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Geology:
How would water flow through these rocks?

Ecology:
How do forest fires propagate?
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Percolation: main motivation!

Quite apart from the fact that percolation theory had its origin
in an honest applied problem (see Hammersley and Welsh (1980)), it is
a source of fascinating problems of the best kind a mathematician can
wish for: problems which are easy to state with a minimum of preparation,
but whose solutions are (apparently) difficult and require new methods.

Harry Kesten
Percolation theory for mathematicians,
July 1982.



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: [0 <p<1]|




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: [0 <p<1]|

Random coloring of the hexagons:




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: [0 <p<1]|

Random coloring of the hexagons:




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.
Parameter: |0 <p < 1|
Random coloring of the hexagons:

A given hexagon is colored:

@ red with probability p,




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

o blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

@ red with probability p,

@ blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

o blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.




Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|

Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.

Red path: a path made of red hexagons.



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|
Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.

Red path: a path made of red hexagons.

Red Cluster: red connected component.
“Island”



Bernoulli site percolation [Broadbent and Hammersley, 1957]

We tile a lozenge with hexagons.

Parameter: |0 <p < 1|
Random coloring of the hexagons:
A given hexagon is colored:

o red with probability p,

@ blue with probability 1 — p.

Red path: a path made of red hexagons.

Red Cluster: red connected component.
“Island”



A porous stone?




QUESTION 1:

Is there a red path from top to bottom in a large lozenge?
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RIGOROUS ANSWER TO QUESTION 1\

Theorem [Kesten, 1980]

For percolation with parameter p, we have

0 ifp<%
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A forest?




QUESTION 2:

How far can we go when starting from a single hexagon in the
center?
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Theorem [Kesten, 1980]

For percolation with parameter p, we have
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RIGOROUS ANSWER TO QUESTION 2|

Theorem [Kesten, 1980]

For percolation with parameter p, we have

<e @ ifp< i, [exponential decay]
Prob, " < =& if p=1, [polynomial decay]
7 > c(p) ifp> 1. [uniform positivity]

Remark: For p = %, Prob, [@] ~ ﬁ [Lawler, Schramm, Werner '02]
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Some percolation processes:

Voronoi percolation Boolean percolation

Percolation Percolation
on hexagons. onZ¢ d > 2. in RY. in R%.
Phase transition (p = density of red points).

All the red clusters are bounded.

1 P
;

One giant red cluster.

pe: critical parameter (depends on the model).




