as B N K = B(Op) is not empty. But we can normalise the Haar measures so that
Vol(B(OF)) = 1 and the redundant integrals on the common part does not matter. This decomposi-
tion of integral is very useful if we further know that the function f to integrate is also K—invariant
(in which case f is called spherical), then we can essentially reduce the integral to one only on B.

Start of lecture 4

5. BASIC REPRESENTATION THEORY

5.1. Basic representation definitions. A representation p of group G is a group homomorphism
p : G — GL(V) where V is a vector space over C.
A subrepresentation U of V is a subspace which is closed under the action of G (o(G)U c U).
When such subrepresentation exists, one can also define the quotient representation of G on V/U.
p 1s called irreducible if V has no proper subrepresentations(i.e., U = {0} or V for any subrepre-
sentations).

A representation is called semisimple if it is a direct sum of irreducible representations.
14



In general there exists a filtrationof VO =V, C V; C V, C --- C V such that V; are closed under
the action of G and V,,,/V; are irreducible representations. If there exists V,, = V, we say V is of
finite length and # is the length of the representation p.

We also say V is glued together from V;,;/V; and Vi, = @V, / V..

Lemma 5.1 (Schur’s lemma/Without proof). Let py, p, be irreducible representations of G. Then
Homg (o1, 02) = 0 or C, with the latter iff p1 =~ p,.

Lemma 5.2. Let p be an irreducible representation of an abelian group G. Then p is 1 —dimensional.

Proof. For any x,y € G, p(x)p(y) = p(y)p(x) implies that p(x) € Homg(p, p) for any x. By Schur’s
lemma, Homg(p, p) is 1-dimensional. So p(x) is a constant multiple of identity map for any x.
Then p must be 1-dimensional to be irreducible. O

Now if (x, V) is a representation of G = GL,, and Z ~ F* is the group of centers of G, then
nlz = @y is a direct sum of multiplicative characters. Let VX be the subspace of V on which Z acts
by x. Then each V¥ is a subrepresentation of V, as n(g)n(z) = n(z)n(g) = x(z)7(g). In particular if
n is irreducible, then 7|z will be a single character. Denote it by w,, called central character of 7.

Lemma 5.3. Any representation (p, V) of a finite group is semisimple.

Proof. Let U C V be any subrepresentation. Let ¢ : V — U be any projection map, meaning that
¢|y is the identity map. Define

1
(5.1) B = 2= ) m(@)e(a(g™ ).

geG
Then @|y is still the identity map, and @ is further a homomorphism of G—representations. Then
V = U & ker ¢ is a decomposition of G—representations. O

Corollary 5.4 (Inverse Schur’s lemma). When p is semisimple, then
(5.2) p is irreducible & Homg(p, p) = C.

Beware that in general representations of GL,,(F) are not necessarily semisimple.

5.2. Smooth and admissible. For groups over p—adic field, we care about the following types of
representations.

Definition 5.5. (p, V) of G is called smooth if for any v € V, there exists a compact open subgroup
K of G such that p(K)v = v.

This is the direct generalization of continuity/smoothness of additive/multiplicative characters.
Equivalently, let VX denote the subspace of V which is p(K)—invariant, then p is smooth if and
only if

(5.3) V= U VK,
K

Definition 5.6. p is called admissible if VX is finite dimensional for any compact open subgroup
K.

In this course we will classify irreducible smooth admissible representations of GL,. For sim-
plicity denote Irr(G) to be the set of such representations. One don’t have to worry about being

admissible too much, because of the following result.
15



Proposition 5.7 (Partial proof later on). Any smooth irreducible representation of GL, is admissi-
ble.

This result follows from the classification result for representations of GL,. But to start with,
we impose this condition. We will soon see that it is related to contragredient representation.

Lemma 5.8. Let (p,V) be a smooth representation of a compact open subgroup K. Then p is
semisimple.

Sketch. As in the proof of Lemma|5.3] we can for any projection map ¢ : V — U on to a subrep-
resentation, we can define

1
5.4 p(v) = kye(r(k™"yv)dk.
(5.4) o(v) Vol (K) f n(k)p(r(k™")v)
K
The integral is essentially a finite sum by the representation being smooth. O

5.3. Induction and compact induction.

Definition 5.9. Let H be a subgroup of G and (o, W) be an irreducible smooth representation of H.
Define the smooth induced representation Indg o to be the space of smooth functions f : G - W
such that

f(hg) =oh)f(g)forany he H, g € G.

The action of G on this space is by right translation 7(g) f(x) = f(xg).

Define the compactly induced representation c — Indf, o to be the space of functions f as above
with additional condition that the support of f is compact in H\G. It is naturally a subrepresenta-
tion of Ind% o (though not necessarily different).

Remark 5.10. These two functors satisfy many nice properties one would expect. For example
they send short exact sequeces(s.e.s) to s.e.s. They are transitive.

The compact induction is most useful when H is an open subgroup. In that case H is open and
closed (with complement being union of H cosets), and H\G has discrete topology. Then any
f € ¢ — Ind$ o having compact support is actually supported on a finite number of H—cosets. We
can give a explicit basis for ¢ — Ind o as follows. Fix a set of representative g; € H\G and a basis
w; € W, let

(5.5) f (g)-{"(h)wf’ ifg = kg
: 8iWj -

0, otherwise.

Lemma S.11. If H is an open subgroup of G, then {f,,,, }i; form a basis for ¢ — Ind$ o

5.4. Frobenius reciprocity. Thus we have two functors Ind, ¢ — Ind : Rep(H) — Rep(G). There
is naturally a functor in the opposite direction, that is, the restriction of a representation of G to H
(forgetting how the other elements act). We shall simply write 7|y for the restriction. The following
two lemmas tell us how inductions are related to the functor of restriction.

Lemma 5.12 (Frobenius Reciprocity 1).

(5.6) Homg(rr, Ind$, o) = Homgy(nt|y, o).
16



Proof. There is a canonical H—homomorphism
(5.7) a, :IndS o —» W
fe fQ)
a(h)f — f(1-h)=fh) =och)f()

For any ¢ € Homg(r, Ind$, o), we associate ¢ € Hompy(n|y, o) by the following. For any v € n,
$(v) € Ind% o and

(5.8) P(v) = @y 0 P(v).

For the inverse direction, let / : V — W be an H-homomorphism. Then we associate ¢ €
Homg(r, Ind$, o) satisfying

Y() 1 g > Y(r(gv).

O

Exercise 5.13. Check that y(v) € Ind% o, ¢ is a G-homomorphism, and the association y « i is
inverse to ¢ — ¢.

Lemma 5.14 (Frobenius Reciprocity 2). Suppose that H is an open subgroup of G.
(5.9) Homg(c — Ind% o, ) = Homy (o, 7t|).
Proof. There exists a canonical H—homomorphism

(5.10) Bo:W—->c—-Indo

W= fl,wa

where f;,, is similarly defined as in (5.3). Now for ¢ € Homg(c — Ind$, o, ), we associate ¢ €
Homy(o, n|y) by

(5.11) P(w) = ¢ 0 B ().

For ¢ € Homy (o, 7t|y), we associate ¢ : ¢ — Indg o — V satisfying

(5.12) W(fiw) = Pw).

Then it extends uniquely to be a G— homomorphism. One can easily check that ¢ « Jr is inverse
to ¢ — ¢. O

Corollary 5.15 (Useless). Any irreducible representation r can be realised as a subrepresentation
of Ind%, o or a quotient representation of ¢ — Ind$, o for some subgroup H and irreducible o.

5.5. Mackey theory. For simplicity suppose that G is finite. Let H, K be two subgroups of G,
(o, W) be an irreducible representation of H, and p = Indg o.

Theorem 5.16 (Mackey).
(5.13) Plk = Dgernc/k Indimm 0|k,
here H® = g~'Hg and o¢ is the representation of H® which is realised on W and defined by

(5.14) as(h®)w = a(h)w.
17



Proof. For any g € H\G/K, we shall find a subspace of V which is K—isomorphic to o x :=
IndX . 8|knme. As G is finite, we can explicitly describe a basis { feiw;} as in (5.5)) for g; being
representatives of H\G and {w;} basis of W. When Hg; C HgK, we can further assume that
g: = gk;. Then to g we associate a subspace

(5.15) Vg = @pugkicrgk D; Cfgk,-,wj-
Note that we have a bijection
(5.16) H\HgK = (H* N K)\K

with elements gk; sent to k;.
On the other hand, oy x has a basis f] Wy We define a linear map from V, to o k, sending f. .,
to f; .. We need to check that it’s a K-isomorphism. For any k € K, suppose that
isWj

(5.17) gkik = hgk;.

Here h = hy; j € H depends on all parameters. Then

(518) P(k_l)fgk,-,Wj = fgkj,(r(h")w]"

On the other hand, (5.17) can be rewritten as

(5.19) kik = g ' hgk;.

(5.20) K (k)‘fk,"’wj - f’:j,ffg(g"h"g)wj* - f’gjv(h*‘)wj"

So it’s indeed K—isomorphism. O

Corollary 5.17. Let o be an irreducible representation of H and m = Ind% o be semisimple. Then
n is irreducible if and only if

(5.21) Homy (o, Ind} ;. 0%) 0 © g € H.

Exercise 5.18. Prove this corollary. Hint: use Corollary[5.4] Frobenius reciprocity and the theorem
above.

This result is not so useful in the course as 7 is not necessarily semisimple.
Start of lecture 5

5.6. Contragredient representation. In general for a representation (7, V), we can define its dual
representation on V* := Home(V, C) via

(5.22) <7 (g, v >=< v, (g v > .

Here < -, - > is the natural pairing between V and V*. This representation in our setting is usually
too large and not smooth. We shall consider the smooth part of it

(5.23) V=[x,

K
which is G—invariant as conjugation by g € G gives another compact open subgroup. Let
(5.24) T=nl.

Definition 5.19. The representation (, V) is called the contragredient representation, or smooth

dual of (7, V).
18



Example 5.20. Let y be a character of F* = GL(F). Then associated V, V* = V are 1—dimensional,
and

(5.25) X0 = x(x) = x ().

Lemma 5.21. G/K is countable. As a result, smooth irreducible representation n of G has count-
able dimension.

Proof. There are different ways to show the first claim. For example by Iwasawa decomposition
G/K ~ B/(BNK).

The right hand side is countable. For simplicity consider G = GL,, in which case
_(F* F\ , (O; Og
(5.26) B/(BNK) = (O IF*) /( 0 0];).

Note that F*/ O ~ w@?”, F/Og can be represented by elements from finite field extension of Q. Both
are countable and so is B/(B N K).

Any vector v € r is fixed by some K’ by smoothness. Then by irreducibility 7 is spanned by
n(g)v, g € G/K’, which is also countable as [K : K'] < oco. O

We note that if dim V = oo but countable, then V* is not countable. (Think about digits for real
numbers.)

Lemma 5.22. Restricting to VX induces isomorphism V¥ ~ (VK)*

Proof. To prove that the map VX — (VX)* is injective, let f;, f, € VX such that
(5.27) <V fi-fp>=0.

For any v € V, as fi — f, is K—invariant, we have that

1

) o
Vol X) f <v,7t(fi = fo) > dk =<

—1 _
K f x(k vk, (i — f3) >= 0

(528) <v,fi—fo>=

as [n(k~")v € VK. Thus f; = fo.
On the other hand, define
V(K)={v e V,fﬂ(k)vdk = 0}.

K
Then V = VK @ V(K), as

1
L n(kyvdk + (v — Vol(K) ]1; n(kyvdk)

"7 Vol(K)
1 K 1
where i [, wlkvdk € VE and (v - i [, w(k)vdk) € V(K).
Then for any linear functional on VX, we can extend it to be a linear functional on V by taking
0 on V(K). It will be smooth as it’s fixed by K. O

In the following lemma we show how admissibility comes into play.

Lemma 5.23. Let 1 be smooth. 1 — 7% is isomorphism if and only if v is admissible.
19



Proof. Tt is clear that 7 < 7#. To see that the injection is also surjective, we use that both sides are
smooth, so it suffice to show that

(5.29) VK e VK = (VKY = (V)™
is surjection for any compact open subgroup K. Here we have used the lemma above for the
right hand side. If 7 is admissible, then VX is finite dimensional and the map is surjective for

finite dimensional dual spaces. On the other hand, if VX is infinite dimensional but countable,
VK — (VXY™ is not surjective as (VX)* is not countable. m|

Lemma 5.24. Let € Irr(G). Then 7 € Irr(G).

Proof. We just need to prove that 7 is irreducible. If not, there is a s.e.s of nontrivial representations
0>V, -7 —->V,—>0.

By taking smooth dual, we get
0oV, >n->V, >0,

contradicting the condition on 7. O
Letv € (m, V) and v € (i, V).

Definition 5.25. The matrix coefficient associated to v and V' is defined as the following function
on G.

(5.30) D, (g) =< n(gv,V >.

6. PARABOLIC INDUCTION THEORY

Before we start, first note that there is a simple way to product new representation for matrix
groups, which is twisting by a character. More precisely, let (7, V) be a representation of GL,, and
x be a multiplicative character of F*. Then the twisted representation (7 ® y, V) is defined on the
same space, with the action

(6.1) (r® x)(g)v = x(det(g))m(g)v.

6.1. Parabolic induction and Jacquet functor. Here we develop a variant of induced represen-
tation and restriction functor related to parabolic subgroups. Let G = GL,, P = P,, M = M,,
N = N, as defined in Section@ Note that P = MN and N is a normal subgroup of P.
In particular M ~ GL,,, X---XGL,,. Let (o, V;) € Irr(GL,,) and (o, V) = ®,(0;, Vi) € Irr(M). On
the other hand let 6 be a character of N which is normalised by P, meaning that 8(n) = 8(p~'np).
Define a representation o6 of P on V by

(6.2) (00)(mn) = c(m)é(n), m € M,n € N.

It is well defined by our assumption on 6.

We first define the parabolic induction to be 7 = Ind$ /6. Later on we will make slight refine-
ment for this definition.

The analogue of the restriction functor in this case is called Jacquet functor, defined as follows.
For (m, V) € Irr(G), let V(N, 6) = {8(n)y — n(n)v,n € N,v € V}, which is closed under the action
of P. Let my 4 be the representation of P on the space Vyy = V/V(N, 6) by restriction and quotient.
nn g 1s called Jacquet module associated to (N, 6). It is the maximal quotient of 7 on which N acts
by 6.

Recall that there is a Haar measure on N (which is the product of Lebesgue measures).
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Lemma 6.1. Letv € V. Then v € V(N,0) if and only if there exists a compact open subgroup N
of N such that

(6.3) f 0" (n)yn(n)vdn = 0
v
for any Ny < N'.

Proof. We shall prove for § = 1 here. Suppose first that v = }}; m(n;)v; — v; € V(N). Then there
exists a compact open subgroup N, containing all n;, and

(6.4) f n(n)vdn = Z f n(nn;)v;dn — Z f na(n)v;dn = 0.
i YN i YN

NI
On the other hand for any v € V, it is fixed by some compact open subgroup N; of Ny. So v € VM
and the finite group Ny/N; acts on V"', Then similar to the Jacquet module, we have

(6.5) V= VN VMU(NG /Ny )

is the maximal quotient of V' on which Ny/N, acts trivially. But as Ny/N; is finite, so any of its
representation is semisimple and we have

(6.6) VN = VNN, /Ny @ V™.

The Ny—projection map onto V*° is given by

(6.7) ¢ w > Vol(Ny) ™! f n(n)wdn.
No
Then the condition on v is saying that v € ker ¢ = V¥(Ny/N;) C V(N). m]

Exercise 6.2. Prove the lemma for general 6. Hint: consider the twist 1|y ® 67!,
Lemma 6.3. Let o be admissible. Then n = Ind$ o6 is admissible.

Proof. Let H be any compact open subgroup of K (replace H by H N K if necessary). We shall
show that 7 is finite dimensional. By Iwasawa decomposition G = BK, there are finite number
of double P — Hcosets in G. Let {g;}i<;<x be the collection of representatives and we can further
assume that g; € K. Let J C H be a normal compact open subgroup. Note that J/ N M is a compact
open subgroup of M.

By the definition of induced representation,

(6.8) n={f:G -V f(pg) =c(p)fe)
Then elements f in 77 are uniquely determined by the values f(g;) € V. Further more for j € JAM
(6.9) 7(Nf(g) = fig) = f(gi(g; " jg)) = f(g&)

as g;'jg; € J and f is J—invariant. Thus the space 7/ is spanned by functions f supporting on
Pg;H such that f(g;) € V™™ So n'! is finite dimensional as (o, V) is also admissible.
]

The parabolic induction and Jacquet functor has usual good properties, like transitivity and
sending s.e.s to s.e.s.
In the following we will only be interested in the situation when 8 = 1. Then we simply omit 0

in the notations above.
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6.2. Contragredient representation and normalised induction.

Proposition 6.4. Let 0; be the contragredient representation of o, and & = ®J;. Then the contra-
gredient representation of Ind$ o is Ind$(5 ® A

Partial proof. We shall only show how to establish a G—invariant pairing between f € Ind$ o and
f eIndS(F® A31). Let [+, -] be the pairing between o~ and . Define the pairing by the integral

(6.10) <f,f >= f Lf k), f'(K)]dk
K
We need to show that this integral is G—invariant, i.e. for ®(g) := [f(g), f'(g)]l and any h € G
(6.11) f O(k)dk = f O(kh)dk.
K K
Note that the function ®(g) satisfies for p € P that
(6.12) (pg) = [f(pg), f'(p)] = [(P)f(), A (P)T(P)f (@] = AR ()D(g).

Let C*(G, A;l) denote the space of functions on G satisfying ®(pg) = A;l(p)QD(g).
On the other hand for ¢ € C°(G), we have

6.13) f o(gh)dg = f o(g)dg.
G G

By Iwasawa decomposition and properly normalised Haar measures,

6.14) f o(g)dg = f f o(phyd, pd,
G K JP

with ¢(g) := [ ¢(pk)dyp satisfying
P

(6.15) o(p'g) = f e(pp’k)drp = Ap(p'™") f e(pkydLp = A5 (P)E(g).
B B
So if the map
(6.16) CX(G) — C(G, A
o0

is surjective, then we can find ¢ with ¢ = ®, and fK O(k)dk = fG ¢(g)dg is G—invariant.

To see that the map is surjective, we check the H—invariant part for any compact open sub-
group H. For any g € P\G/H. The functions ® € C*(G,A;') supported on PgH is at most
I—dimensional. On the other hand let ¢ € C°(G) be the constant function supported only on gH.
Then ¢ is supported only on PgH. It is nontrivial because

©.17) B(s) = f o(pg)dLp = Vol(P N gHg™,d,P),
P

which is nonzero as P N gHg™! is an open subgroup of P.
What we haven’t checked is that the pairing defined above is non-degenerate. To do this, we
need to check that the pairing between H—invariant parts are non-degenerate. We skip this step

here. O
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In the light of this result, from now on we refined the parabolic induction as follows
(6.18) imc o = Ind5(o ® A,'?)

Then the contragredient representations of iy g 0718 imG 0.
Similarly let r¢ j be the normalized Jacquet functor

(6.19) roM7m =7y ® A7

Start of lecture 6

6.3. Frobenius reciprocity and primitive classification.

Lemma 6.5 (Frobenius reciprocity 3).

(6.20) Homg (7, im o) = Homy (rgm 71, 0).

Proof. By Frobenius reciprocity 1 in Lemma/5.12]

(6.21) Homg(x, Ind% (0 ® A,'"?)) = Homp(nlp, o ® A,'/%)

Note that Ap is trivial on N. We have a map

1/2 1/2)

Homy(my, 0 ® A,"") < Homp(nlp, 0 ® A,

by composing elements from Homy,(my, 00 ® A;l/ %) with the projection map V — V/V(N) = V.

On the other hand, as N acts trivially on o ® A;l/ 2, any map in Homp(nt|p, 0 ® A;l/ %) factor through
ny. Finally

(6.22) Homy(my, o ® A,'?) = Homy(my ® A%, ) = Homy(tgm 7, o)
O

Definition 6.6. Let 7 € Irr(G). If my # O for some nontrivial unipotent subgroup N, then by
Lemmal6.5|we can find o € Irr(M) such that

(6.23) Homg(m,img o) # 0,

i.e., m is a subrepresentation of iy g 0. Such x is called non-supercuspidal. On the other hand, if
ny = 0 for any non-trivial unipotent subgroup, it can’t be constructed as a subrepresentation of
im0, and & is called supercuspidal.

By convention, all the characters y of GL; will be considered as supercuspidal representations.
Also note that if 7 is (non-)supercuspidal, so will be 7 ® y for any character y.

The goal now is to construct and classify the non-supercuspidal representations using supercus-
pidal ones. First of all, if 7y # O is not supercuspidal, then we can find another unipotent subgroup
N’ in M such that (y)y # 0. In particular we can assume WLOG that 7y # 0 is supercuspidal. Let
M = GL,, x---x GL,, in that case. Then there exists o = ®c; with o; € Irr(GL,,) supercuspidal
such that m < iy, 0. The main questions are

(1) Can the set of representations {o-;} be used to parametrise 7?

(2) Can we say something about when iy g o is irreducible?
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6.4. Variant of Mackey theorem and supercuspidal support. Here we need a variant of Mackey
theorem in the context of parabolic induction. Two main modifications are required. The first is
to use parabolic induction and Jacquet functor to replace the usual induction and restriction. The
second is related to the fact that parabolically induced representations are in general not semisimple
for parabolic subgroups.

First of all we set up notations carefully. Let @ = (ay,--- , ;) be a partition of n, and M, ~
GL,, X ---GL,, be the corresponding Levi subgroup. G can be thought of M, where a = (n). Let
« B be two partitions of n. Let & N B be the partition corresponding to M, N Mpg. B will be called a
sub-partition of a if S N a = B (or equivalently Mgz < M,).

When Mg < M, < G, let iy, um, : Rep(Mp) — Rep(M,,) be the normalised parabolic induction,
where the parabolic subgroup is chosen to be Pgz N M, which is upper triangular. Similarly let
ru,.ms - Rep(M,) — Rep(Mp) be the normalised Jacquet functor associated to Pg N M,,.

As in Mackey theorem, we will be interested in rg a,im, co- It is expected that it can be “de-
composed’ according to the double coset decomposition Pg\G/P,. Using Bruhat decomposition
and obvious inclusion of Weyl groups into corresponding parabolic subgroups, one can see that
there exists an injection from Pg\G/P, to Wy, \W/Wy, , where Wy, < Pg is the Weyl group of M.
(Actually one can prove that Pg\G/P, = Wy, \W/W,,,. But we shall not do it here as we only need
an injection)

Note that M}/ is usually not a block wise diagonal matrix. But we can pick a set of special
representatives.

Lemma 6.7. A set of representatives of Wy, \W/Wy, can be chosen as follows.

(6.24) Wso = {w € Ww(@) < w(j) ifi < jand i, j comes from same block of M,;

(6.25) w () < w'(j) ifi < jand i, j comes from same block of Mpg}

Then forw € Wg,, MoNM s s block-wisely diagonal, and M} N\ My is also block-wisely diagonal.
Proof.

(6.26) W = Wi, \W/ Wy,

is clear as Wy, Wy, can change ordering in the preimage and image. For the second part of the

lemma, we shall only prove that M, N Mé”fl is block-wisely diagonal. It suffice to look at a single
block M,, from M,. (6.24) would guarantee that the preimage of M, in M,,, if nontrivial, will be

a block along the diagonal. Thus M, N Mg_l is block-wisely diagonal. O

Theorem 6.8 (Geometric lemma in [[1]). Let a,B be any two partitions of n. Then

(6.27) (rG.MyiM,.GO)ss = @ l'M;:mMﬁ,Mﬁ(VMmMGmMX—IO')W
weWg o

Remark 6.9. Tt would seem more consistent with Mackey theorem if we write ryy pvan,0™" instead

of (r Mo Moo 0)", but M} is not block-wisely diagonal in general.

Example 6.10. Letn = 2and @ = g = (1, 1), x1 ® x» be a character on M = M,,. Then W;, = {1, w}
for w = ((1) (1)) Note that (y; ® ¥2)“ = (x2 ® x1) By the theorem above we have

(6.28) (re.m imc(¥1 ® X2))ss = (X1 ® x2) © (x2 ® x1).
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The unnormalised version says
(6.29) (Ind(x1| - " @ xal - 172Dy = Gl - 1" @ xal - T @ (ol - [P @yl - 1772).

Theorem 6.11. Let o; be supercuspidal representations of M; and nt; = iy, o If w1y and mty have
common composition factor, (i.e., (n;)ss have common irreducible subrepresentation) then there
exist w € W such that My = MY and o5 = .

Proof. Let my be such a common composition factor. Let M, be a Levi subgroup such that r¢ ymo
is supercuspidal. Then rg y,7m 1S a common composition factor of rg u,7; as rg y, sends s.e.s to
s.e.s. By Theorem [6.8] we have

(6.30) (rG meTi)ss = @ iM;‘hMO,MO(rMi’MimMgf'O-i)w-

we WM0~ M;

But since o; is supercuspidal, we have that r o; = 0unless M, = M; N M(’)”_l. As a result

MMMy
we can write
— ’ w
(6.31) (FG.myTi)ss = D ivommot
WEWMO,M’.,M,:M,'QMS)_I
Let p be a composition factor of r¢ 7y, which is automatically supercuspidal. Then p is also

a composition factor for one of iy, m,0; . We need a lemma for which we will postpone the
proof.

Lemma 6.12. Let o an irreducible supercuspidal representation of M. Then iy o doesn’t have
any supercuspidal composition factor/subquotient.

By this Lemma, we must have M} N My = M. So we can further write

(6.32) (remm)s= P ot

WEWMO,Mi,M;v:M()
Then we have that (Mo, p) = (M}, o), and the claim in the theorem follows immediately. |

Corollary 6.13. For nt € Irr(G), suppose that m is a composition factor of iy g o for a supercuspidal
representation o ~ Qo ,, of block-wisely diagonal M, ~ GL,, X" - -XGL,,. Then the set {(GL,,, 0,)}
are uniquely determined by m up to a permutation of blocks.

Definition 6.14. The set {o,,} is called the cuspidal support of . This parametrises all 7 € Irr(G)
in terms of supercuspidal ones.

6.5. Criterion for irreducibility.

Theorem 6.15. Let o ~ ®0,, be supercuspidal representation of the block-wisely diagonal sub-
group M, = GLy, X -+ X GLy,. Then it = iy 0 is irreducible if and only if o, # 04, ® | - |5 for
any i, j.
We shall give the proof in the case of GL,. In this case, o = y; ® x», and the theorem claims
* % x 0
0 1 ,G1 = 0 1)2GL1,P0—{I}. Letd
be a nontrivial character of N. To avoid confusion, we shall not do any normalisation in this proof.
We shall study the following functor: ¥~ : Rep(P;) — Rep(G,) is the functor which takes V

to Vy = V/V(N), just like Jacquet module. ¥* : Rep(G;) — Rep(P;) is the extension by the
25
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trivial character on N as in (6.2). @~ : Rep(P;) — Rep(Py) be the functor which takes V to
Vng = VIV(N, 6). Let ®* : Rep(Py) — Rep(P;) taking any vector space V to ¢ — Indf\),‘ V®0, where
we let N acts on V by 6. Then we have the following results.

Lemma 6.16. Let p be a representation of Py. If Y~p = @ p =0, then p = 0.

Proof. When restricting to the action of N which is abelian, p is a direct sum of characters of N.
Then we have the following direct sum of P,—representations.

(6.33) L = p1 ® (®@epe),

where N acts trivially on p; and by nontrivial characters on (®ypg). ¥~ p = 0 implies that p; = 0.
On the other hand, ®"p = 0 implies that p, = 0. Suppose that py # 0. Then there exists a nontrivial
v € pg such that N acts on v by ¢'. By Proposition[2.16] 6 = 6, for some a € F*. Then

-1

-1 1 »
639 ooy Spr=ay Shotams =y S =aome“y ).
Thus py # 0, contradiction. O

Proposition 6.17. (1) W=, ®* are exact.
(2) Y* is adjoint to ¥Y~. @™ is left adjoint to O~.
B) Y =0,YO"=0.
4) Y"¥*, @ D" are isomorphic to identity maps.
(5) For any representation m of Py, we have the natural s.e.s

(6.35) 0P P rn->r->¥Y'¥Yr—o0.
We first show a result of this proposition
Corollary 6.18. ®* and Y* send irreducible representations to irreducible representations of P.
Proof. Let 1 = ®*o be reducible. So there exists s.e.s
(6.36) 0->m »>m—>m—0.
W7 = 0as ¥ = 0. So O x; are nontrivial by Lemmal6.16] and we get s.e.s
(6.37) 0> >0 1> dmm—0.
Using that @™ = ®~®*o ~ o, we conclude that o should also be reducible. O

Start of lecture 7

Proof of Proposition We will not check all the details. For example (1) is always expected.
We also remark that W* is really not induction, so the first part in (2)-(4) are direct. Second part
of (2) is not directly Lemma[5.14] as H is assumed to be open in G in Lemma [5.14] But we shall
assume it’s true without justification here.

Let o be any 1—-dimensional vector space. Then

p = ®* o = {f locally constant and compactly supported, f(nx) = 6(n)f(x)}.
They can be identify with functions f’ : F* — C by restricting on the diagonal

(6.38) fm=ﬂ6?»

26



Then the action of p can be described as follows
(6.39) p<(g ”{))f’(»c) - f<(g; (1’) (3 ”1‘)) - f(((l) ”lx) (box ?)) = 600 (b).

Note that we can choose a basis for p to be f;, = char(a(l + @"Op)), the characteristic function
of a neighbourhood of a € F. WLOG, we assume that 6 is unramified.

Now we show that p = p(N) and thus ¥~ ®*o = 0. For this we choose the basis in such a way
that m > 1. We claim that then every f,, € V(N). This is because we can choose u € N such that

O(uaw™Or) = 1, but B(ua) # 1. Then p(((l) th)) JamX) = fom = @wa)—1)f; , is a nonzero multiple

of f; .. Done.
Now we further use this description to study @ ®*¢. This time we look at the elements such
that

(6.40) m > max{ve(a — 1) + 1 — vg(a), 0}.

Then p(((l) blt)) Jam(x) = 0(ux)f,,, s constant on the support when ve(u) = —ve(a) — m.

(641) p(((l) ”{))f;,mu) — 00, = (Bua) = 6@,

is a nonzero multiple of f;, as ve(u(a — 1)) = —vg(a) —m + ve(a — 1) < -1 and O(u(a - 1)) # 1.
This implies that f;,, € V(N,0) as long as a # 1 and m > max{vg(a — 1) + 1 — vg(a), 0}.

Now if a = 1, any f/, will give a nontrivial image in Vyy = V/V(N,6), and they give the
same image in Vyg as f/ ’s differ by characteristic functions near a # 1, which are in V(V, 6). So
dim Vyy = 1 and & ®*0 = o,

Now we prove part (5). While it’s possible to prove it using the the second part of (2), we shall
circumvent the using of it. From the proof of Lemma[6.16] we have a direct sum decomposition for
P, representations m = m; @ (bmy). We actually want to show that the short exact sequence in (5)
splits. Let m, = (@my). It’s obvious to see that 71; = Y*W ™7 and 7, = (V). We need to identify 7,
with ®*®~r,. This identification could follow from Frobenius reciprocity for compact inductions,
but as we haven’t verified it, we do as follows. Let ®* : Rep(Py) — Rep(P;) taking any vector
space V to Ind;‘ V ® 6. Then we have a standard Frobenius reciprocity for smooth induction

HOl’l’lpl (71'2, (i)+q)7ﬂ2) = Hompo(d)fnz, (D77T2),

and a map ¢ : 1, — ®*® 7, corresponding to the identity map on the right hand side. Note that
7y = m(N) so the image of ¢ is in @* O, (N).

First of all, we show that ®*o(N) = ®*o. By the proof for ¥~"®* = 0 above, we already have
that ®*o € ®*o(N). On the other hand for any f € ®*o, we can use the model above, identifying
f with f” on F*, which is now no longer compactly supported. But as p(((l) rll)) f'(x) = 0(nx)f'(x)
while f” has to be smooth and thus fixed by some compact subgroup of N, we have that f'(x) =0
when vgp(x) — —oo. p(((l) ?))f’(x) — f'(x) = 0 as vg(x) — oo because 6(nx) — 1. So we get that

&*o(N) c ®*o. Done.
Thus we actually have ¢ : 1, > O O™ ;.
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Exercise 6.19. Show that ¢ is a bijection. Hint: apply @~ and ¥~ to ker ¢ and cokery and use
Lemmal[6.16l

O

Lemma 6.20. There exists a non-degenerate pairing between 1—dimensional representations V,
and V, of Gy, if and only if there exists a Pi—invariant pairing between YV, and ¥*V,.

Exercise 6.21. Prove this lemma.

Lemma 6.22. For = Indg(,\/ll Y2 & yal| - |71?), we have that @ (nlp,) is 1—dimensional.
Proof. The map

(6.42) a: fen— f(l)

gives a homomorphism of P; representations, where N acts trivially on the image. Thus @~ (Imagea) =
0. For any f € kera, f(1) = 0 and f = 0 in a neighbourhood of form BN’ where N’ is a compact
open subset of lower diagonal matrices. Using that

(6.43) C;3=f§13w@XTFBW“

we get that f is compactly supported functions on N when restricting to wN. So we have identified
ker @ with

W = {f = flon. compactly supported smooth functions on N}.
By Example [6.10] we have that

(6.44) ¥kera) c ¥ =yl @ xal 7

and W~ Imagea is 1-dimensional. So W¥™W = Wy is also 1-dimensional. On the other hand we
have the following twisting

(6.45) W W

(6.46) f - fox)

It maps W(N, 1) to W(N, 6) as n(n) f (x) — f (x) is mapped to

(6.47) 0(x)m(n) f(x) = 6(x) f(x) = 6(x)f(x + 1) = 6(0) f(x)

= 0(n Hn(m)Of (x) — 0(x) f(x)
= 0(n~ ") (r(n)0f (x) — O(n)H(x) f(x))

Thus W/W(N, 6) ~ W/W(N) should also be 1—-dimensional. O
Proof of Theorem[6.13]in case of GL,. Now let 1 = Ind§ (x| - ['> ® x»| - [71/?), and 7 = Ind§ ('] -
"2 ® x;'| - I7'/%). (To avoid confusion, we will use unnormalised version here.)

If 7 is not irreducible, then it has at least two composition factors. When restricting to Py,
only one of them will have nontrivial image under ®~. Let p be the composition factor of & with
®~p = 0. Let p be the contragredient representation of p. It is a composition factor of 7, and the
G—invariant pairing directly gives a G—invariant pairing between p and p which is non-degenerate.

But by assumption, p = Y*¥ p, so the pairing above gives a nontrivial P,—invariant pairing
between p and YW~ p, and thus by Lemma a nontrivial G;—invariant pairing between ¥~ p
and ¥Y7p.
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By Example [6.10] we have that
(6.48) Ypc¥r=xl-1">@xi '
(6.49) P p =y ") VA

So there is a nontrivial G;—invariant pairing between ¥~ p and W~ p if and only if
(6.50) il 172 = 03" 17 orpal 12 = G 1A

Note that the other two pairs are impossible. In summary, if 7 is not irreducible, then

6.51) Xy
X2
Now we show that when j{‘—; = | - |*!, m is indeed reducible. We only have to look at the case
o =1-I"", as we can get the other case by taking a contragredient. Then let y; = x| - 7'
and y, = x| - |"?, we have by definition 7 = y ® Ind5(1 ® 1). There exist a 1—dimensional

subrepresentation spanned by f € «, f(g) = y(det g). It apparently satisfies

f<(g ’Z) 9) = x(ab)x(det g) = x(ab)f(g).
O

Remark 6.23. (1) For w = IndS(x1| - ['/> ® xa| - [7'/?), we have that ¥~ 7 is 2—dimensional and

@~ is 1-dimensional. Thus 7|p, has length at most 3 by Proposition[6.17](5) and Corollary
[0.18] In particular 7 is at most length 3 when it’s not irreducible. It’s possible to reduce the
length down to 2, but we shall not pursue it here.

(2) The proof for irreducibility can be generalised to GL, with some more works. But the
proof for reducibility is limited to GL,.

(3) Note that the proof above for contradiction doesn’t work if n is irreducible, as n|p, is in
general not contragredient to 7|p,. It is related to that ®*o should be contragredient to
Ind$ 6 instead of ¢ — Ind$ 6.

7. COMPACT INDUCTION THEORY

7.1. Alternative description of supercuspidal representations. Definition[6.6]is often not easy
to use. The main result of this subsection is the following.

Proposition 7.1. Let m € Irr(G) and 7t be its contragredient representation and @, ;(g) =< n(g)v,V >
be the matrix coefficient associated tov € n,v € 1. TFAE

(1) mis supercuspidal.

(2) @, ; is compactly supported mod center for some pair (v, V).

(3) @, ; is compactly supported mod center for any pair (v, V).

Proof. We shall give the proof in the GL, case. The general case can be proven similarly.

(3) = (2) is obvious.

(2) = (3): recall from Lemma|[5.24]that 7 and 7 are all irreducible. Thus any other v’ € x, V' € 7
are of form

(7.1) V= Z am(gv, V' = Z bjn(g;)v
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Thus
(7.2) Oy = > ab®ys(g;'e2)
is still compactly supported mod center.

(1) = (3): recall the Cartan decomposition GL, = Z[[ K

ZD.l

0 1
there exists Ny compact open subgroup of N which fixes 7(K)V. m supercuspidal implies that there
exist N, compact open such that

(7.3) f an)v'dn =0
N

whenever N, < N’ and V' € n(K)v, according to Lemma|6.1] Then for any g € GL, whose Cartan

K. v smooth implies that

decomposition corresponds to ¢ = (13 (1)) with i large enough such that N, < "' N;t, we have for

some nonzero constants cq,

(7.4) < (g, v >=< ),V > = ¢ f < a(tyv, 7 ("YW > dn
Ny

= f < a(t ntyw, 7@ YW > dn
Ny
=0.
(3) = (1): Let Kj(n) = I + @"M>x(Or). For any v € 7, v is fixed by some K;(n). Then for

t= (zg | | when i is large enough, < z(t)v, ¥ >= 0 for any ¥ € 7K1 This implies that
(7.5) f n(g)n(f)vdg € nki™
geki(n)
has to be zero. But on the other hand,
(7.6) f n(g)r(t)yvdg = f a(On(r! gtyvdg
geK;(n) geki(n)

is equivalently an integral over

. 1 (l+w@" " l+@" o
T Ki(n)t/K(n) Nt Kl(n)f—( o 1+ o / o 1+ "

which is actually the same as an integral on some compact open Ny < N. Then (i) follows by
Lemmal6.11 =

Start of lecture 8

We show a sequence of results following from the proposition above.
Lemma 7.2. Let m be smooth, irreducible and supercuspidal. Then rt is admissible.

Proof. Suppose that 7 is not admissible. Then there exists a compact subgroup K, such that 7%
is infinite dimensional but countable by Lemma and #X ~ 7K is uncountable. The resulting
matrix coeflicients formed by 7% and #X would be uncountable. But on the other hand, such
matrix coeflicients are bi—K—invariant and also compactly supported, they must be countable.

Contradiction. O
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Lemma 7.3. Let n € Irr(G) be supercuspidal, with unitary central character. Then m has a
G—invariant unitary pairing (called unitary) given by

(7.7) v, v) = f <n(g)vy, V> < m(gw,V >dg
2\G

for any nonzero v € .

Proof. The integral is convergent by Proposition[7.1] It is unitary by the symmetry. It is G—invariant
by a change of variables. It is nontrivial when we take v; = v, to be some element such that
<,V >#0. O

Lemma 7.4. For any supercuspidal representation nt € Irr(G), there exist a character y such that
7 ® x has unitary central character.

Proof. Recall that a multiplicative character y is unitary if and only if |y| = 1. Also recall that
F* = w” x Of. For any character y, its values on O} are always roots of unity and in particular
satisfies |y| = 1. Then one can easily choose a twist so that |w,(w)| = 1 too. |

Lemma 7.5 (Formal degree). Let € Irr(G) be supercuspidal. Then there exists a nonzero constant
c, such that
(7.8) 1(v1,v2, V1, ¥2) = f < (g Wi, V1 >< w(g)va, Vo > dg = Cx < Vi, Vp >< Vo, ¥y >

72\G

foranyv; e randv; € 1t. d, = i is called the formal degree of m.

Proof. The integral I(v{,v,,Vq,V,) in gives an element of Homg(m ® 7, C)? as
(7.9) I(7(g)v1, v2, V1, m(QV2) = I(vy, m(Qva, m(IV1, V2) = I(v1, va, V1, V2)

by change of variables. But on the other hand Homg(r ® 77, C) = Homg(, %) =C by Schur’s
lemma. Thus there exists a constant ¢, such that

(710) I(V],Vz,\j’l,{/’g) =y < V],\\;'z >< Vz,\jl > .

We need to show that this constant is nonzero. First of all, note that

(7.11) I(vi,v2,V1,7) = f < ”(g_l)Vl,\v/l >< (g)va, Vo > dg
Z\G

= f <T@ x(g Wi, V1 >< T ® x(g)va, ¥y > dg
7\G
Applying same argument again we get that ¢, = ¢ygy. By Lemma(7.4] we can assume WLOG that

7 is unitary after a proper twist. Being unitary allow us to identify 7 with 7r via unitary pairing. In
particular let v3, v4 be such that (v, v3) =< v,V >, (v, v4) =< v,V, >. Then we have

(7.12) Cx(Vi,v4)(v2,v3) = f (g™ 1, v3)((g)va, va)dg
Z\G

(7.13) = f (m()vs, vi)((g)va, va)dg.
Z\G
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Now taking v, = v3 and v; = vy, then the right hand side of the equality above is nonzero. Thus
c; # 0. O

Remark 7.6. All the discussion above applies to representations whose matrix coefficient belongs
to L2(Z\G). Such representations which are not supercuspidal exist. They are called discrete series
representations.

Lemma 7.7. Let o an irreducible supercuspidal representation of M. Then iy o doesn’t have
any supercuspidal composition factor/subquotient.

Proof. From Definition [6.6] we know that iy o can’t have supercuspidal subrepresentation, as
(7.14) Homg(p, img o) = Homy(tgm p, o) = 0.

Suppose now that W is a subrepresentation of iy 0, and ¢ : W — V is a surjection to a supercus-
pidal representation (p, V). We shall construct a G—map from V back to W as follows. Let vy € V
be a nontrivial element, and wy € W be any preimage of v, under the map ¢. Let @, ;, be the matrix
coeflicient associated to v and some fixed v € p such that < vy, vy ># 0. Then define the map

(7.15) ¢(v) = f D, 5, (8~ )m(g)wodg.
Z\G

The integral is convergent as @, ;, is compactly supported mod center by Proposition It is
G—equivalent as

(7.16)  @(p(hyv) = f < p(g™" hyv, Vo > n(g)wodg = f < p(g™ v, Vo > n(hg)wodg = n(MP(V).

Z\G Z\G
It is nontrivial because
(7.17) < @(@(v)), Vo >= f(DVO%(g_l) < @(r(g)wo), Vo > dg = cx < o, Vg >*# 0.
7\G
Then we get a contradiction as iy g 0 can’t have supercuspidal subrepresentation. O

7.2. General results for compact induction.

Definition 7.8. Let 7 € Rep(G), J be compact open subgroup of G, and p € Rep(J). We say p
occurs in 7, or 7t contains p if Hom;(p, 7|;) # 0.

This directly implies that Homg(c — Ind p, ) # 0 by Frobenius reciprocity.
Definition 7.9. Let J; be two compact open subgroups of G, p; € Irr(J;). We say g € G intertwines
p1 with p, if Homyep, (o}, p2) # 0. Here recall that J§ = g 'J1g, and pf(g”"' jg) = p1(j). Note that
if g intertwines p; with p,, then g~! intertwines p, with p;. We simply say g intertwines p (with
itself) when p; = p, = p.

Let J be a compact open subgroup of G, A € Irr(J) and 7 = ¢ — Ind§ A. Recall that we can
explicitly give a basis for 7 as in (5.9)
A()wj, if g = jgifor je J,
0, otherwise.

(7.18) fgi,w_,-(g) = {

Here g; are representatives for J\G and w; are basis for A. Let < -,- >; be a J—invariant pairing
between A and A. Let 7’ = ¢ — Ind§ A and J;,. be abasis of 7’.
B
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Lemma 7.10. The pairing given by
(719) < fgi’W’f;j,W/ >= 61'7]' <Ww, W, >

extends to a G—invariant pairing between m and n’. In particular if  is irreducible smooth, then
it’s supercuspidal.

Proof. For any g € G, multiplication on right by g permutes the cosets Jg;. So let
(7.20) 8i8 = 4g.i8s3)
for s(7) a permutation of i’s and a,; € J. Then
(7.21) <78 foiws T(&) fg,r > =< Sosirhagows Souyniagw = Ostins(y < Alagd)w, Aag pw' >
~ {< WoW' >,=< fow fr > ifi=
0 =< fow g, > ifi#j.

So this pairing is G—invariant. In particular we can choose w,w’ such that < w,w’ >;# 0 and
< fiws f{,, ># 0. Then the matrix coeflicient @ associated to f,, f|, satisfies

(7.22)

< A(jw,w' >,, ifg=jel,
D(g) = .
0, otherwise.

Apparently @ is compactly supported on J. By Proposition 7 is supercuspidal when it is
irreducible. O

Proposition 7.11. For r = ¢ —Ind§ A, suppose that g intertwines A iff g € J. Then r is irreducible
and supercuspidal.

Proof. By the lemma above, we just have to show that r is irreducible. This is the analogue of

Corollary
The main tool is again an analogue of Mackey’s theory. For another open compact subgroup J’,
(7.23) ¢ —Ind§ Aly = @gepgr Ind o (A8 ynge)

Exercise 7.12. Verify this version of Mackey’s theory. Hint: as we can explicitly give basis for
compact inductions when J is open, the proof for Mackey’s theory for finite groups should carry
through. Unlike parabolic induction, we don’t have to take semi-simplification for restriction to
compact open subgroups.

Taking J’ = J, we have that
(7.24) Hom,(A, 71|;) = @4engs Homy(A, Ind), ;o (A%]jns¢)) = & Hom e s (A, A2).

We have used the Frobenius reciprocity in the last equality. Then Hom (A, A%) # O iff g inter-

twines A iff, by the condition, g € J. Thus only the coset representative 1 occurs on the RHS and

Homy (A, n|;) is 1—dimensional as A is irreducible. Note that at this point we can’t yet claim that 7

is irreducible by using reciprocity and that dim Homg(mr, 7) = 1, as 7 in general is not semi-simple.
Suppose that 7 is not irreducible and o is a subrepresentation of 7. Then we have

(7.25) 0 # Homg (o, 1) € Homg(o, Ind(J; A) = Hom;(o|;, A) = Hom (A, o)

so o, contains A. By the previous argument, we have that A occurs in n|; with multiplicity 1, and

a® = {fi..w € A} is such a copy, generating the whole representation 7 by G action. Thus o,

contains 7 and o = 7. O
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Lemma 7.13. Let n be irreducible smooth. Assume that m contains representations p; of K; for
i = 1,2. Then there exists g which intertwines p, with p.

Proof. If m contains p; of K, then by Frobenius reciprocity, we have that HornG(c—Indgl p1,m) #0,
and any nontrivial element ¢, in it is surjective as r is irreducible. & contains p, of K, implies that
Homg, (7lk,, p2) # 0, and let ¢, be a nontrivial element in it. Then ¢, o ¢; gives a non-trivial
element of Homg, (c — Indg1 Pilk,,p2) # 0. By Mackey’s theory and Frobenius reciprocity again,
we get that

K
(7.26) 0 # @gex,\G/k, Hosz(IndszK,lg(PﬂKanf),Pz) = @geki\G/k, Homy, e (0% 02)
Thus one of the terms on the RHS is nonzero, meaning that some g intertwines p;. m|

Start of lecture 9

7.3. Lattice chain and filtration of compact subgroups. The goal now is to construct various
compact subgroups, and proper representations for them (preferably characters) so that the con-
dition in Proposition is satisfied. For simplicity we shall only work with GL, from now on.
Similar theory exists for GL, and classical groups.

Recall the relation between compact open groups and lattices, which motivates the considera-
tions in this section.

LetV =F@®F, soG = AutgV. Let A = EndgV, the ring of endomorphisms of V. Recall we have
considered the Oz—lattice L in V in Definition [3.3] For simplicity we shall just say lattice L.

Definition 7.14. An O lattice chain £ = {L;};cz is a collection of lattices such that L;,; € L; and
xL; = L; for any x € F".

Lemma 7.15. There exists an integer e = ey, called the ramification index of the lattice chain L,
such that

(7.27) xL; = Li+evF(x)-

Proof. Let x = uw" where k = va(x). Then ul; = L; as L; is Og lattice and u € Oz. On the
other hand there exists a function e(i) such that wl; = L;..;. We just have to show that e(i) is
independent of i. For L;.; C L;, we have by multiplying with @,

Liviteir1) S Liveii)-

Soe(i+ 1) > e(i). If e(i + 1) > e(i), then we have a tower of lattices Li, 1+e(i+1) & Livei+1) & Lite)-
Multiplying with @' gives us another lattice between L; and L;,;, which is impossible. Thus
e(i) = e(i+ 1) for any i. O

We can classify lattice chains by e, up to a change of basis.

Lemma 7.16. e, = 1 or 2.

(1) Ifey = 1, then there exists g € G, s.t. gL; = @w' Oz ® w'Og for i € Z.
(2) If ey = 2, then there exists g € G, s.t. gly; = @' Op ® @' Op, glyiy) = @O0 @ @' Op .

Proof. Ly/wLy = Ly/L, 1s a vector space over the residue field k, which is always 2—dimensional.

L;/L, for 0 < i < e form a flag variety of this vector space, so 1 < e < 2. Choose a basis

first so that gLy = Oz ® Op. Thenif e = 1, gL; = wigly = @'Oz ® @'Op. If e = 2, then

gly = w'gly = @'Op ® @'Or. gL,/gL, is a k—subspace of gLy/gL, ~ k @ k. Then there exists
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h € GL,(k) such that hg(L,/L,) ~ k & 0. Pick any lift & of & in GL,(Og). Then h stabilise L,; and
thl = O ® wOg. O

Definition 7.17. Let U, = ﬂ Endp.L; = {x € A, xL; C L;,Vi € Z}, called chain order associated to
L.
Then as a corollary for the classification of £, we have the following result

Lemma 7.18. There exists g € G s.t.

G oo
(7.28) gU,g ' = F F

O Os ifer=2

ZD'OF OF ’ L=

Proof. By achange of basis, we can assume that £ is as in the standard form. Consider for example

the case (2) in Lemma|(7.16, Let h = Z Z) € gU g ". Then hL, C L, implies that a, b, c,d € Or,

this step actually proved the e, = 1 case. On the other hand, L, C L, implies that a,d € Op,
Or O
QD'O]F 0]1:: )

Definition 7.19. A U lattice is a O lattice which is also closed under the action of U .
Lemma 7.20. If L is an U lattice, then L € L.
Proof. Let e,y = 2. We shall work with the standard form of U, after change of basis. In particular

b € @ 'O, and ¢ € wOg. Thus we get h € ( O

U ; contains the element g = ((1) 8) and g, = (8 (1)) Then by the condition gL+ g,L C L, hence
L = gL+ gL is of form @*Or ® @w”Ox. As L is invariant under the action of ((1) 0119) (as column
I 0). .. .
implies that b < a + 1. Then eithera = b
ZD'OF 1
or a + 1 = b. Either way, we have L € L. The case e, = 1 is similar and easier. m|

vectors), we have a < b. Its invariance under

By this lemma, we can recover the lattice chain £ from chain order ¢. We shall denote eq; = e.
We also denote U; to be the standard chain orders in (7.28)) with eq; = i fori = 1, 2.

Definition 7.21. With the standard form for U, let

w, ifey =1,

II=<(0 1

, ifeq =2.
o o i
Let B = I[1YU = UII, and B" = [T"U = UTT",V¥n € N.

Let Uy = UY = U Ul = 1+ B Vn > 1.

Note that we have IT"L; = L,.,,.
Alternatively, 8" = (";ez Homg,(L;, Li1,,).

Remark 7.22. One way to understand these objects is that they are analogue of various objects for
p—adic field. More specifically, A is like p-adic field, U ring of integers, I1 uniformizer, 8" ideals,

Uy, neighbourhood of identity.
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Definition 7.23. Define the group
(7.29) Ku=1{geG,gUg"' =U).
When U = U, for a lattice chain L, K¢, can be alternatively defined as
Ku =Autp. (L) ={geG,gLe LVL e L}.

Exercise 7.24. Show that these two definitions coincide. Hint: make use of the fact that 2/ and £
can determine each other.

Lemma 7.25. There exists a Z—valued function k(g) on Kq; such that gL; = L ) for any L; € L.

Proof. For fixed g € Kq, by the second description there exists Z—valued function k,(7), such that
gL; = Liy ;- One can show as in the proof of Lemma that k,(i) will be a constant function
for any i. o

Lemma 7.26. Ky normalises all U},.

Proof. For i > 0, Ufu = 1 + 8. Ky normalise B because of the following. Letu € B =
NHomy,(L;, Lis1) and g € Kq. By the above lemma, gL; = L ) for any L; € L, ugL; € Lisig)+15
and g~'ugL; € L;,,. Thus g"'ug € 8.

One can similarly prove the case i = 0. O

It is convenient to understand U, B and K¢, from quadratic extensions.

Lemma 7.27. Let E be a quadratic field extension over F, embedded into A. Then V can be viewed
as 1—dimensional E—space. The collection of all Og—lattices in V form an Og—lattice chain L.
Then

(1) ey = e(E/F) (so every L arises in this way), and L is the unique lattice chain in V which
is stable under the action of E*.

(2) U = Uy is the unique chain order such that E* C K.

() For B =By, xU = B=Y Vx € B, and Ky = E*Uq,.

Proof. Forany v € Vv # 0, L = {w{EOEv,i € 7} is the set of Og—lattices in V (i.e., the ideals).
Then £ = E*L forany L € £. wl; = Ly, = @% " Ogv and thus e; = e(E/F). As E can be
unramified or ramified, all £ arise in this way.

If £’ is also stable under E*, then L € £’ must be stable under Of, which makes L an Og—lattice
(as any element in Og can be written as, for example, a difference of two elements in Of). Then as
L =E*L, we must have £ = L.

(2) is immediate by the relation between U and L.

For the first part of (3), one can pick Il = wg. For the second part of (3), it’s obvious that
E*Uq; C Kqy. For the inverse direction, note that when we take I1 = wg. By definition and lemma
above, gL; = Liyy ) for any i. Thus IT*®)gL; = L; implies that [I™* g € Uq, and g € E*Uy,.

O

Exercise 7.28. Fill in the details for this proof.

Start of lecture 10

7.4. Type theory.
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7.4.1. Characters and stratum.

Lemma 7.29. For 1 < m < n < 2m, we have the identification

(7.30) /"B S UL UL,
x—1+x

Now we give the analogue of Lemma [2.19]
For an additive character ¥ of F and a € A, define the character i, on A by

(7.31) Ya(x) = Y(Tr(ax)),Vx € A.
Take from now on ¥ to be level 1, i.e.,  is constant 1 on @wOp, but not on Or. The purpose for
this unconventional assumption is to make the formulae uniform for e, = 1 or 2.
For an order Qin A, let Q" ={x € A,y (y) = 1,Vy € Q}.
Proposition 7.30. Let B = B, and U = Uy.
() (B =8,
(2) For 0 < m < n < 2m, the following map
(7.32) BB - Un UL,
a+B™"M (x - Yalx —1)).
Proof. We shall give the proof only in the case eq; = 2. The case eq; = 1 is similar and easier. For

(1), let x = (x1 xz) y= (yl yz)’ and we have
X3 X Y4

,y =
4 Y3

(7.33) Y(Tr(xy)) = Y(x1y1 + Xays + X2)3 + X3)2).

By assumption on the level of ¢, one can easily see that for B° = (warF gi), (B = (ggi wOéFF) =
B', and in general
(B =I'8’y =1n"8' =8
For (2), note that by the previous lemma, we have

(7.34) /"B S Ut UL,

x> 1+ x.
So U,’L"/(/TJQI ~ BB, Note that A ~ F* and A ~ [* ~ F*, and by (7.33),, all characters in A is of
form ¢,. Then (2) follows from (1) directly. ]

In particular we shall care about characters on Uy, /Uy; L

Definition 7.31. The depth of 7 is

(7.35) I(m) = min{n/eq;, w contains the trivial character of Uj; .

Definition 7.32. A stratum in A is a triple (U, n,a) where U is a chain order in A, n is an integer
and a € 87". The strata (U, n,a,) and (U, n, a,) are equivalent if a; = a, mod B,

One can easily see by Proposition that when n > 1, a stratum defines a non-trivial character
Yo = Y (x—1)on Uz, /Ug; !, and two strata are equivalent if they correspond to the same character.
We shall mainly focus on such cases.

The following lemma is easy, but will be used multiple times.
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Lemma 7.33. Suppose that & contains a character y, € Uy} U}, fora € BB gndmy < n <
2my. Let my be such that n/2 < m, < my. Then , can be extended to U:Z2 /Uy, More precisely,
there exists an element v € n’* and a’ € B'™"/B'™™ such that a’ = a mod B'™ and Ug}z /Uy,
acts on v by Y.

Proof. By condition, let
(7.36) W=n={ en,n(x)V =y,(x—1)forxe U:Z‘]} + Q.
In particular Uj, acts trivially on W. For any v/ € W, 1+ x € Uy} and 1 +y € U}/, we have

(7.37) a((1+ )1+ = a((1+y)(1 + 20 +y) 7 (L+ W = a1+ ) (A + 01 +y) .
As my > n/2, we have by Taylor expansion that
(7.38) 1+y)(1+x)(1+y)'=1+x mod B"

and 71((1 + y)(1 + x)(1 +y)"" W = x(1 + x)v". Thus x(1 + x)»' € W and the action of Ufgf on W is
closed.

Further as UfZ{z /Uy, 1s abelian, W decomposes into characters i, for Uf;f /Uy, As the restriction
of Y to Uy} /U7, must be y,, we get the congruence ' =a mod Bl=m O

Lemma 7.34. Let (U;, n;,a;) be two strata. An element g € G intertwines Y,, of U,’;}l with Y., of
Uy, iff the intersection g (@ + B, ™)g N (ay + B ™) is non-empty.

Proof. By taking conjugation by g for a stratum, we can assume WLOG that g = 1. For &, if
a€ (ay + B}_”') N (ay + Bé_”z), then ¢, = ¢,,, on U;}i, and ¥, = ¥,, on the common support. For
=, if Y(Tr(a,x)) = Y(Tr(a,x)) for x € B]' N B7, then

(7.39) ai—a € (B NBR) =B + B

by Proposition (1). This implies that (a; + B}_”‘) N (a, + B;_"z) * Q. O
7.4.2. Fundamental stratum and depth.

Lemma 7.35 (Lemma-Definition). A stratum is called fundamental if a+B'™" contains no nilpotent

element of A (eg. conjugates of 01 ). Equivalently, there exists r > 1 s.t. " € B,
00

Proof. We first note that the second definition is actually a property for any element in a + B'™, as
it also implies that (@ + b)" = a" + ra”'b + --- € B for b € B'™". Further more, the statements

remain true after conjugation. For =, we just pick a = 0 0 by condition (as any nilpotent

element is conjugate to such form), and a” € B! is obvious. For <, we note that multiplying by
a power of p also preserve the equivalence, while changing the stratum (U, n, a) to (U, n—eq;, pa).
So we reduce the problem into three cases: (Uy,0,a), (U;,0,a), (U, 1,a). One can check case

68 C?) e B°/B, for some a; € Op/wOs. Then
2

a” € B iff a; = a, =0 mod @wOg, in which case a + B! = B! automatically contains nilpotent

-1
C(I) wOal) e B87'/8° for some a; € Op/wOk.
2

Then a” € B! iff one of ¢; =0 mod @, in which case the coset contains a nilpotent element. O
38
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elements. For the case (U», 1,a), we have a = (



Exercise 7.36. Check the case (U, 0, a).
Note that we actually get a trivial stratum in the case (U5, 0, a).

Corollary 7.37. Any nontrivial, non-fundamental stratum is conjugate to one of the followings:

01 01
((L{l’ n, p_n (O 0))’ ((1/{2’ 2n - 1’ p_n (0 0))

The motivation of study of fundamental stratum is its relation with depth of a representation.

Proposition 7.38. Let m be an irreducible smooth representation of G which contains a stratum
(U,n,a) with n > 1. (Recall that it associates to a character when n > 1.) Then this stratum is
fundamental iff [(1) = n/eq.

For the proof, we need the following lemmas.

Lemma 7.39. If (U, n, a) is a non-fundamental stratum contained in m with n > 1, then there exists
another chain order U’ and n’ s.t. a + B'™" c B and n’ Jeq < njeq. In particular r contains
the trivial character of U,’Z(Tl and () < n/eq,.

Proof. By the proof of Lemma(7.35|and Corollary [7.37| we can just check for standard cases.

For (U, 0, (8 (1))) we have (O 1) +8B,cByand -1/2 < 0.

00
01 0 w! o (@' 0\ o[ O

For((le,l,(O 0))wehave(0 0 )+B2 C( 0 1 B 0 1 and 0 < 1/2.

Note that a+B'~" ¢ 8'~" in particular implies that B ¢ 8’ and 8" > B''*" by taking * and
Lemma 1), thus U}, > U} Now a + B'™" defines a character on Uy, its restriction to U7}
is trivial as a + 8! ¢ B’ and any element in B’ gives trivial character on Uf’ufl by Lemma
[7.30(1). Then I(n) < n/eq. O
Lemma 7.40. If (U, n,a) is fundamental contained in m and (U’,n’,a’) is another stratum con-
tained in i, then njeq < n'/eqp.

Proof. By Lemma and[7.34] we get, after a conjugation,

(7.40) dea+B™"

Suppose that n/eq; > n’/eqr. Then —n’eq; > —neq and there exists » > 1 such that
(7.41) peuqq c pltmew qy.

On the other hand for x := (a’)“““«, we have that

(7.42) e (B/)—reweﬂ,n/ c p—rn/eru(L[/ c pl—rnefu/w — gl-reueyn

contradicting that (U, n, a) is fundamental.
O

Proof of Proposition[7.38, One just have to note that if 7 contains a trivial character for U};' with
n > 1, then it automatically contains a stratum (U, n, a) for some a € 87" by Lemma[7.33] O

Remark 7.41. Whether [/(7) = 0 divides the situation into two cases. When I(7r) > 0, there exists
a fundamental stratum which defines a character on the corresponding compact open subgroup,
starting from which we can further construct 7 by compact induction.

When [(7r) = 0, 7 can be constructed by compact induction from a representation of K which is
inflated from a representation of GL;(k).

We shall mainly focus on the case /() > O first, and discuss the case /() = 0 if time allows.
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7.4.3. Classifying fundamental stratum. From definition, we have that I(7) € %Z. If I(mr) ¢ Z, then
I(m) = 5 for an odd integer n, and eq; = 2.
Lemma 7.42. (1) Let n = 2k + 1 be odd, then (U, n,a) is fundamental iff a € B"/B'™" if
—k-1
of form (cwo‘k bwo ) + B for b,c € O In that case, (U, n, a) is called a ramified
simple stratum.
(2) If (m) = 5 ¢ Z, then &t contains a ramified simple stratum.

ZD'_kO]p w_k_10p) gl-n = ( w‘kOF w‘kOF)

Proof. For (1) when n = 2k + 1, we have 87" = (w‘kOF & *0s =\ 10, @ *0s

—k—1
Thus a is always of form (mg_k bwo ) + B'"" for b, ¢ € Og. If any of b, ¢, say ¢ ¢ O%, then
0 b ™! —n (0 b *! -
(cw—k 0 )+B ‘(0 o |*F
—k-1
which is not fundamental as (8 bwo is nilpotent.
(2) Follows directly from definition and Proposition O

Note that in this case a satisfies the quadratic equation a*> = bcw 2!

quadratic field extension.
The following lemma shows that we don’t have to consider the case e, = 2 and n even.

and F[a] is a ramified

Lemma 7.43. If [(n) = k € Z.q, then & contains a fundamental stratum (U, k, a).

Proof. By Proposition 7 contains a stratum as claimed, or a stratum of form (U, n, a) for

n = 2k, k > 1. This implies that there exists v € & such that 7(x)v = ¢¥,(x — 1)v for any x € U?sz
while U7, acts trivially. Note however

k 2k 2k+1 k+1
Uﬂl D Uﬂ2 D Uﬂ2 D qu,1

ot o o ot o ok S5 R 8
o o>\ o) 2 gttt ot 2\ gkt okt
This implies that Ule Uacts on v trivially. Let W be the subspace of elements of 7 which are

UZ‘Jl '_invariant. Note that Uf‘ul/ U,’z;rl ! is abelian. Thus Uf‘ul acts on some V' € W by some y/,
according to Lemma|7.33} which is nontrivial because Ug has to act nontrivially. O

Start of lecture 11

Let eqy = 1 from now on. Then a = @w™"a, for ap € U;. Let f,(t) € O[] be the characteristic
polynomial of ao, with f,(f) € k[r] being its reduction mod @ and characteristic polynomial of
ap € M, (k). These polynomials are conjugacy-invariant.

One can easily check that a stratum is non-fundamental iff the associated ?a(t) = 1>. Otherwise,
it is called an unramified fundamental stratum, which can further classified into three cases:

(1) fa(t) is irreducible of degree 2. The corresponding stratum is called unramified simple
stratum.

(2) ?a(t) has distinct roots. The corresponding stratum is called split stratum.
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3) fa(t) has repeated roots. The corresponding stratum is said to be essentially scalar.

Apparently in case (1), F[a] is an unramified quadratic field extension of F. A simple stratum is
either a ramified simple stratum or an unramified simple stratum.

Lemma 7.44. (1) A ramified simple stratum can never intertwine with an unramified funda-
mental stratum.

(2) If (U,, n, a) intertwines with (Us, n, b), then f (t) = f,(0).

Proof. For (1), as both stratums are fundamental, one can easily get a contradiction by Lemma
[7.40
For (2), Lemma and the condition implies that there exists g € G such that g'bg € a+B1™,

thus f,(£) = fo-1p,(6) = f,(2). O

Later on we shall construct supercuspidal representations from simple stratums. Right now we
discuss essentially scalar stratum and split stratum.

Definition 7.45. r is called minimal if /(7r) < I(m ® y) for any multiplicative character y.

Thus it is sufficient to classify all minimal representations and then get all representations by
proper twisting.

Proposition 7.46. Let () > 0. Then © contains an essentially scalar stratum iff there exists a y

such that l(m ® x) < ()

Proof. =: after conjugation, assume that 7 contains the essentially scalar stratum (U;,n,a =

a B

@ (O a)) for a € Of. So there exists v € 7 such that 7(1 + x)v = ¢,(x)v for any x € B7.

Let y be a character of level n + 1 such that y(1 + u) = Y(—a@ "u) for any u € @'"*10=. Then
for x = (x1 X) € B, y odet(l + x) = x(1 + x; + x4 + X1x4 — X2x3) = Y(—aw@ "(x; + X4)).

X3
a 0

1-n
0 a) + B,

As aresult, 7® y(1 + x) acts on v by the character associated to @™ (C(; ’g ) - (

which now contains a non-fundamental stratum. Thus /(7 ® y) < n.

&: if I(m ® x) < n, then 7 ® y contains a trivial character of U}. This is obvious if 7 contains
some stratum (U, i,a) fori < n—1. When l(n®y) = n—1/2, for example, then it contains a trivial
character of (ng”, which contains U7. When twisting back, the trivial character of U} becomes the

essentially scalar stratum (U, n, @™ (8 2)). m|

From this, we get that minimal representations will not contain essentially scalar stratum. Now
we discuss split stratum.
Proposition 7.47. Suppose that, after conjugation if necessary, n contains a split stratum of form
(U,n,a)withaeT = {(661 02 }, then the Jacquet module nty contains the character lpal%l ar- In
particular 1 is not supercuspidal.

Proof. By assumption, we have that

(7.43) ' ={vennx)y=iy,x—1)forxe Uyt # @
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Suppose that all elements in ¥« belongs to 7(N). Then by Lemma we have for all v € 7%«

(7.44) f a(n)vdn = 0
N;j

where N; = 0 1| Choose j to be maximal for this property, s.t. there exists v; € %« such
that
(7.45) f a(n)vidn # 0.

Nj+1

w 0 1
Take t = 0 1 and v, = (¢ )v;. On the one hand, we have
(7.46) f n(n)vadn = n(t_])f a(tnt Yvidn = ﬂ(l_])f a(n"yvidn’ # 0.
N; N; Nj1

’ZD'”OF ’ZD'nOIF

— n —1rmn —
On the other hand, let Y = Ug, Nt~ Uyt =1+ (w”“OF iy

). Foranyy € Y,y = t'xt for
X € UI’L,I, we have

(1.47) w2 = 7@ 0wy = 2@ Wa(x = Dy = Pa(x = D,

and ¥,(x — 1) = ¢¥,(y — 1) as a is diagonal and y is conjugate to x by the diagonal matrix ¢.

Lemma 7.48. (1) Any irreducible representation of Uy, containing y,(y—1) of Y is 1-dimensional.
(2) Let ¢ be a character of U;’Il s.t. §ly = w,(y—1). Then there exists u € N s.t. ¢"(x) = Y, (x—1)
forxe Uy, .
Proof. For (1), one can argue similarly as in the proof of Lemma [7.33] as y,(y — 1) is trivial on
U,’ijll and Uful/UI’L;rll is abelian.

aj

For (2), ¢ly = Y,(y — 1) implies that ¢ = s for 6 € @™ ( 0

m .
4 ) +B]™". Asa; # ay, there exists
2

neOgs.t.m+(a, —ay)n =0 mod w. Then
I n\[fax m\(1l -n\_ (ai m+(ay—a)n _ (& 0
748 A R i S v Y
1 n
and ¢“(x) = Y, (x — 1) foru = (O 1). O

Now we return to the proof of Proposition Let W C « be the subspace s.t. Y acts by
Ya(y = D).

By part (1) of the lemma we have v, € W = &sW¥¢ so that there exists vy € W% s.t.
(7.49) f n(n)vsdn # 0.
N;
But by part (2) of the lemma we have ys = %, for some u € N, so v3 := a(u Mvs is in V¥ and

(7.50) 0= f a(n)vsdn = n(u™) f a(wr(m)r(u HYyvsdn = n(u™) f n(n)vsdn % 0,
N; N; N;

J J

contradiction. 0
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Corollary 7.49. Let  be an irreducible minimal supercuspidal smooth representation with I(rr) >
0. Then m contains a simple stratum.

7.5. Extending to larger compact subgroup. From the last section, we saw that for a simple
stratum (U, n, a), we can associated a quadratic field extension E = F[a] which satisfies eg/r = ey
and E* € Kqy.

Lemma 7.50. For any a’ € a + B'™", and B’ = F[a'], we have eg = eqand B™ € Ky,.

Proof. ep/r = eq follows directly from that the ramification of E” only depends on whether the
simple stratum is ramified or unramified. As a’ € a + B'™" for a € B8"\B'™", we can write @’ = au
for some u € U,,, while Ky, = E*UY),. Thus a’ € K¢, and so does E’*. o

First of all by Lemma [7.33| if 7 contains a simple stratum (U, n, a) which gives a character in
Uy, /U, then m contains a character ¢, of U,LL';/ZJ“/Uﬁ’Jl . (Note there that [n/2] + 1 = [%2].) It
is now a simple representation of a relatively large compact open subgroup, and we care about its
intertwining property.

Proposition 7.51. TFAE:
(1) g intertwines ¥, of U(LL';/““,
(2) g normalise/stabilise ¥, of U(LZ'}/ 2

e
3) g€ EU," .

Proof. (2)= (1) is obvious. (3)= (2): Let g = u(1 + y) foru € E*, y € 87, x € B3*1 Then
(7.51) (1 + x = 1) = Yo(u(l + )x(1 + y)"'u™) = ¢ o Tr(au(l + y)x(1 +y)'u™)

=y o Tr(a(1 + y)x(1 +y)™")

=y oTr(ax) =¢Y,(1 +x—1).

Here in the second line, we have used that u,a € E* commute with each other and trace is
conjugation-invariant. In the last line we have used that

(7.52) 1+yx(1+y) ' =x+yx—xy+---=x mod B".
()= (3): If g intertwines ¢, of UZ/ 2+ Wwith itself, it in particular intertwines the related stratum.

Lemma 7.52. Suppose that g € G intertwines two simple stratum (U, n, a;) fori = 1,2. Then g €
Kaq and it conjugates the two stratums (i.e., the two stratums become equivalent after conjugation).

Proof. By Lemma there exists a non-trivial element y € a; + 8™ N g7 (a, + B'™)g. From
y € a; + B'™", we have that by LemmaIF[y]* C Ky, and L = Ly is an Ogyy lattice chain in
V. On the other hand by the same reasoning, y € g™'(a, + 8'™)g implies that £ is also an Oggy,-1)
lattice chain, which is equivalent to that g~' £ is an Og,, lattice chain. But the Og,; lattice chain
is unique by Lemma , thus g7' £ = L and g € Ky = E* U% by definition. Then by Lemma
g normalise B'. a; + B N g7 '(a, + B'™)g = a; + B'™" when non-empty and the two stratums
become equivalent after conjugation. O

At this step we actually proved that (1) = (2). By Proposition , W, of U(LL’}/ A g given by
a € 87/B71"2 Now g normalise vy, iff

(7.53) g 'lag=a mod B3,
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As a is conjugation-invariant by elements in E*, we can assume WLOG that g € U%. Asa e 8™,
the above equation is further equivalent to that

(7.54) aga'= g mod B3
asn—|5]= L%J. The required result follows form the following lemma. O
Lemma 7.53. Fork>1,ge€ U, aga™' =g mod B'iffg € Oz + B

Exercise 7.54. Prove this lemma. Hint: < is obvious as a € E* ¢ Ky normalises B*. For the
other direction, one can use induction and reduce the problem into one on quotient. Then the main
point of the proof is that the centraliser of E in M, is E itself.

Remark 7.55. Using similar proof as for Lemma[7.52] one can show that if ¢ € G intertwines two
characters ¢, of Ué’}/ 241 then g € Ky, and g conjugates the two characters.

N Ln+lJ
Let J =E'U,,

L5 J+1

Proposition 7.56. Let A be an irreducible representation of J containing ¥, of Uy, Then

A|UL% 11 is a multiple of W, and t = ¢ — Ind§ A is irreducible supercuspidal.
u

Proof. By Lemma [7.13} other possible component of Al L 1 would intertwine with ¢, by some

element j € J, but by Proposition[7.51] any j € J normahse Va. Hence the first part of proposition.

Now let g € G intertwines A. It in particular intertwines ¥, on Uw " with itself, which implies
g € J by Proposition By Proposition[7.1T| we get that r is irreducible and supercuspidal. O

Let
J+1

C(W,, U) ={A € Irr(J), A contains i, of U 1.

Start of lecture 12

Proposition 7.57. For i = 1,2, let (U;,n;,a;) be two simple stratum, A; € C(Y,,, U;), and nr; =
c— Ind?j NA;. If 1y = 1y, then ny = n, and there exists g € G such that

(7.55) Uy =g " Ug, Jo =g " N1g, Ay = AS.
If U, = U,, we can pick g € U%l.

Proof. By () = l(m,), we get n; = n, and U, are conjugate. After proper conjugation, assume
WLOG 7/11 7/{2 now.

By Lemma [7.13] there exists g € K¢, which intertwines A;. In particular it intertwines ¢, of
Uy, Ln/2)+1 . By Remarku g € Kq; conjugates the two characters.

At this step we can assume after proper conjugation that U; = U,, n; = np and ¥, = ¥,,. Thus
the intertwining groups J; = J,. Going through the above intertwining argument again, we see that
if g intertwines A;, then g intertwines ¢, itself and we get that g € J and g conjugates A;. Thus
follows the claims in the proposition. O

. . 21+1 . . .
Thus it remains to extend i, of U,LL";H to an irreducible representation A of J.
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_ UL%J

7.5.1. n odd. This is a particular simple case for this task, as U L34+ U

au , SO we just have to
specify how to extend to E*.

Lemma 7.58. When n is odd and p > 2, elements in C(¥,, U) extending ¥, of Uﬁ " are parametrised
by characters 6 satisfying c(6) = n+ 1 and

(7.56) (1 + x) = Y(ax)
for any x € E = Fla] with va(x) > L. A = 0 € C(Y,, U) can be explicitly given by O(eu) =

2
e (u—1)fore e E* andu € U

u
Proof. First of all we show that such &s are well defined, thus giving elements in C(i},, U). Appar-

ently by the assumption on 6, we have that 6(u) = ¥,(u—1) foru € E'n U(Lj e So 6 is well-defined
as a function. To show that it’s indeed a character, let ue = eu’ as e € E C K¢ which normalise

these compact subgroups. Then

(7.57) O(ue) = (e (u’ — 1) = 6(e)y o Tr(ae 'ue — a)
=6(e)y o Tr(e 'aue — a) = O(e)y o Tr(au — a)
= O(eW (u— 1) = b(eu).

Here we have used that @ € E* and thus e 'a = ae™".

On the other hand, for any A € C({,, U), Alg- is a direct sum of characters of E*, whose
i 1141 . . .
restriction to E* N U;}JJr must agree with .. But for each eigenvector for the action of E*, both E*

and U(Lj M1 acts on it by a multiple, thus it is stable under the action of J. O
7.5.2. n even. This case is more complicated due to that U(LjJJrl * U,LL,%J. By the classification
of simple stratum, this case only occurs when eq; = 1 and E is unramified. We shall sketch the
construction and proofs. 1

,, S H=EU
J =E* U}j 1 and J as before. One can similarly define a character 6 on H, and J, as the previous
case, and show that any A € C(y,, U) contains some 6.

There are two steps to extend 6 to be a representation A of J.

The first step is called Heisenberg extension, which gives a g = |k| dimension representation of
H. In particular H/H, is a 2—dimensional vector space over k, and there exists a polarisation B/H,
for some intermediate group H; C B C H, in the sense that 6([B, B]) = 1. Thus 6 can be extended
to be a character of B and then = Ind% 6.

. ) 141
Let E' be the elements in Og which are congruent to 1 mod wg, H, = E'U. L2+

Lemma 7.59. n is an irreducible representation of H with dimension [B : H] = q. It’s independent
of polarisation and extension of 6 to B, and 1|y, is a multiple of 6. Further more Indg1 0 = gn.

Proof. Essentially finite group version of Stone-Von Neumann theorem. m|

The next step is to further extend the group action to J. One basically need to specify the action
of ug = (Og/@rOg)*, while up is already determined by the central character.

Lemma 7.60. There exists a g—dimension irreducible representation A of J such that Aly = n,
and

(7.58) Alg- = @ g.

0|1 =0.0'#0
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Proof. First of all, note that as ey = 1, [ZH : J] = g+ 1, [J; : J] = ¢*. The construction of A is
give as

(7.59) A =1Ind}, n — Indg, @.

Here we used the representation theoretical subtraction in Grothendieck of representations, but we
get an actual representation, which we shall not justify here. One can easily check that dim A =
qg(q+1)—¢* = g,and Aly = (g + 1) — ¢" = n by using the last statement of Lemma From
this one can also see why A is irreducible.

On the other hand, we have J = E*H, By Mackey theory, we have

(7.60) Indy, ke = IndZy, Oz = €D 40"
0l g1 =0

One can also check that the action of E* on J/J; has to type of orbits: the orbit of 1 with stabiliser
E*, or other g — 1 orbits of g + 1 elements with stabiliser ZE!. For g € E*\J/J,,

¢ . E*, ifg=1;
JINE" = | .
ZE', otherwise.

Thus
(7.61) Ind},, fls- = 0@ (g - Y EP ),
051 =0
and
(7.62) A= P v
0|1 =0.0'#0

O

Exercise 7.61. Verify the action of E* on J/J;, and the sets J§ N E*. Hint: the two properties are
closely related, in the sense that the number of elements in the orbit of g is [J$ N E* : E*]. One can
check that ZE' c J§ N E* is always true, and JS N E*/Z C O} must be either E' or O;. Thus one
has only to show that there is one fixed point of the action of E* on J/J;, which is reduced to that
the normaliser of E in A is E itself.

It is not difficult to check that any A € C(¢,, U) arise in this way.

7.6. Depth zero supercuspidal representations. When /(1) = 0, 7 has a vector fixed v by U}u =
1 + wM,(Op), thus for K = U?u (maximal compact), the representation of K generated by v is
contained in 7 and is essentially a representation of K/ U,lu ~ GL,(k). Thus we need to know the
representation theory of GL, over finite field. Let G = GL,(k), and similarly other notations for
groups be over residue field.

The story for GL,(k) is quite parallel to the theories we have seen before: there are parabolic
induced representations from the characters on the diagonal subgroup. Some parabolically induced
representations are not irreducible, with conditions for irreducibility similar to Section [6.5] Such
K—representations will not arise from supercuspidal representations, parallel to what happens for
split stratum. These parabolically induced representations contains the trivial character of N. One
can show that the Jacquet module of 7 containing such representations of GL,(k) will be nonzero.

The remaining representations does not contain the trivial character of N (thus must contain

nontrivial characters of N) and are called cuspidal. They are parametrised by level 1 characters
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over unramified extension E with similar property as in Lemma [7.60 More precisely, a character
6 of E* is called regular iff 67 # 6. Then

Lemma 7.62. Let  : zu € ZN — 0(2)y(u) and 0 be a regular character of E*.
(7.63) o9 = Ind>_ ¢ — Ind. 6.
(1) It is irreducible and q — 1dimensional. ol = @H,ﬁﬁq o

(2) o9, = 0, iff 1 = 6, 0r 6, = 6.
(3) Every cuspidal representation of G arises in this way.

Then one can inflate o to be a representation of K and then define 7 = ¢ — Indg 0.
Lemma 7.63. g € G intertwines oy iff g € ZK when oy is cuspidal.

@ 0

Proof. By Bruhat decomposition, we have GL, = U;50ZK ( 0 1

)K . If g € G intertwines o, but

g ¢ ZK, then there exists i # O such thatf = (zg (1)) intertwines two (possibly different) conjugates

.. o. O

of oy of K. Let p be the common factor of o, and oy when restricting to K’ N K = (wig O]S)'
F F

1+w@ OF w l_iOF

wli Ok 1 + wOF

is also a component of o on K’ N K. Thus oy contains the trivial character of N, contradicting to

cuspidality. O

Then o7, is trivial on (Uy,)' = ( ), implying that p is trivial on ((1) OIF ) But p

Thus r is irreducible and supercuspidal by Proposition Every depth 0 supercuspidal rep-
resentation arise in this way.
Start of lecture 13

8. NEW VECTORS AND MINIMAL VECTORS

In this section we introduce the classical topic on levels and newforms, and show how type
theory can be used to approach some of the topics.
Take G = GL,. Let Kj(w") = {k € K,k = (

%

%k ..
0 1) mod w@"}. Let 7 have trivial central character.

Definition 8.1. We say the representation is level c(r) = c if ¢ is the minimal integer such that
there exists a Ky(@w®)—invariant element in 7.

Lemma 8.2. For ¢ = c(n), the space of Ky(w®)—invariant elements in n is 1—dimensional. Any
nontrivial element in this space is called a newform in m (thus unique up to a constant).

8.1. Minimal vector vs. newform for supercuspidal representations. We shall show how these
notions relate to the depth and compact induction model for supercuspidal representations.
For simplicity let consider the case when n is odd. We have shown that minimal supercuspidal

representations (which is true when central character is trivial) with I(mr) = n/eq arise as © =
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c— Ind? 6. By explicit construction of basis in, for example, (5.5), we can in particular get an
element

b(g), ifgel,
0, otherwise.

8.1 @o(g) = {

Furthermore one can easily check that
(8.2) 7(j)o = 0())pp.
Lemma 8.3. ¢, is uniquely determined by (8.2).

Sketch of proof. One can use Mackey theory and known intertwining property to show that 6 of J
(and even proper subgroup of J) occurs in 7|, at most once. i

Note that (g)¢, can be similarly identified with 6 on J&.

Definition 8.4 (Temporary). Any element of form n(g)y, is called a minimal vector/micro-local
lift.

For now we use the standard embedding of E* in GL,.

Proposition 8.5. Let i be supercuspidal minimal with [(r) = n/eq for n odd. Then c(rr) = 2(I(7) +
1) is odd or divisible by 4, and a new form can be chosen as

0
(8.3) o= . n<(g l)m.
a€(Og @™+ Op)*

Proof. For simplicity, let’s consider only the case eq; = 1. Let n = [(r). By definition, if ¢, is a
/w_I.%J
0

%

5] X
.. . w2 ) . ¢ L.
newform, then ﬂ(( 1))900 is invariant under (wr5 . ) which contains U1211 if ¢ is even

and Ufu2 ifcisodd. Thusn+1 < % in either case. On the other hand, ¢y is U’,Z’ ! _invariant, thus
p= > n((g (1)))909 is still U7/ ! _invariant as Uy, !'is a normal subgroup of K, while ¢ is
a€(Op /@™ Op)*

1
x  w') . ) .. . ) )
( ntl —invariant. The averaging is non-vanishing as different translates of ¢, form a basis.
w sk

So ¢ is nontrivial, then ¢ < 2(n + 1) and all claims are proved. O
Exercise 8.6. Prove the proposition when eq; = 2.

Remark 8.7. When eq; = 1 and I() = n is even, this approach will become slightly more compli-
cated, due to the fact that 7 is now induced from a g—dimensional representation A. Any way in
that case c¢(r) = 2(I(mr) + 1) =2 mod 4 is still true.

Remark 8.8. A classical approach to the newform for supercuspidal representations is to use the
Kirillov model. Here we give the newform without referring to the Kirillov model. It’s possible to
prove the uniqueness of newform using Mackey theory, but we shall skip it here.

8.2. Comparing test vectors. For many problems in number theory like period integrals, sup
norm problem, QUE, etc, one has to specify a choice of test vectors. The most natural choice
for unramified representations is the spherical element. When there is ramification for the repre-

sentation, then classically people developed the theory of newforms which is in most of cases the
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first test vector people tried. However recent developments motivate us to look at the correspond-
ing problems using the minimal vector. The major advantage of the minimal vector is that we
understand its behaviour under a larger subgroup when comparing with newforms.

For example when c(rr) = 4n corresponding to [(w) = 2n — 1 and c(0) = 2n, we have that ¢ is
Ko(@)—invariant, with [Ky(@°) : K] < ¢°. On the other hand ¢, behaves by a character under the
action of JN K = OgUy, , with [/ N K : K] = g¢*" = +/g°. Thus J N K is a much larger subgroup
compared to Ky(@®).

A more practical advantage of ¢y is that its matrix coeflicient is very simple to describe and easy
to use. In particular for the cases considered above, we have

b(g), ifgel
8.4 () =
(8.4) e(8) {0, otherwise.

On the other hand, the matrix coefficient for the new form is most of time involving all kinds of
epsilon factors and difficult to evaluate explicitly. There are some recent success in using minimal
vectors for period integrals and other analytic number theory problems.

8.3. newform for parabolically induced representations.
Proposition 8.9. Let 1 = n(y 1, x2) and n irreducible, then we have c(nr) = c(x1) + c(x2).
We first need a lemma.

Lemma 8.10. For every positive integer c,

GL(P) = | | B(; (1’) K@)

0<i<c

Proof. First we show it’s a disjoint union. For 0 < i # j < ¢, suppose

a1m10_10k1k2
Oazwil_wjlkglq

for (‘“ ;") € Band (il ’;2) € Ki(@). Note ki, ks € O} and v(k;) > c. By equating respective
2 3 4

elements of the matrices, we get a; + mw' = ki, m = ky, a,@w' = ky@w’ + k3, a» = kow’ + k4. Then
we can get a contradiction from the last two equation.

(1) K (@) for some i. Note that

GL,(F) = BGL,(0,) by the standard Iwasawa decomposition. As a result of this, we only have to

Next we show that every matrix of GL, belongs to B(;i

look at matrices of form fcl ?) € GL,(0,). If i = v(x3) > 0, then x4 € O;. When i > ¢, we have
3 X4
X1 X2\ _ 1 0 X1 X2
X3 X4 |0 X4 X3/.X4 1)
When 0 < i < ¢, we have

X1 X2 RIRi L) wi X2 1 O 5 7 O
— X3 . X4 .
X3 X4 0 X4 w1 0 1
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X1 X2
X3 X4

X x| _detx (1 528\ (1 0) (5 _j nu
X3 X4 x \0 1 JAL 110 1 .

Proof of Proposition[8.9 Let ¢ = c(n). Let f € n be the newform given in the parabolically
induced model. Then its value is left B—equivalent and right Ky(@)—invariant. By the Lemma

We

When i = 0 and x4 € O;, we can still decompose ( ) like the case 0 < i < c. If x4 ¢ O;, then

X2, x3 € O}, and

O

above, f is uniquely determined by its values on the double coset representatives ;,- (1) .
shall just check for which i can f be supported. This will not only shows existence, but also the
uniqueness and the dimension of old forms.

Suppose that
a, m 1 0 _ 1 0 k] k2

(8.5) (o az) (wf 1) = (wi 1) (k3 k4)

ki kp .
for some k = € K, (@), or equivalently

ks ky

a+mw m\ ky ky

(86) ( azwi Clz) B (wikl + k3 wikz + k4) )

Then f is supported on (;l (1)) iff y1(a1)x2(ay) = 1 for a; satisfying the above condition. From

m = ky, we get that m € Og. From a,@' = @w'k; + k3, ar = @'k, + k4, we get that

(8.7) a =1 mod @,
and
(8.8) ki=1+w@k, mod @ .

From a, + mw' = k;, we get that
(8.9) a; =1 mod @

Now yi(ai)ya(ax) = 1iff i > c(x») and ¢ — i > c(x1), i.e., c(x2) < i < ¢ — c(xy). It has solution
iff c(y1) + c(x2) < ¢, and resulting space of functions is ¢ — c(y1) — c(y2) + 1— dimensional. By
definition of newform and level, we have

(8.10) c(m) = cQyn) + c(x2)

O

Definition 8.11. When c(y;) = c(x2) = 0, we have c(r) = 0. = is called unramified in this case,
and the newform is K—invariant, sometimes called spherical.

Remark 8.12. The relation between depth and level is no longer true for parabolically induced
representations even when they are irreducible. For example for 7 = n(y1, x2) with c¢(y;) = k and
c(x2) = 0, then the level of r is c(y;) + c(y2) = k while the depth of 7 is k — 1. The relation
c(mr) = 2(l() + 1) holds only when c(y;) = c(x») if  is irreducible.
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