2. What is percolation ?

ETH zürich

ETH Zürich, Spring semester 2018

Percolation: applied motivations

Percolation: applied motivations

Geology:

How would water flow through these rocks?

Percolation: applied motivations

Geology:

How would water flow through these rocks?

Ecology: How do forest fires propagate?

A central tool to understand other models in statistical physics.

A central tool to understand other models in statistical physics.

Level lines of random functions.

A central tool to understand other models in statistical physics.

Level lines of random functions.

Picture by Dmitry Belyaev.

A central tool to understand other models in statistical physics.

Level lines of random functions.

Picture by Dmitry Belyaev.

Related to recent developments in continuous random geometry.

A central tool to understand other models in statistical physics.

Level lines of random functions.

Picture by Dmitry Belyaev.

Related to recent developments in continuous random geometry.

Picture by Gabor Pete.

Percolation: main motivation!

Quite apart from the fact that percolation theory had its origin in an honest applied problem (see Hammersley and Welsh (1980)), it is a source of fascinating problems of the best kind a mathematician can wish for: problems which are easy to state with a minimum of preparation, but whose solutions are (apparently) difficult and require new methods.

Harry Kesten

Percolation theory for mathematicians, July 1982.

We tile a lozenge with hexagons.

We tile a lozenge with hexagons.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

A given hexagon is colored:

• red with probability p,

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$
.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter:
$$0 \le p \le 1$$

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

p = 1

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

- red with probability p,
- blue with probability 1 p.

We tile a lozenge with hexagons.

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

A given hexagon is colored:

- red with probability p,
- blue with probability 1 p.

Red path: a path made of red hexagons.

We tile a lozenge with hexagons.

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

A given hexagon is colored:

- red with probability p,
- blue with probability 1 p.

Red path: a path made of red hexagons. Red Cluster: red connected component. "Island"

We tile a lozenge with hexagons.

Parameter: $0 \le p \le 1$.

Random coloring of the hexagons:

A given hexagon is colored:

- red with probability p,
- blue with probability 1 p.

Red path: a path made of red hexagons. Red Cluster: red connected component. "Island"

A porous stone?

QUESTION 1:

Is there a red path from top to bottom in a large lozenge?

RIGOROUS ANSWER TO QUESTION 1

Theorem [Kesten, 1980]

For percolation with parameter p, we have

$$\lim_{n \to \infty} \mathbf{Prob}_p \left[\underbrace{\begin{array}{c} & & \\ & &$$

A forest?

How far can we go when starting from a single hexagon in the center?

Theorem [Kesten, 1980]

For percolation with parameter p, we have

Theorem [Kesten, 1980]

For percolation with parameter p, we have

Remark: For $p = \frac{1}{2}$, $\operatorname{Prob}_p\left[\underbrace{n}_{n}\right]^{n} \simeq \frac{1}{n^{5/48}}$ [Lawler, Schramm, Werner '02]

on hexagons.

Percolation on hexagons.

Percolation on \mathbb{Z}^d , $d \ge 2$.

Voronoi percolation in \mathbb{R}^d .

Percolation on hexagons.

Percolation on \mathbb{Z}^d , $d \ge 2$.

 $\begin{array}{lll} \mbox{Voronoi percolation} & \mbox{Boolean percolation} \\ & \mbox{in } \mathbb{R}^d. & \mbox{in } \mathbb{R}^d. \end{array}$

Phase transition (p = density of red points).

 p_c : critical parameter (depends on the model).