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Percolation: applied motivations

Geology:
How would water flow through these rocks?

Ecology:
How do forest fires propagate?
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Percolation: mathematical motivations

A central tool to understand other models in statistical physics.

Level lines of random functions.

Picture by Dmitry Belyaev.

Related to recent developments in continuous random geometry.

Picture by Gabor Pete.
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Percolation: main motivation!

Harry Kesten
Percolation theory for mathematicians,

July 1982.



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: 0 ď p ď 1 .

Random coloring of the hexagons:
A given hexagon is colored:

red with probability p,
blue with probability 1´ p.

Red path: a path made of red hexagons.

Red Cluster: red connected component.
“Island”
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Bernoulli site percolation [Broadbent and Hammersley, 1957]
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p “ 1
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A porous stone?

Is there a red path from top to bottom in a large lozenge?



QUESTION 1:

Is there a red path from top to bottom in a large lozenge?
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Rigorous answer to Question 1

Theorem [Kesten, 1980]

For percolation with parameter p, we have
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A forest?

How far can we go when starting from a single hexagon in the
center?



QUESTION 2:

How far can we go when starting from a single hexagon in the
center?
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Some percolation processes:

Percolation
on hexagons.

Percolation
on Zd, d ě 2.

Voronoi percolation
in Rd.

Boolean percolation
in Rd.

Phase transition (p “ density of red points).

p0 1pc

All the red clusters are bounded. One giant red cluster.

pc: critical parameter (depends on the model).
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