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Introduction

We give in the first two chapters an introduction to the basic objects appearing in Geometric Measure
Theory, with an emphasis on the tools most useful to understand the technical details of the series of
papers of Fernando Codá-Marques and André Neves, partly in collaboration with Yevgeny Liokumovich
and Kei Irie, culminating in the proof of the Yau’s conjectures about denseness of minimal hypersurfaces
in Riemannian manifolds of generic metrics of dimension less or equal than 7 ([MN17], [MN16], [LMN16],
[IMN17]).

Notations

We fix for all subsequent chapters an integer n ≥ 3, and a Riemmanian submanifold M ⊂ Rn. This
is not restrictive thanks of the Nash embedding theorem [Nas56]. We fix notations for the sets we will
consider, as they differ slightly from the ones of Pitts. Let x ∈ Rn, 0 < r < s <∞.

B(x, r) = Rn ∩ {y : |y − x| < r}
B(x, r) = Rn ∩ {y : |y − x| ≤ r}
A(x, r, s) = Rn ∩ {y : r < |y − x| < s}
A(x, r, s) = Rn ∩ {y : r ≤ |y − x| ≤ s}

and we define likewise notations BM , BM , AM , AM with Rn and replaced by M and the Euclidean
distance replaced by the geodesic distance of M .

Definition. For 0 < s < ∞, we note α(s) = π
s
2

Γ( s2 + 1) . Let n ≥ 2. Referring to [Fed69] (2.10), H s

is the Hausdorff measure on Rn (equipped with its euclidean distance) associated in the Carathéodory
construction with the function

ζ(A) = α(s)
(

diamA
2

)s
.

This is the standard normalisation, which shows that for a k-submanifold of Rn, H k coincides with
the induced volume form. For all definitions on measure theory, we refer to Federer [Fed69]. We recall
some of the most basic definitions.

Definition. Let (X,µ, d) a metric measured space space, 0 ≤ s < ∞ and x ∈ X. We define the s
dimensional lower and upper densities of µ at x by

Θs
∗(µ, x) = lim sup

r→0+

µ
(
B(x, r)

)
α(s)rs

Θs∗(µ, x) = lim inf
r→0+

µ
(
B(x, r)

)
α(s)rs .

If these two numbers coincide, we denote this common value Θs(µ, x) and we call it the density of µ.

Our definition of k-rectifiability coincides with the definition of countably (H k, k)-rectifiability of
Federer ([Fed69], 3.2.14), as we will not need the stronger notions of rectifiability.

Definition. If k is an integer such that 1 ≤ k ≤ n and A ⊂ Rn is H k measurable, we say that A is
k-rectifiable if A is H k measurable and if there exists a sequence of Lipschitz function fj : Rk → Rn
(j ≥ 1) such that

H k

A \ ∞⋃
j=1

fj(Rk)

 = 0.
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Chapter 1

Introduction to currents

1.1 Preliminary definitions

Theorem 1.1.1 (Besicovitch covering theorem). There exists a positive integer B(n) with the following
property. Let A ⊂ Rn, and B be a family of balls such that all point of A is the center of a ball of B.
Assume that A is bounded or the radii of the ball of B uniformly bounded. Then there exists disjoint
families B1, · · · ,BB(n) of B such that

A ⊂
B(n)⋃
i=1

⋃
Bi.

Remark 1.1.2. Note that the hypothesis of radius boundedness of necessary in this theorem if A is
unbounded, contrary to the version quoted by Allard ([All72]). However, the reference cited therein is
correct ([Fed69], 2.8.14). We can easily show that B(n) ≤ 23n (see [Aus12], 2.1.4), and this had been
proved that there is an exponential lower bound of C (see for example [FL94]). This theorem shows the
advantages to work in Rn, as Besicovitch theorem is false in general. Aside from the counter-example of
the Heisenberg group, see also the work of Séverine Rigot ([Rig04]).

We first start by recalling the definition of Radon measures.

Definition 1.1.3 ([Fed69], 2.2.5). A Radon measure on a locally compact topological space X is a Borel
regular locally finite measure.

We shall need the following simple property of Radon measures.

Lemma 1.1.4. Suppose that X has a topology with a countable basis, and let {µr}r∈R be a family of
Radon measures such that

µr ≤ µs ∀r ≤ s.

Then for L 1 a.e. r ∈ R, there exists a Radon measure µ′(r) on X such that

µ′(f) = lim
h→0

(µr+h − µr)
h

(f) ∀f ∈ Cc(X).

Proof. Let C a countable base of Cc(X). For all f ∈ Cc(X), there exists a sequence {fj}j∈N ⊂ C and a
function f∞ ∈ C such that

|f(x)− fj(x)| ≤ 2−jf∞(x), ∀x ∈ X

As for all f ∈ Cc(X), the real function r 7→ µr(f) is increasing, it has in particular a locally bounded
variation, the limit

lim
h→0

µr+h(f)− µr(f)
h

3



exists for L 1 a.e. r ∈ R. Defining for all g ∈ C the set

Ng = R ∩
{

lim
h→0

µr+h(f)− µr(f)
h

does not exist
}

(1.1.1)

we obtain L 1(Ng) = 0, and as C is countable, we obtain L 1(∪g∈CNg) = 0. As

|µr(f)− µr(fj)| ≤ 2−jµr(f∞) ∀j ∈ N,

we deduce that for all r ∈ R \N

lim
h→0

µr+h(f)− µr(f)
h

= lim
j→∞

lim
h→0

µr+h(fj)− µr(fj)
h

∈ R

and we conclude the proof thanks of the Riesz representation theorem.

1.2 First definitions and theorems

The currents were first introduced by De Rham and their application to Geometric Measure Theory
was made possible thanks of Federer and Fleming in their seminal paper Normal and Integral Currents
([FF]).

Let (Mm, g) be a fixed (non-necessarily compact) Riemannian manifold (C4 is sufficient) and for all
k ∈ N let Ωk(M) ⊂ ΛkT ∗M be the vector-space of compactly supported k-differential forms.

Definition 1.2.1. A k-dimensional current of a Riemannian manifold M is an element of the dual of
Ωk(M), equipped with the weak sequential topology. We denote this space Dk(M), and we say that a
sequence {Tj}j∈N converges towards T ∈ Dk(M) if for all ω ∈ Ωk(M), we have

lim
k→∞

Tk(ω) = T (ω).

The first operation that we can define is the boundary ∂T ∈ Dk−1(M) of a current T ∈ Dk(M) which
is characterised by the requirement that

∂T (ω) = T (dω) for all ω ∈ Ωk−1(M).

The sign convention is made in order to make Stokes theorem true for currents of integration on a C1

sub-manifold with boundary.
The reference of this paragraph is the monograph of Federer 1.7 and 1.8 ([Fed69])).
Let V be a real vector space of dimension m ≥ 1 equipped with an inner product 〈 · , · 〉 and let

| · | =
√
〈 · , · 〉 be the associated norm. This scalar product induces norms on ΛkV for all 1 ≤ k ≤ m, still

denoted by 〈 · , · 〉. They are characterised by the following property : if (e1, · · · , em) is any orthonormal
basis of V , 1 ≤ k ≤ m is a fixed integer and v, w ∈ ΛkV are written in the base (e1, · · · , em) as

v =
∑

1≤i1<···<ik≤m
vi1,··· ,ikei1 ∧ · · · ∧ eik , w =

∑
1≤i1<···<ik≤m

wi1,··· ,ikei1 ∧ · · · ∧ eik

then the scalar product

〈v, w〉 =
∑

1≤i1<···<ik≤m
vi1,··· ,ikwi1,··· ,ik

is well-defined independently of the orthonormal basis (e1, · · · , em) of V . We also denote by | · | the
associated norm of this scalar product on ΛkV . We can define analogously a scalar product on ΛkV , but
the notion we will need is another norm, called the comass. For all ω ∈ ΛkV , the comass of ω is

‖ω‖ = sup {ω(v) : v ∈ ΛkV, v is simple, |v| ≤ 1} .
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For all v ∈ ΛkV , the mass of v is

‖v‖ = sup
{
ω(v) : ω ∈ ΛkV, ‖ω‖ ≤ 1

}
.

We always have the inequalities

|v| ≤ ‖v‖ ≤
(
m

k

) 1
2

|v|. (1.2.1)

If (ξ1, · · · , ξm) is the dual base of an orthonormal base (e1, · · · , em) such that

v =
∑

1≤i1<···<ik≤m
vi1,··· ,ikei1 ∧ · · · ∧ eik 6= 0

and ω ∈ ΛkV is chosen such that

ω =
∑

1≤i1<···<ik≤m

vi1,··· ,ik
|v|

ξi1 ∧ · · · ∧ ξik ,

we have
‖ω‖ = max

1≤i1<···<ik≤m

|vi1,··· ,ik |
|v|

≤ 1

and ω(v) = |v|, so we obtain |v| ≤ ‖v‖ and the left-hand side inequality of (1.2.1). For the other
inequality, we see that for all ω ∈ ΛkV such that

ω =
∑

1≤i1<···<ik≤m
ωi1,··· ,ikξi1 ∧ · · · ∧ ξik ,

the condition ‖ω‖ ≤ 1 implies that |ωi1,··· ,ik | ≤ 1 for all 1 ≤ i1 < · · · < ik ≤ m, so we obtain

ω(v) =
∑

1≤i1<···ik≤m
ωi1,··· ,ikvi1,··· ,ik ≤

∑
1≤i1<···ik≤m

|vi1,··· ,ik |

≤
(
m

k

) 1
2

 ∑
1≤i1<···<ik≤m

|vi1,··· ,ik |2
 1

2

=
(
m

k

) 1
2

‖v‖

and this yields the right-hand side inequality of (1.2.1).
More generally, if Mm is a Riemannian manifold and ω ∈ Ωk(M), the comass of ω is

‖ω‖ = sup
x∈M
‖ω(x)‖.

This finally allows us to define the mass of a current T ∈ Dk(M) as

M(T ) = sup {T (ω) : ‖ω‖ ≤ 1} .

Remark 1.2.2. This is somewhat unfortunate to use the same letter for the ambient manifold and the
mass, but this convention was adopted consistently in the papers which will be the object of study so we
chose to keep this terminology to get the reader used to this abusive notation.

We now introduce the most useful classes of currents (our terminology for cycles differs from the one
of Federer). To introduce the class of cycles we first need a definition for the admissible sets for cycles.

Definition 1.2.3. We say that a subset A ⊂M is a local Lipschitz neighbourhood retract if there exists
a neighbourhood U ⊂M of A and a locally Lipschitzian map f : U → A such that f|A = IdA.
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Definition 1.2.4. A current T ∈ Dk(M) is called rectifiable if there exists a k-rectifiable subset A ⊂M ,
a H k A integrable k-vector field η such that T = (H k A) ∧ η such that for H k almost all x ∈ A,

η(x) is simple, |η(x)| ∈ N \ {0}
T kx (H k A) is associated with η(x).

We denote this space of currents by Rk(M) and we define

Ik(M) = Rk(M) ∩ {T : ∂T ∈ Rk−1(M)}

which are called integral currents.If B ⊂ A ⊂ M are local Lipschitz neighbourhood retracts, we define
the space of cycles Zk(A,B) as

Zk(A,B) = Ik(M) ∩ {T : supp(T ) ⊂ A, supp(∂T ) ⊂ B} .

If B = ∅, then we write more simply Zk(A) = Zk(A,∅).

The appropriate topology to study sequences of currents is the flat topology, first introduced by
Whitney. One of it main features is that it makes the boundary operator ∂ continuous. For all T ∈
Ik(M),

F(T ) = sup {T (ω) : ‖ω‖ ≤ 1 and ‖dω‖ ≤ 1} ,
= inf {M(R) + M(S) : T = R+ ∂S, R ∈ Rk(M), S ∈ Rk+1(M)} .

The flat topology on Ik(M) is the topology induced by the distance F defined for all S, T ∈ Ik(M)
by

F(T1, T2) = F(T1 − T2).

Remark 1.2.5. To my best knowledge (see [Fed69] 4.1.12), the equivalence of the two definitions relies
on the axiom of choice (otherwise we would only have the inequality ≤).

One of the fundamental contributions of Federer and Fleming in [FF] is to show compactness within
these special classes of currents.

Theorem 1.2.6. Let {Tn}n∈N ⊂ Ik(M) a sequence of integral currents such that

lim sup
n→∞

M(Tn) + M(∂Tn) <∞,

then there exists an integral current T ∈ Ik(M) such that {Tn}n∈N converges to T in the flat topology.
In particular, we have

M(T ) ≤ lim inf
n→∞

M(Tn).

1.3 Integral currents modulo ν

In the papers in study, it will be necessary to work with integral currents with Z2 = Z/2Z coefficients,
and we will recall below the necessary adaptations in the definitions of flat norm and mass.

For all T ∈ Rk(M), we define

Fν(T ) = inf {M(R) + M(S) : T = R+ ∂S + νQ, R ∈ Rk(M), S ∈ Ik+1(M), Q ∈ Rk(M)} .

For all S, T ∈ Ik(M), we say that S = T mod ν if Fν(S − T ) = 0, and for all T ∈ Rk(M), we denote
by [T ]ν the class of T modulo this equivalence relation. Then we define

Rk(M,Zν) = {[T ]ν : T ∈ Rk(M)} .
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The boundary operator ∂ still makes sense modulo ν and by keeping the same notation we define

Ik(M,Zν) = Rk(M,Zν) ∩ {[T ]ν : for all T ∈ [T ]ν , ∂T ∈ Rk(M)} (1.3.1)

The definitions are rather cumbersome and it would be more natural to define Ik(M) as

Ik(M,Zν) = Ik(M)/νIk(M), (1.3.2)

but the completeness and compactness of Iν(M,Zν) were not known to hold with these definition. The
equivalence of these two definition remained an unanswered question of Federer ([Fed69], 4.2.26) which
was only recently solved by Robert Young in 2013 forM = Rn ([You18] his result is more general and also
applies to flat chains modulo ν, a notion which will not be necessary in these lectures). However, when
one wishes to localise, the definition (1.3.1), the alternative definition (1.3.2) need not be equivalent.

For an instructive example, we refer to the discussion in [Pau77] about the claimed counter-example
of Federer ([Fed69], 4.2.26).

We also one define Zk(M,Zν) in an analogous fashion.
Finally, for T ∈ Ik(M,Zν), we define

Mν(T ) = inf
ε>0
{M(R) : R ∈ Rk(M),Fν([R]ν , T ) < ε} .

The main point of these definitions is to allow one to obtain the compactness theorem for integral
chains modulo ν and notably the isoperimetric inequality, which will be one of the main ingredients of
the geometrical constructions.

In the next sections, we will drop the ν indices for the flat norm and the mass as all papers in study
deal with flat chains modulo 2.

1.4 Deformation theorem and isoperimetric inequality

All proofs of the isoperimetric inequality for currents available in the literature seem to make use in one
form or another of the deformation theorem of Federer and Fleming. To introduce it, we first need to
define polyhedral chains.

Definition 1.4.1. Let U ⊂ Rn be an open subset and K ⊂ U be a fixed compact subset. We define
Pk,K(U) as the additive subgroup of Dk(U) generated by the oriented simplexes ∆k of dimension k such
that the convex hull of ∆k be included in K. The abelian group Pk(V ) of integral polyhedral chains is
the union of the groups Pk,K(U) for all compact subset K ⊂ U .

Remark 1.4.2. An alternative definition (and probably more natural one) of rectifiable currents is the
following : let V ⊂ Rn be some open subset and L be a compact subset of U . We say that T ∈ Rk,L(V )
if for all ε > 0, there exists an open subset U of Rk, a compact subset K of U , and a Lipschitzian map
f : U → V with f(K) ⊂ L and an integral polyhedral chain P ∈Pk,K(U) such that

M(T − f#P ) < ε.

Then Rk(V ) is the union of all abelian groups Rk,L(V ) corresponding to all compact subsets L of V .
The equivalence is given in ([Fed69], 4.1.28), and gives some intuition on the following theorem, which

implies in particular that Rk(Rn) is the F closure (resp. M closure if k = n) of Pk(Rn).

7



Theorem 1.4.3 (Deformation theorem, [FF] 5.5, [Fed69] 4.2.9). Let T ∈ Ik(Rn), fix some positive
number 0 < ε < ∞ and let c1 = c1(n, k) = 2n2(k+1). There exists an integral polyhedral chain P ∈
Pk(Rn), and integral currents Q ∈ Ik(Rn), S ∈ Ik+1(Rn) satisfying the following properties:

(1) T = P +Q+ ∂S.

(2) P ∈Pk(Rn) is an integral linear combination of disjoint k-dimensional cubes with side length 2ε.

(3) supp (P ) ∪ supp (S) ⊂ supp (T ) +B(0, 2n ε) and supp (∂P ) ∪ supp (Q) ⊂ supp (∂T ) +B(0, 2n ε) if
k ≥ 1.

(4) If 1 ≤ k ≤ n, we have
M(P )
εk

≤ c1
(

M(T )
εk

+ M(∂T )
εk−1

)
,

M(∂P )
εk−1 ≤ c1

M(∂T )
εk−1 ,

M(Q)
εk

≤ c1
M(∂T )
εk−1 ,

M(S)
εk+1 ≤ c1

M(T )
εk

.

(1.4.1)

(5) If k = 0, then Q = 0, M(P ) ≤M(T ), and M(S) ≤ c1εM(T ).

The second conclusion is the key feature will allow isoperimetric inequalities to holds for currents.

Corollary 1.4.4. Let T ∈ Ik(Rn) be such that ∂T = 0. Then there exists S ∈ Ik+1(Rn) such that
∂S = T and furthermore

M(S) ≤ c2M(T )
k+1

k .

where c2 = c2(n, k) = c1(n, k) k+1
k = 2 k+1

k n
2(k+1)2

k .

Proof. Suppose that T 6= 0, otherwise there is nothing to prove. Let ε > 0 such that c1M(T ) = εk, and
consider P ∈Pk(Rn), Q ∈ Ik(Rn), S ∈ Ik+1(Rn) given by theorem 1.4.3 such that

T = P +Q+ ∂S. (1.4.2)

As ∂T = 0, we have Q = 0. Furthermore, by (1.4.1), we have

M(P ) ≤ c1M(T ) = εk.

However, by the second conclusion of theorem 1.4.3, M(P ) ∈ (2ε)kN, so P = 0.
Finally, we deduce from (1.4.2) that T = ∂S and

M(S) ≤ ε · c1M(T ) = εk+1 = c
k+1

k
1 M(T )

k+1
k .

This concludes the proof of the corollary.

A basic property required in the constructions of the papers of question is to ask for a localisation of
support in the isoperimetric inequality, and this will only be possible by making a smallness assumption
on the volume.

Theorem 1.4.5. Let K be a compact set admitting a local Lipschitz retraction from a neighbourhood U
of K. There exists constants 0 < δ1(n,K, k), c3(n,K, k) <∞ such that for all integral cycle T ∈ Zk(Rn)
such that supp (T ) ⊂ K, and M(T ) ≤ δ1 there exists S ∈ Ik(Rn) such that supp (S) ⊂ K and

M(S) ≤ c3M(T )
k+1

k .

8



Proof. Let α = α(K) > 0 such that K + B(0, α) ⊂ U , and let f : U → K a local Lipschitz retraction.
Choose δ1 = α

2n and suppose that

c1M(T ) ≤ δk1

Let 0 < ε < δ1 such that c1M(T ) = εk. By theorem 1.4.3 (applied for ε), there exists P ∈ Pk(Rn),
Q ∈ Ik(Rn) and S0 ∈ Ik+1(Rn) such that

T = P +Q+ ∂S0.

As M(P ) ≤ c1M(T ) ≤ εk, and M(P ) is an integral multiple of (2ε)k, we have P = 0, and as ∂T = 0,
we also obtain Q = 0. Furthermore, as ε ≤ δ1, we have

supp (S0) ⊂ supp (T ) +B(0, 2n ε) ⊂ K +B(0, α) ⊂ U.

As supp (T ) ⊂ K, and f |K = IdK , we have f#T = T , so with S = f#S0, we obtain

T − ∂S = f#T − ∂ (f#S0) = f# (T − ∂S0) = 0

and

M(S) ≤ Lip(f)k+1M(S0) ≤ c2Lip(f)k+1M(T )
k+1

k

so we get the conclusion with δ1 = α(K)
2n and c3 = c2(n, k)Lip(f)k+1.

All these theorems extend to integral currents modulo ν, and to state a general result, we introduce
the following definition.

Definition 1.4.6. We say that a group G is admissible if G = Z or G = Zν for some integer ν ≥ 2. We
denote by Ik(U,G) and Zk(A,B,G) the associated sets of currents. We denote M = Mν and F = Fν
whenever the context is clear.

Remark 1.4.7. This is a sub-class if the groups Almgren calls admissible in his set of unpublished notes.

Theorem 1.4.8. Let Mm be a compact smooth Riemannian manifold and G be an admissible group.
There exists a positive numbers δ1 = δ1(M), c3 = c3(M) depending only on Mm with the following
property. For all 1 ≤ k ≤ m and all cycle T ∈ Zk(M,G) such that M(T ) ≤ δ1, there exists S ∈
Ik+1(M,G) such that ∂S = T and

M(S) ≤ c3M(T )
k+1

k .

Proof. By Nash’s isometric embedding theorem, it suffices to check that any Ck compact sub-manifold
Mm ⊂ Rn is a Lipschitz retraction of some open neighbourhood. This is a classical theorem of Whitney
([Whi57]) that Ck sub-manifolds of Rn are Ck retract, so we are done (the converse holds and is due to
Federer - 3.1.20 [Fed69]).

Definition 1.4.9. An element S ∈ Ik+1(M) as in theorem 1.4.8 such that ∂S = T and M(S) ≤
c3M(T ) k+1

k is called an M-isoperimetric choice.

The next two corollaries are due to Almgren ([Alm62], corollaries (1.13) and (1.14)).

Corollary 1.4.10. Let Mm be a compact Riemannian manifold and G be an admissible group. For all
p ∈ N, there exists δ2(M,p) > 0 such that for all 1 ≤ k ≤ m and for all T1, · · · , Tp ∈ Ik(M) such that

T1 + · · ·+ Tp ∈ Zk(M), sup
1≤j≤p

M(Tj) ≤ δ2(M,p),

there exists an M-isoperimetric choice S ∈ Ik+1(M) of T1 + · · ·+ Tp such that

M(S) ≤ sup
1≤j≤p

M(Tj).
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Proof. Let δ2 ≤
δ1(M)
p

be some positive real number to be fixed later and let S ∈ Ik+1(M) be an
M-isoperimetric choice of T = T1 + · · ·Tp. Then by the triangle inequality

M(S) ≤ c3M(T )
k+1

k ≤ c3

 p∑
j=1

M(Tj)


k+1

k

≤ c3p
k+1

k

(
sup

1≤j≤m
M(Tj)

) k+1
k

≤ c3 p
k+1

k δ
1
k
2 sup

1≤j≤m
M(Tj).

By choosing δ2(M,p) = min
{
δ1(M)
p

,
1

c3(M)kpk+1

}
this finishes the proof.

The next corollary is more important as it will be the basic ingredient in the homotopy arguments
as we take families continuous in the flat topology F (but not in the mass topology M).

Corollary 1.4.11. Let Mm be a compact Riemannian manifold and G be an admissible group. There
exists a constant δ3 = δ3(M) > 0 such that for all cycle T ∈ Zk(M) such that F(T ) ≤ δ3, there exists
S ∈ Ik+1(M) such that ∂S = T and

M(S) = F(T ). (1.4.3)

Proof. Fix δ3 ≤
δ1(M)

2 be a positive real number to be chosen later (here δ1 is the constant given by the
theorem 1.4.8), assume that F(T ) ≤ δ3 and let 0 < η ≤ 1 be any positive real number. By the definition
of the flat norm, the set

Aη = Ik(M)×Ik+1(M) ∩ {(R,S) : T = R+ ∂S, and M(R) + M(S) ≤ (1 + η)F(T )}

is non empty for all 0 < η ≤ 1, and for all (R,S) ∈ Aη, we have

T = R+ ∂S, and M(R) + M(S) ≤ (1 + η)F(T ) ≤ 2δ3 ≤ δ1,

so there exists by theorem 1.4.8 some integral current Q ∈ Ik+1(M) such that ∂Q = R and

M(Q) ≤ c3M(R)
k+1

k ≤ c3((1 + η)F(T )) 1
k M(R) ≤ c3(2δ3) 1

k M(R) ≤M(R),

for δ3 ≤
1

2ck3
. Therefore, we obtain T = ∂(Q+ S) with

M(Q+ S) ≤M(R) + M(S) ≤ (1 + η)F(T ).

By compactness and by letting η → 0, we see that there exists S ∈ Ik+1(M) such that ∂S = T and

M(S) ≤ F(T ).

which trivially implies by the definition of the flat norm that M(S) = F(T ). Therefore, choosing

δ3 = min
{
δ1(M)

2 ,
1

2c3(M)k

}
yields the conclusion.

1.5 Homotopy groups of the space of cycles

We fix some admissible group G in this section and some compact Riemannian manifold (Mm, g), that
we suppose isometrically embedded in some euclidean space by Nash’s embedding theorem ([Nas56]).

As was noticed by Federer, any cycle T ∈ Zk(M,G) induces a well-defined element [T ] ∈ Hk(M,G).
Indeed, such cycle is the limit in the flat topology of a sequence of polyhedral chains by the deformation
theorem 1.4.3, and as we can represent any element of Hk(M,G) by polyhedral chains we obtain an
isomorphism

Λ0 : π0(Zk(M,G),F)→ Hk(M,G). (1.5.1)

This prompted Federer to propose the following theorem as a PhD subject for Almgren.
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Theorem 1.5.1. For all k ≥ 1, there exists a canonical isomorphism

Λl : πl(Zk(M,Z),F)→ Hk+l(M,Z).

The notation πl(Zk(M,Z2),F) means that we take equivalence classes of map f : (I l, ∂I l) →
Zk(M,Z2) continuous in the flat topology.

It was pointed out by Larry Guth in [Gut08] that the extension to Zν coefficients is not available in a
published reference. Nevertheless, one can see a proof of this extension in the unpublished mimeographed
notes of Almgren ([Alm65] section 13), and we will assume in this set of notes that the following more
general result holds.

Remark 1.5.2. A new and simpler proof of the injectivity of the isomorphism for Z2 cycles in the codi-
mension 1 case by Marques and Neves (using the constancy theorem, see [MN18] ) appeared after these
lectures were given. However, to our knowledge, [Alm65] remains the only reference (and unpublished)
for the general case.

Theorem 1.5.3. Let (Mm, g) be a compact Riemannian manifold and let G be an admissible group. For
all l ≥ 1, there exists a canonical isomorphism

Λl : πl(Zk(M,G),F)→ Hk+l(M,G).

If this theorem holds, it will imply that Zk(Mm, G) is an Eilenberg-MacLane space K(G,m− k).

Remarks 1.5.4. We recall that an Eilenberg-MacLane space K(G,n) is a topological space X whose
homotopy groups are all trivial, except for πn(X) which is isomorphic to G. One of the basic properties
of these spaces is that they do exist for any (necessarily abelian) group G if n > 1 in the category of
CW -complexes and are unique up to weak homotopy equivalence. It was showed by Serre (in [Ser53])
that one can compute explicitly the cohomology ring H∗(K(Z2, n),Z2) for any n ≥ 1.

In particular, we deduce that

πm−k(Zk(Mm, G),F) ' Hm(Mm, G) ' G,

and as codimension 1 cycles will be the main object in study in the next chapters, we stress out the
following corollary.

Corollary 1.5.5. Let (Mn+1, g) be a compact Riemannian manifold and G be an admissible group.
Then

π1(Zn(Mn+1, G),F) ' G.

To make the notation lighter, we will write in the following = instead of ' for the equality of homotopy
groups.

We recall that the infinite projective space RP∞ is aK(Z2, 1), that is π1(RP∞) = Z2 and πi(RP∞) = 0
for i 6= 1. This observation will prove useful when we will introduce the p-sweep-outs.

We will only check directly the surjectivity part of the case l = 1 of theorem 1.5.3. The injectivity is
the main part of [Alm62] (see section 13 of [Alm65] for the adaptation to Zν coefficients).

Proof. (of the case l = 1 theorem 1.5.3) The proof of surjectivity uses only the isoperimetric inequality,
so is valid for any admissible group thanks of corollary 1.4.8.

Step 1 : Construction of an homomorphism π1(Zk(M,G),F)→ Hk+1(M,G).
Let ϕ : [0, 1] → Zk(M,G) a continuous map in the flat topology such that ϕ(0) = ϕ(1). Introduce

for all j ≥ 1 the cube complex I(1, j) on I = [0, 1] whose 0 cells are [i · 3−j ] = [ai] for 0 ≤ i ≤ 3j and
1-cells are

[0, 3−j ], [3−j , 2 · 3−j ], · · · , [1− 3−j , 3−j ].
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Let j large enough such that

F(ϕ(x), ϕ(y)) ≤ δ3
4 , for all x, y ∈ [ai, ai+1], 0 ≤ i ≤ 3j − 1, (1.5.2)

if δ3 = δ3(M) is the constant given by corollary 1.4.11 In particular, there exists by corollary 1.4.11 some
integral current Si ∈ Ik+1(M,G) such that

∂Si = ϕ(ai+1)− ϕ(ai) and M(Si) = F(ϕ(ai), ϕ(ai+1)) ≤ δ3
4 . (1.5.3)

As ϕ(1)− ϕ(0) = 0, we have

∂

3j−1∑
i=0

Si

 =
3j−1∑
i=0

(
ϕ(ai+1)− ϕ(ai)

)
= ϕ(1)− ϕ(0) = 0

and we define

Λ1(ϕ) = Λ0

3j−1∑
i=0

Si

 ∈ Hk+1(M,G).

Step 2 : The homomorphism Λ1 : π1(Zk(M,G),F)→ Hk+1(M,G) is well-defined.
To make sure that this is well-defined, let Ti ∈ Ik+1(M,G) such that

∂Ti = ∂Si = ϕ(ai+1)− ϕ(ai)

for all 0 ≤ i ≤ 3j − 1. Then F(Si − Ti) ≤
δ3
2 for all i = 0, · · · , 3j − 1, so there exists Ri ∈ Ik+2(M,G)

such that

∂Ri = Si − Ti.

Therefore, we obtain

3j−1∑
i=0

Si =
3j−1∑
i=0

Ti + ∂

3j−1∑
i=0

Ri

 ,

so that

Λ0

3j−1∑
i=0

Si

 = Λ0

3j−1∑
i=0

Ti

 ∈ Hk+1(M,G).

Step 3 : The homomorphism Λ1 : π1(Zk(M,G),F) → Hk+1(M,G) does not depend on the
subdivision of the unit interval.

Wo check that this construction is independent of all large enough j ≥ 1. For all 0 ≤ i ≤ 3j − 1, we
divide the interval [ai, ai+1] into three equal pieces [a1

i , a
1
i+1], [a2

i , a
2
i+1] and [a3

i , a
3
i+1] and by (1.5.2) and

corollary 1.4.11, we obtain three integral currents S1
i , S2

i , S
3
i ∈ Ik+1(M) such that

∂Sli = ϕ(ali+1)− ϕ(ali)

and M(Sli) = F(ϕ(ali+1)− ϕ(ali)) ≤
δ3
4 . Therefore, we obtain by (1.5.3)

M
(
Si − (S1

i + S2
i + S3

i )
)
≤ δ3,
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which implies that there exist Ri ∈ Ik+2(M) such that

∂Ri = Si − (S1
i + S2

i + S3
i ).

This implies that

Λ0

3j−1∑
i=0

Si

 = Λ0

3j−1∑
i=0

(
S1
i + S2

i + S3
i

) ∈ Hk+1(M,G)

and concludes the proof of the third step.
Step 4: The homomorphism Λ1 : π1(Zk(M,G),F)→ G is surjective.
It suffices to construct a map Φ1 : Hk+1(M,G) → π1(Zk(M,G),F) such that Ψ1 ◦ Λ1 = Id. Here

we suppose that (Mm, g) is isometrically embedded in some Rn and we consider a neighbourhood U of
M admitting a Lipschitz retract f : U → M . Assuming without loss of generality that M ⊂ [0, 1]n,
we can represent each class τ ∈ Hk+1(M,G) by an integral current T = Λ−1

0 (τ) ∈ Zk+1(U,G) (if
Λ−1

0 : π0(Zk+1(M,G),F) → Hk+1(M,G) is the Federer isomorphism (1.5.1)) and we consider Ψ0 :
[0, 1]→ Zk(U,G) defined by

Ψ0(t) = ∂(T {xn < t}).

If we perturb slightly T so that no face is parallel to the a face of unit cube (actually, the top face suffices),
then Ψ0(t) has finite mass and as T {xn < t} ∈ Rk(U), we know by the Boundary Rectifiability Theorem
(to be proved in 3.2.3) that Ψ0(t) ∈ Rk(U) and we obtain trivially Ψ0(t) ∈ Zk(U,G).

Then for all 0 < s1 < t < s2, we have

F(Ψ0(s1),Ψ0(t)) ≤M(T {s1 < xn < t}) −→
s1→t

0

F(Ψ0(s2),Ψ0(t)) ≤M(T {t < xn < s2}) −→
s2→t

0

so Ψ0 is continuous in the flat topology. Then we define Ψ1(τ) = [f# ◦ Ψ0 : [0, 1] → Zk(M,G)].
As f# ◦ Ψ0 is continuous in the flat topology, and this map does not depend on the representative
T = Λ−1

0 (τ) as it chosen by the fixed isomorphism Λ0 : π0(Zk(U,G),F) → Hk+1(U,G), we get a well-
defined homomorphism Hk+1(M,G)→ π1(Zk(M), G),F). Then we still have Ψ1 continuous in the flat
topology, and by construction we have

Λ1 ◦Ψ1(τ) = Λ0(T ) = τ ∈ Hk+1(M,G)

which concludes the proof of the theorem.
Step 5 : The homomorphism Λ1 : π1(Zk(M,G),F) → G is injective. For G = Z this is the

main content of [Alm62], and for G = Zν the necessarily replacements are described in [Alm65], section
13.
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Chapter 2

Almgren-Pitts theory

We fix a compact Riemannian manifold (Mm, g) and an admissible group G for this whole chapter.

2.1 Introduction to varifolds

Definition 2.1.1. A Radon measure on a topological space X is a Borel regular measure locally finite.

Definition 2.1.2. Let 1 ≤ k ≤ n. We note G(n, k) the space of non-oriented k dimensional subspaces
of Rn. If M ⊂ Rn is a smooth submanifold, and A ⊂ Rn is any subset of Rn we define

Gk(A) = (M ∩A)×G(n, k) ∩ {(x, S) : S ⊂ TxM} .

A k varifold on M is simply a Radon measure on Gk(M). We note this set Vk(M), and equip it with the
topology of weak star convergence (see lecture 2). Whenever V ∈ Vk(M), we associate a Radon measure
‖V ‖ on M by

‖V ‖(A) = V (Gk(A)) =
∫

Gk(M)
1{(x,S): x∈A}dV (x, S).

If E ⊂ Rn is a k-rectifiable set, we associate a varifold |E| ∈ Vk(Rn) such that for all A ⊂ Gk(Rn),

|E|(A) = H k E {x : (x, TxE) ∈ A} ,

and as the map

T·E : Rn → G(n, k)

is H k E measurable, if |E| is simply the image measure by the application (Id, T·E) : Rn → Gk(Rn)
of H k E.

In this special case, we note that ‖ |E| ‖ = H k E. If θ : Gk(Rn) → R+, and θ ∈ L1(Gk(Rn), |E|),
we also have |E| ∧ θ ∈ Vk(Rn), and the space RVk(Rn) of rectifiable varifolds is the set of convergent
sums of such varifolds, i.e. V ∈ RVk(Rn) if there exists a sequence of k-rectifiable sets {Ej}j∈N and
θj : Gk(Rn)→ R+ such that

V =
∞∑
j=1
|Ej | ∧ θj .

If we take instead θ : Gk(Rn)→ N, we obtain the set of integral varifolds, denoted by IVk(Rn).
Finally, if G is either Z or Zν for an integer ν ≥ 2 and T ∈ Ik(Rn, G) is a G-valued rectifiable current

(see [Fed69], 4.1.22-4.1.31), as T = (H k ET ) ∧ ηT with ET ⊂ Rn a k-rectifiable set, ηT the orienting
k-plan, and θT = |ηT | ∈ L1(ET ,H k), we define

|T | ∈ IVk(Rn)
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by

|T | = |ET | ∧ θT .

Now, we define sets of varifolds in a submanifold M ⊂ Rn as follows.

RV k(M) = RVk(Rn) ∩ {V : supp ‖V ‖ ⊂M}
I V k(M) = IVk(Rn) ∩ {V : supp ‖V ‖ ⊂M}
Vk(M) = Rk(M) for the weak ∗ topology.

and if U ⊂ U is any open set, we define

RV k(M,U) = Vk(M) ∩ {V : V Gk(U) ∈ RV k(M)}
I V k(M,U) = Vk(M) ∩ {V : V Gk(U) ∈ I V k(M)}

2.1.1 Mapping varifolds

Let f : Rn → Rn a C1 proper map, and V ∈ Vk(Rn). We define f#V ∈ Vk(Rn) by the condition

f#(A) =
∫

Gk(F−1(A))
JSk f(x)dV (x, S)

where JSk f(x) = |∧kDf(x)◦S| is the Jacobian associated to the k-plan S ∈ G(n, k), and F : Rn → Gk(Rn)
is defined by

F (x, S) = (f(x), Df(x) · S), ∀(x, S) ∈ Gk(Rn).

This requirement is made to ensure compatibility with area formula and mapping of currents. The
function f# : Vk(Rn) → Vk(Rn) is continuous for the weak ∗ topology. Furthermore, if ι : M → Rn is
the inclusion map, then we have a natural identification

ι# : Vk(M)→ Vk(M) ⊂ Rn

and we shall in the following use the latter definition of varifolds in a submanifold, as Vk(M) is not a
subset of Vk(Rn).

2.1.2 Variations, metrics

Let U ⊂ M an open subset, I ⊂ R an open interval containing 0, and ϕ : I ×M → M a 1-parameter
group of diffeomorphism, such that ϕ0 = IdM . If

d

dt
ϕt|t=0 = f ∈ Γ(TU),

we define for ν ∈ N, the ν-variation of V by

δνV (f) = dν

dtν
(
‖ϕt#V ‖(M)

)
|t=0 .

and if ν = 1, we simply note δ1 = δ.

Definition 2.1.3. We say that V ∈ Vk(M) is stationary in U if δV = 0, i.e. for all f ∈ Γ(TU),
δV (f) = 0. We say that V is stable in U if it is stationary and if for all f ∈ Γ(TU), δ2V (f) ≥ 0.

It is elementary to show that these definitions coincide with the definition of minimal surface and
stable minimal surface in the smooth setting. If g ∈ D(M,Rn), we extend the definition of ν-variation
by defining

δνV (f) = δνV (f)
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if f ∈ Γ(Rn) is any extension of g. Note that in the right-hand member, we see V ∈ Vk(M) ⊂ Vk(Rn).
As we easily check (see [All72], 2.4) that for all f ∈ Γ(TM),

δV (f) =
∫

Gk(M)
divS g(x) dV (x, S)

therefore, for all vector field f ∈ D(M,Rn), ifH is the mean curvature tensor, an elementary computation
([All72], 2.5, 4.4) shows that

δV (f) =
∫

Gk(M)
divS f(x) dV (x, S) =

∫
Gk(M)

divS f>(x) dV (x, S)−
∫

Gk(M)
f⊥(x) ·H(M,x, S) dV (x, S)

so a varifold V ∈ Vk(M) is stationary if and only if for all f ∈ D(M,Rn). We have∫
Gk(M)

divS f(x) dV (x, S) = −
∫

Gk(M)
f(x) ·H(M,x, S) dV (x, S)

where > : TRn → TM (resp. ⊥: TRn → (TM)⊥) is the orthogonal projection.
Let us see how to derive this formula for the first variation. We have

JSk f(x) =
√

det ((Dϕt(x)|S)∗ · (Dϕt(x)|S))

Let (e1, · · · , ek) orthonormal vectors spanning some S ∈ G(n, k). As ϕ0 = Id, we have for all 1 ≤ i ≤ k

Dϕt(x) · ei + tDf(x) · ei +O(t2)

so that

(Dϕt(x)|S)∗ · (Dϕt(x)|S) = (ai,j(t))1≤i,j≤k

with

ai,j(t) =
(
ei + tDf(x) · ei +O(t2)

)
·
(
ej + tDf(x) · ej +O(t2)

)
= δi,j + t

(
Dei

f(x) · ej +Dej
f(x) · ej

)
+O(t2)

and as for all k × k matrix A, there trivially holds

det(Id + tA) = 1 + tTr(A) +O(t2),

we deduce as
√

1 + x = 1 + x

2 +O(x2) that

JSk ϕ
t(x) = 1 + t

k∑
i=1

Dei
f(x) · ei +O(t2) = 1 + tdivS f(x) +O(t2)

so that the claimed formula holds true.

Definition 2.1.4. If U ⊂ M is open, K ⊂ M is compact, we note FK the flat norm for currents and
M the mass. We define a third metric on varifold, the distance function F : Vk(Rn)× Vk(Rn)→ R+, by

F(V1, V2) = sup
{
V1(f)− V2(f) : f ∈W 1,∞(Gk(Rn)) ∩ Cc(Gk(Rn)) ‖f‖W1,∞(Rn) ≤ 1

}
for all V1, V2 ∈ Vk(Rn). For all Borelian A ⊂ Rn, we define

FA(V1, V2) = F(V1 Gk(A), V2 Gk(A)).

One easily check that for all 0 < C <∞, the weak ∗ topology coincides with the d metric on

Vk(Rn) ∩ {V : ‖V ‖(Rn) ≤ C}
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and for all T1, T2 ∈ Rk(Rn, G), we have

F(|T1|, |T2|) ≤M(T1 − T2).

On the space of integral currents Ik(M) we define the F-metric by

F(T1, T2) = F(T1, T2) + d(|T1|, |T2|),

and for all Borelian set A ⊂ Rn the restriction

FA(T1, T2) = F(|T1| Gk(A), |T2| Gk(A)).

Remark 2.1.5. The F-metric has for principal advantage over the flat norm F to make the mass M
continuous in the F distance. We have the following inclusions for any two rectifiable currents T1 and T2

F(T1, T2) ≤ F(T1, T2) ≤ 2 M(T1, T2).

Remark 2.1.6. This is unfortunate that the same notation F is used for two metrics, but this bad
notation was adopted consistently in the subsequent literature.

2.1.3 Compactness

The first theorem is a very useful corollary of Allard’s compactness theorem.

Theorem 2.1.7 (Allard’s compactness theorem). Let 0 ≤ C <∞, and U ⊂M an open bounded subset.
Then

RV k(M,U) ∩ {V : (‖V ‖+ ‖δV ‖) (M) ≤ C} .

and

I V k(M,U) ∩ {V : (‖V ‖+ ‖δV ‖) (M) ≤ C} .

are compact in the weak ∗ topology.

2.2 Terminology and definitions of discrete homotopies

This section follows mostly the exposition of [Riv15].
We let I denote the unit interval [0, 1] and we define for all j ≥ 1 a cube complex I(1, j) on I = [0, 1]

whose 0 cells are [i · 3−j ] = [ai] for 0 ≤ i ≤ 3j and 1-cells are

[0, 3−j ], [3−j , 2 · 3−j ], · · · , [1− 3−j , 3−j ].

More generally, I(n, j) = I(1, j)⊗· · ·⊗I(1, j) is the cube complex of the n-dimensional cube In = [0, 1]n
whose p-cells are the elements α = α1 ⊗ · · · ⊗ αn ∈ I(n, j) such that

n∑
i=1

dim(αi) = p.

Furthermore, we denote for 0 ≤ p ≤ n by I(n, j)q ⊂ I(n, j) the sub-complex p-cells. The most important
in the construction is probably I(n, j)0, which identifies to the vertices of I(n, j). Finally, we write
∂I(n, j)0 for the intersection between I(n, j)0 and ∂[0, 1]n. This complex comes with a natural boundary
operator ∂ : I(n, j)→ I(n, j) such that

∂([a]) = 0 for all 0-cell [a] ∈ I(n, j)0

∂([a, b]) = [b]− [a] for all 1-cell [a, b] ∈ I(n, j)1

∂α =
n∑
i=1

(−1)σ(i)α1 ⊗ · · · ⊗ ∂αi ⊗ · · · ⊗ αn
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where

α(i) =
∑
p<i

dim(αp).

The distance between two vertices x = (x13−j , · · · , xn3−j) and y = (y13−j , · · · , yn3−j) of I(n, j)
(that is, between two elements x and y of I(n, j)0) is given by

dj(x, y) =
n∑
i=1
|xi − yi| = 3j |x− y|1

if |x− y|1 is the 1-norm on Rn. If ϕj : I(n, j)0 → Zk(M,G) is any map, we define the fineness of ϕj by

f(ϕj) = sup
{

M(ϕj(x)− ϕj(y))
dj(x, y) , x, y ∈ I(n, j)0 and x 6= y

}
Remark 2.2.1. This should really be seen of a norm for continuous and not for Lipschitz functions.

Then, it we will have to construct a notion of homotopy for maps I(n, j)0 → Zk(M,G) with different
j.

Let ϕ1
j1

and ϕ2
j2

two such maps. If j1 = j2, we say that ϕ1
j is homotopic to ϕ2

j for the fineness δ > 0
if there exists a map

H : I(1, j)0 × I(n, j)0 → Zk(M,G)

such that 
H(0, · ) = ϕ1

j and H(1, · ) = ϕ2
j

H
(
I(1, j)0 × ∂I(n, j)0

)
= {0}

f(H) < δ.

If j1 < j2, we let p(j2, j1) : I(n, j2)→ I(n, j1) be the nearest point projection for the dj2 distance1, and
we say that ϕ1

j1
is homotopic to ϕ2

j2
for the fineness δ if ϕ1

j2
= ϕ1

j1
◦ p(j2, j1) is homotopic to ϕ2

j2
for the

fineness δ.

Definition 2.2.2. Let n ∈ N \ {0} be a fixed integer. We say that a sequence ϕ = {ϕj}j∈N is a
Zk(M,G)-valued (n,M)-homotopy sequence if for all j ∈ N, each ϕj is a map from I(n, j)0 to Zk(M,G)
and the following properties are satisfied:

(1) For all j ∈ N, ϕj is homotopic to ϕj+1 for some fineness δj > 0,

(2) lim
j→∞

δj = 0,

(3) sup
j∈N

sup
x∈I(n,j)0

M(ϕj(x)) <∞.

This allows us to introduce the notion of discrete class of homotopy.

Definition 2.2.3. Let ϕ1 =
{
ϕ1
j

}
j∈N and ϕ2 =

{
ϕ2
j

}
j∈N two Zk(M,G)-valued (n,M)-homotopy se-

quences. We say that they are homotopic if there exists a sequence of positive real numbers {δj}j∈N such
that :

(1) For all j ∈ N, the map ϕ1
j is homotopic to the map ϕ2

j for the fineness δj > 0,

(2) lim
j→∞

δj = 0.

1it is well-defined as we took intervals of length 3−j , but with 2−j we would not be able to define this projection.
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The set of equivalence classes of this equivalence relation is denoted by π#
n (Zk(M,G),M), and the class

of a (n,M)-homotopic sequence by [ϕ].

Recall that by admissible groups, we mean Z or Zν for some integer ν ≥ 2. This is slightly more
restrictive the the definition of Almgren, which allows finite direct sums of Zν (for different values of ν)2.

Theorem 2.2.4 (Pitts [Pit81]). For all 1 ≤ n ≤ m and for all 1 ≤ k ≤ m− n, the following groups are
naturally isomorphic

πn(Zk(M,G),F) ' π#
n (Zk(M,G),M) ' Hn+k(Mm, G).

We deduce in particular that the fundamental group of the space of hyper-cycles with G-coefficient
is isomorphic to G.

The next definition will allow us to define min-max methods for discrete classes of homotopy.
For any Zk(M,G)-valued (n,M)-homotopy sequence ϕ = {ϕj}j∈N, we define

L(ϕ) = lim sup
j→∞

max
x∈I(n,j)0

M(ϕj(x))

as a replacement of the maximum function for continuous min-max. The next definition finally permits
to make sense of the value or width given to a class of discrete homotopies.

Definition 2.2.5. Let n ∈ N, 1 ≤ k ≤ m be fixed integers and let Π ∈ π#
n (Zk(M,G),M). The width

of the min-max associated to Π is

L(Π) = inf
ϕ∈Π

L(ϕ).,

and we say that ϕ is critical if L(ϕ) = L(Π).

Now let ϕ = {ϕj}j∈N a Zk(M,G)-valued (n,M)-homotopy sequence. We define the limiting space
of ϕ in Vk(M) by

K(ϕ) = Vk(M) ∩
{
V : V = lim

j→∞
|ϕj′(xj′)| for a sub-sequence j′ and {xj′}j′∈N ⊂ I(n, j′)0

}
Finally, we define the critical set of ϕ as

C(ϕ) = K(ϕ) ∩ {V : ‖V ‖ = L(ϕ)} ,

which is a compact non-empty set.
The main theorem in the existence part is to show that width are positive when they correspond to

a non-trivial homotopy class and can be attained.

Theorem 2.2.6. Let Mm be a compact Riemannian manifold and 1 ≤ n ≤ m, 1 ≤ n ≤ m and
1 ≤ k ≤ m−n such that Hn+k(M,G) 6= 0. Then there exists Π ∈ π#

n (Zk(M,G),M) such that L(Π) > 0
and a critical Zk(M,G)-valued (n,M)-homotopy sequence ϕ, i.e. such that L(ϕ) = L(Π). Furthermore,
ϕ can be chosen such that every element of C(ϕ) is stationary.

2.3 Almost minimizing property

2.3.1 Definition

Throughout this section, M ⊂ Rn is an embedded C4 submanifold, U ⊂ M is a bounded open subset,
K is a compact set such that U ⊂ K ⊂ M , and G is an admissible group. Let ρ a distance on varifold,
i.e. one of the three distances M (the mass), F (the canonical distance on varifolds), and FK (the flat
norm).

2The following theorem would also hold for this definition of admissible groups.
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Definition 2.3.1. For all 0 < ε, δ <∞, we define the

Gk(U, ε, δ, d,G) ⊂ Zk(M,M \ U,G)

of the cycles T satisfying the following property. If T = T0, T1, · · · , Tm ∈ Zk(M,M \ U,G), and

supp (T − Ti) ⊂ U, for i = 1, · · · ,m
ρ(Ti, Ti−1) ≤ δ for i = 1, · · · ,m
M(Ti) ≤M(T ) + δ, for i = 1, · · · ,m,

then M(T )−M(Tm) ≤ ε.

Definition 2.3.2. We say that V ∈ Vk(M) is G almost minimizing in U if for all ε > 0, there exists
δ > 0, and T ∈ Gk(U, ε, δ,FK , G) such that dK(V, |T |) < ε.

We say that V ∈ Vk(M) is G almost minimizing at x ∈M if it almost minimizing in a neighbourhood
of x.

The possibility to localize the first part of this definition is obvious as the property of almost-
minimizing is independent of the compact K. In the following, we shall write the distance d and the
group G only if necessary, as they will be in general d = FK , and G = Z.

Proposition 2.3.3. We have the following properties.

(1) Gk(U, ε, δ,FK) ⊂ Gk(U, ε, δ,F) ⊂ Gk(U, ε, δ2 ,M) for all positive real numbers ε and δ.

(2) If T ∈ Gk(U, ε, δ), then S ∈ Gk(U, ε, δ) if S ∈ Zk(M,M \ U) and T U = S U .

Proof. The only assertion non-trivial is the first one, and it is easily checked by looking as the inclusion
of the topologies induces by the three metrics on currents.

The next theorem is fundamental to understand the motivations hidden behind these definitions.

Theorem 2.3.4. Almost minimizing varifolds are stationary and stable.

Proof. Indeed, let g ∈ Γ(U), then if {ϕt}t∈I is the local 1-parameter group generated by the vectorfield
g, if we define for all t ∈ I

Φt : Gk(M)→ R
(x, S) 7→

∣∣∧kDϕt(x) · S
∣∣

Then

δV (g) = d

dt
‖ϕt#V ‖(M)|t=0 = d

dt
V (Φt)|t=0.

We argue by contradiction. If V is not stationary, then there exists g ∈ Γ(U) such that δV (g) < 0. Then
there exists an open interval J ⊂ I containing 0, τ ∈ J a positive number, and 0 < ε <∞, such that for
all W ∈ Vk(M), if dU (V,W ) < ε then t 7→W (Φt) is strictly decreasing, and

W

(
d

dt
Φt
)
< 0, ∀t ∈ J

W (Φ0)−W (Φτ ) > ε.

If T ∈ Zk(M,M \ U) and dU (V, |T |) < ε, for all δ > 0, there exists a subdivision of 0 = t0 < t1 < · · · <
tm = τ such that

FK((ϕti# − ϕti−1#)T ) < δ, i = 1, · · · ,m
M(ϕti−1#T ) > M(ϕti#T ), i = 1, · · · ,m
M(T )−M(ϕm#T ) > ε,
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which contradicts the fact that V is almost minimizing.
If V is stationary but not stable, let g ∈ Γ(U) such that δ2V (g) < 0. We choose η > 0 such that

(−η, η) ⊂ I, ε > 0, and τ ∈ (0, η) such that for all W ∈ Vk(M), if dU (V,W ) < ε, then

t 7→W

(
d

dt
Φt
)

is strictly decreasing on (−η, η)

W

(
d2

dt2
Φt
)
< 0

W (Φ0)−W (Φτ ) > ε

W (Φ0)−W (Φ−τ ) > ε,

hence t 7→ W (Φt) is strictly decreasing on [0, τ ] if δW (g) ≤ 0, and strictly increasing on [−τ, 0], so we
get contradiction by the same argument of the first part of the proof.

2.3.2 Construction of the pseudo harmonic replacement

In this subsection we construct a class of comparison surfaces, in an analogous spirit as the harmonic
replacement of Colding and Minicozzi [CM11] (although this remark may seem anachronistic). The
existence of such construction is provided by the almost minimizing property.

Let L ⊂ U ⊂ K a compact set, V ∈ Vk(M) a G almost minimizing varifold in U . We shall not write
the group G in the following procedure.

Step 1: By definition, there exists sequences {δi}i∈N , {εi}i∈N ⊂ (0,∞) converging to 0, and {Ti}i∈N ⊂
Zk(M,M \ U), such that for all i ∈ N, Ti ∈ Gk(U, εi, δi), and FU (V, |Ti|) < εi.

Step 2: For each j ∈ N, let µj the infimum of all numbers M(S) corresponding to all S ∈ Zk(M,M \
U) for which there exists a sequence Tj = T 1

j , · · · , Tmj = S ∈ Zk(M,M \ U) with

m⋃
i=1

supp
(
T ij − Tj

)
⊂ L

max
1≤i≤m

M(T ij ) ≤M(Tj) + δj

max
1≤i<m

FK(T ij − T i+1
j ) ≤ δj .

Then we choose a finite sequence Tj = T 1
j , · · · , Tmj = T ∗j in Zk(M,M \ U) with the above properties

such that M(T ∗j ) = µj . Then the six following properties are true.

(1) T ∗j ∈ Gk(U, εj , δj)

(2) 0 ≤M(Tj)−M(T ∗j ) ≤ εj

(3) Tj (Rn \ L) = T ∗j (Rn \ L)

(4) M(T ∗j ) ≤M(S) for all S ∈ Zk(M,M \ U) with supp (S − Tj) ⊂ L and FK(S − T ∗j ) ≤ δj .

(5) |T ∗j | is stable in IntL.

(6) For each p ∈ IntL, there exists a positive number r such that M(S) ≥ M(T ∗j ) whenever S ∈
Zk(M,M \ U) with supp (S − T ∗j ) ⊂ B(p, r).

As almost minimizing varifolds are stable, we have (5), and as Tj ∈ Gk(U, εj , δj) (2) follows immediately,
and (1), (3) and (4) are obvious. So we need only prove the final assertion.

Let p ∈ Int(L), and r > 0 small enough such that M ⊂ B(p, r) ⊂ Int(L), and

‖T ∗j ‖B(p, r) ≤ δj
2 .
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Then if M(S) < M(T ∗j ) for some S ∈ Zk(M,M \ U) with supp (S − T ∗j ) ⊂ B(p, r), we have

T ∗j (Rn \B(p, r)) = S (Rn \B(p, r))
‖S‖B(p, r) < ‖T ∗j ‖B(p, r)
FK(S − T ∗j ) ≤

(
‖S‖+ ‖T ∗j ‖

)
B(p, r) < δj ,

which contradicts the fact (4).
Step 3 : For each j ∈ N, we define

V ∗j = |T ∗j | Gk(U) + V Gk(Rn \ U)

Step 4 : We say V ∗ ∈ B(V,U, L) if V ∗ ∈ Vk(M) is the limit of a sequence
{
V ∗j
}
j∈N constructed

from steps 2 and 3, i.e. is the closure of the sets of
{
V ∗j
}
j∈N in the weak ∗ topology. By Banach-Alaoglu

theorem, B(V,U, L) is compact and non-empty.

Theorem 2.3.5. Let V ∈ Vk(M), V is almost minimizing in U , K ⊂ U is a compact set, and V ∗ ∈
B(V,U,K). Then the following five properties are true.

(1) V Gk(Rn \K) = V ∗ Gk(Rn \K).

(2) V ∗ is almost minimizing in U .

(3) ‖V ‖(M) = ‖V ∗‖(M).

(4) For all ε > 0, there exists T ∈ Zk(M,M \ U) such that FU (V ∗, |T |) < ε and T Z is locally area
minimizing for all compact Lipschitz neighbourhood retract of Int(K).

(5) V ∗ ∈ I V k(M, Int(K)).

Proof. The claims (1), (2) are trivial consequences of the construction.
Claim (3). As we used the varifold metric F under which the mass is continuous and thanks of

Step 1 and property (2) of Step 2, we obtain the point (3) of the theorem.
Claim (4). This follows from the property (6) of Step 2.
Claim (5). If suffices to show that for all open subset Z ⊂ U such that Z ⊂ Int(K), and ‖V ∗‖(∂Z) =

0, we have V ∗ ∈ I V k(M,Z).
Let {V ∗i }i∈N ⊂ I V k(M,Z) such that V ∗i −→

i→∞
V . By assertion (5) of step 2 of the construction

V ∗j is stable in Z so it is stationary in Z, and V ∗j ∈ I V k(M,Z) (i.e. V ∗j is integral in Z), so by the
compactness theorem, as

lim
i→∞

V ∗i Gk(Z) = V ∗ Gk(Z)

we have V ∗ ∈ I V k(M,Z).

Finally, we close this section with the important theorem, independent of the unquoted theorems of
chapter 3 of [Pit81].

Theorem 2.3.6. Let V ∈ Vk(M) a stationary varifold in an open subset U ⊂M . If for all p ∈ U , there
exists a finite positive number s such that V is almost minimizing in A(p, r, s) for all 0 < r < s, then
V ∈ I V k(M,U). If V is almost minimizing in U , the condition of stationariness is redundant.

2.4 Existence theorems

We simply quote the main result of chapter 4 of [Pit81], to understand why one needs to have a regularity
theory in the case of annuli and not simply balls (contrasting with the classical results of Allard [All72]).
The first result shows that one can choose the critical sequence to be almost minimizing in all annuli.
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Theorem 2.4.1. Let Mm a compact Riemannian manifold and 1 ≤ n ≤ m such that 1 ≤ n ≤ m and
1 ≤ j ≤ m− n and Hn+k(M,G) 6= 0. Then there exists Π ∈ π#

n (Zk(M,G),M) such that L(Π) > 0 and
a critical Zk(M,G)-valued (n,M)-homotopy sequence ϕ, i.e. such that L(ϕ) = L(Π). Furthermore, ϕ
can be chosen such that every element of C(ϕ) is stationary and almost minimizing in all sufficiently
small annulus.

From this one deduce the main existence result.

Theorem 2.4.2. Let M a compact C4 Riemannian manifold such that Hm(M,G) 6= {0}. Then for all
1 ≤ k ≤ m, there exists V ∈ Vk(M) such that the following four statements are true.

(1) V is stationary in M .

(2) For all p ∈M , there exists a positive number s such that V is G almost minimizing in AM (p, r, s)
for all 0 < r < s.

(3) The set of points of M where V is not G almost minimizing is finite.

(4) V ∈ I V k(M).

2.5 Regularity of stationary almost minimizing varifolds

This is the topic of chapter 4. The main statement which is proven is the following.

Theorem 2.5.1 (Pitts). If 2 ≤ k ≤ 5, max {4, k} ≤ ν ≤ ∞, Nk+1 a Cν+1 submanifold of Rn, p ∈ N ,
0 < r < ∞, V ∈ Vk(N), V is stationary in N ∩ B(p, r), and V is almost minimizing in N ∩ A(p, s, r)
for all 0 < s < r, then supp ‖V ‖ ∩B(p, r) is a k dimensional minimal Cν submanifold of N ∩B(p, r).

This theorem of Pitts combined with the existence theory and the extension for k = 6 of theorem
2.5.1 by Schoen and Simon yields the following result.

Theorem 2.5.2. Let Mm a compact Riemannian manifold of dimension m ≤ 7. Every stationary
integral almost minimizing varifold V on every open annulus is the varifold associated to the current of
integration of an embedded smooth minimal hypersurface.

Finally, we obtain the first major conclusion of Almgren-Pitts min-max theory.

Theorem 2.5.3. If 2 ≤ n ≤ 7, max {5, n} ≤ ν ≤ ∞, Mn a compact Cν Riemannian manifold, then
there exists a non-empty embedded Cν−1 minimal submanifold of M .
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