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I. Differential equations.

Find the solutions of the following first order linear differential equations

1.
2.
3.
4

5.
6.

Ty + 2y = 223 — 5x? 4 4z — 1.

Y +y=xe "
Yy — 2y = cos(z) + 2sin(z).
Y =2y +y == y(0)=y'(0)=0.

y'+9y=2+1,y(0)=0.

(x+ 1)y +ay =22 - 22+ 1, y(1) = 1, where x > —1.

Solution

2;

. First, the solutions of the homogeneous equation 7y'+2y = 0 are y(x) = Ae~ 7 , where A € R. Now,

a
we look for a polynomial solution (necessarily of degree 3). We see that P(z) = az® + bz? + cx +d
is a solution of the differential equation if and only if

7(3ax® 4 bx + ¢) + 2(ax® + ba? + cx + d) = 20 — 52? + 40 — 1
which gives the solution P(z) = x® — 1322 +93x — 326. Therefore, the general solution is the family

ya(z) = Ae™F 4+ 2° — 1322 + 932 — 326, AR

Here, y(xz) = Ae™® (A € R) are the solutions of the homogeneous equation. Let yo(x) = AMx)e™™
be a solution of the (non-homogeneous) differential equation. Then we get

yo(z) + yo(z) = N (2)e™ = ze™®

2
if and only if X' (z) = z, so that \(z) = % is a solution, and yo(z) = “"—;e_m is a solution of the
equation, and the general solution is the family

2

ya(x) = (1:2 —|—/\) e ", AeR.

As previously, we find

4
ya(z) = Ne®* — £ cos(x) — gsin(x), AeR

The solution of the homogeneous equation is y(z) = Are® + doxe® (A1, A2 € R), and the linear
solution = +— x + 2 a solution of the equation. Therefore, we find that the general solution is

y(x) = A€ + Aaze® + (z 4+ 2),
and the conditions y(0) = y'(0) = 0 give
M+2=0, M+X+1=0
so that Ay = —2 and A\ = 1. Finally, we deduce that the solution is
y(z) = (z — 2)e” + (x + 2).

The solutions are

r+1
9 b

1
ya(z) = ~9 cos(3x) + Asin(z) + AeR.
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6. Using separation of variables, y is a solution of the homogeneous equation (z + 1)y’ + zy = 0 on
(=1, 00) if and only if

r_ T (14 1
LT 1+2)Y
which holds if and only if
y(x) = Ne T80+ — \(1 4 1)e™®,  for some A € R.

Now, looking for a polynomial solution of degree 1 of the differential equation, one easily infers
that yo(z) = x — 3 is such solution. Therefore, we have

yx)=A1+z)e®+z—3.
Now, the condition y(1) = 1 yields 2Xe™! —2 =1, or A = %. Finally, the unique solution is

y(z) = g(l +a)e "+ -3

I1. Differential equations (2).

Solve the following differential equations :

1. (14 €e%)y"” +2e"y’ + (2e” + 1)y = ze®, with the change of function z = (1 4 e%)y.

2.y’ —y — e?®y = 3", with the change of variable t = e®.

Solution:
1. The function z is smooth and y is a solution of the differential equation if and only if
2+ 2 = xe®,

which implies that

-1
z(x) = A1 cos(x) + Agsin(x) + < 5 e’,
and
1 . z—1
y(z) = A1 cos(z) + Agsin(z) + e for some A\, Ay € R.
1+4e® 2
2. y is a solution of the equation if and only
2 —z=t,

and we find the solutions of this equation to be
2(t) = Ael + et — .
Finally, we have
y(z) = Ae€ + hge ¢ — e, A, A €R.
ITI. Extrema (1). Find the local and global extrema of the following functions.
L f(z,y) =22 +y*> +ay+ 1.
2. f(z,y) = 22 + y? + 4oy — 2.

3. f(z,y) = y(a® +log*(y)), with y > 0.
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Solution:

1. As Vf(z,y) = 2z +y,x + 2y), so (0,0) is the only critical point of f. Furthermore, as

2
ey = e+ 2 + 2 112 1= p0.0),

so (0,0) is the unique global minimum of f.
2. We have
f£(0,0) = -2
while
f(z,0) =52> —2> f(0,0),
while f(z, —z) = —1 =222 — 2 = £(0,0).

3. We have Vf(x,y) = (2zy, 22 +log®(y)+21log(y)). Asy > 0, we obtain z = 0, log?(y)+2log(y) = 0,
which holds log(y) (log(y) +2) = 0, so that y = 1 or y = e 2.

IV. Extrema (2). Find the maximum of the following functions on the given compact sets K C R?:

2. flo,y) =z —y+2>+y3on K =10,1]2.

3. f(z,y) = sin(z) sin(y) sin(z + y) on K = [0, gr

Solution:

1. On the boundary 0K, © =0, y = 0, so that f =0 on K. As f(1/4,1/4) > 0 the maximum of f
is attained in an interior point of K. As

Vi(,y) = (y(l =2z —y),2(1 -z — 2y))

the only critical points on K is

]
Therefore, the only local maximum of f is (1/3,1/3) and the maximum is equal to 1/27.

2. As O, f(z,y) = 1+ 322 > 0, f has no critical point in the interior of K. Therefore, the maximum
of f must be attained on the boundary of K. We have

f(x,0) =z +a°,
which has its maximum at (1,0). As f(0,y) = —y+y> <2ify € [0,1], and f(1,y) =2—y+y> <
2 —y+y = 2, this implies that the maximum of f on K is equal to 3, attained uniquely at
(1,0) € OK.
3. We first study f in the interior of K. By the addition formula, we have
Vf(xz,y) = (sin(y) sin(2z + y), sin(x) sin(x + 2y)),

so that (z,y) is a critical point of f if and only if
2e+y=m
T+ 2y =m.

Therefore, the only critical point of f is <_§’ g), and f (g, g) = %ﬁ
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Now, we study f on OK. As f(0,t) = f(¢,0) = 0, and by symmetry, we deduce that we only need
to study t — f(mw/2,t) on [O, g] As

7 (5.1) =sin(e)sin (¢4 ) = sin(t) cos(t) = %sin(2t),

1
this implies that the maximum of ¢t — f(7/2,t) on [0, g} is equal to 3 As

3v3

that max f= - attained uniquely in (7/3,7/3).

V. Implicit functions. Show that the relation
e 4+ y? —ay —3y+22=—1

defines y as a function of x for x close to 0 and y close to 1. Compute y'(0). Solution: Let f(x,y) =
e + 4% — xy + 2z 4+ 1. We have

Oyf(x,y) =xe™ +2y—ax—3 = 9,f(0,1)=—-1#0

As we also have f(0,1), we deduce by the theorem of implicit functions that there exists open intervals
I,J C Rsuch that 0 € I, j € J, and a smooth (as f is smooth) function g : I — J such that

V(z,y) €I x J, f(z,y) =0y = g(x).
Now, we have ¢g(0) = 1, and for all = € I, we have
9@ 4 g(x)? — zg(z) — 3g(x) + 22 +1=0.
By differentiating this relation, we get
(9(x) +zg'(2)e™™ + 29/ (2)g(x) — g(2) — xg(z) — 3¢'(x) +2 =0,
and by evaluating at = 0, and recalling that ¢(0) = 1, we find

1+29'(0)—1-3¢"(0)+2=0<« ¢'(0) = 2.

VI. Line integrals. Compute the line integrals

/7 £(s) - 5,

in R2? where

1. f(z,y) = (vy,z +y), where v is the arc of parabola y = 22, —1 < 2 < 2 in direct orientation.

S
2. f(z,y) = (ysin(z), z cos(y)), where ~ is the line segment from (0,0) to (1,1).
S

3. f(z,y) = (y,2z) and v is the boundary (with usual orientation) of the domain defined by the
equations
2?4 y* -2 <0
22 497 -2y <0.
Solution:
1. We have
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2. We have
Lf(s) -ds = /01 z(cos(x) + sin(z))dx

1
= [z(sin(z) — cos(;r))]é — /0 (sin(x) — cos(z))dx

=sin(1) — cos(1) + [cos(x) + sin(x)](l) =sin(1) — cos(1) 4 (cos(1) +sin(1)) — 1 = 2sin(1) —

3. The domain is a reunion of two quarters of disks, that we parametrise by polar coordinates, as

follows
v (t) = (cos(t),1 +sin(t)), —
2 (t) = (1 + cos(t), sin(¢)), g <t<m.
Therefore, we have

Af(S)-d§= i f(S)-d§+/w f(s)---ds

™

-3 3
™ ™

S+ G-
(4Jr + 4

T
2

where we used the duplication formula.
VII. Change of variable.

1. Compute

/ dady
al+a?+y?

where A = {(z,y):2? + 32 <1, 0<z,y < 1}.

/ dxdydz
B \/x2+y2+(zfa)2.

where B is the unit ball in R3, and a > 1. Solution:

1. Taking polar coordinates, we have

dxdy 1 Loy m |1 9 ™
T oo [ =T Zi0g01 = Zlog(2).
/A1+$2+y2 1" 7T/0 T+72 2 {2 og(l+77)| = 7 log(2)

2. Taking spherical coordinates

x = rsin(f) sin(y)
y = rcos(0) sin(p)

z = rcos(yp)

we find

/ dadydz / / / r? sin(p) d0dipdr
B2 12+ (z—a) o V12 + a2 — 2ar cos(p)

- 2”/ (/ Nz +S;l = );ii cos(cp)) o

= /0 (—(1 +sin(t)) sin(t) 4+ 2 cos?(t)) dt + / (—sin®(¢) + 2(1 + cos(t)) cos(t)) dt
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Now, making the change of variable t = 12 +a? — 2ar cos(ip), we obtain (as dt = 2ar sin(p)dy)

/ dxdydz _ 271- /1 r2 /(T+a)2 dt dr
\/xQ (z —a)? 0 (r—a)? 2ar/t

4 1
-7 ridr = 41
a Jo 3a

VIII. Fubini’s theorem

By using Fubini’s theorem to evaluate the following integral (one can admit that it converges) in
two different ways

/ dxdy
[0,00)x[0,00) (1 +22y)(1+y)’

]
/ 02g(r) de.
0 xr<e — 1

Solution: As the function integrated is positive and locally bounded, we can use directly Fubini’s
theorem on bounded domains. For all y > 0, by classical growth comparison theorem, the integral

deduce the value of

/ e dx
o (I+z2y)(1+y)
converges and we compute directly

oo

o dx 1 1 T
/O 0+ 29ty 1+y [\/ﬂ arctan(evy)| =5 mi )

as arctan(z,/y) — g (recall that y > 0) and arctan(0) = 0. Now, as
T—00

1 1
_— ~ — 00.
Jillry) ~yE YT
the following integral converges
|, o
o VY(1+y)

Now, the change of variable t = ,/y yields

& dy /°° dt -
/0 1) 1t [arctan(t)], T

Therefore, we have

A e VA =) KOO S m

Now, we fix x > 0 and x # 1 and we make the decomposition

1 1 22 1
(I+a2y)(1+y) 1-22\ 1422y 14y

which implies that we have for all R > 0

R R 2
dy 1 x 1 1 9 R
= ——t ——)dy = —log(1 log(1
/0 (1+2%y)(1+y) 1_5”2/0 ( 1+w2y+1+y> Y 1—w2[ og(1+27y) +log(1 + v,

1 ) 1+ R N 1 1 1 2log(x)
= O 0] —_— =
1—z2 & 1+ Rx?2/) Rooo 1 — 22 & 2 2 -1’
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where we used

1+R 1+ % 1

= } P
1+ Ra? 224 & Rooc 22

A e R T

and by Fubini and , we obtain

Finally, we have

e’} 1 2
/ 0g(z) dr = l.
0

x2 -1 4
Remark 1. One can see directly that this integral converges as follows. First, at infinity, we have

log(z) log(z) O 1
2 -1 x2 |x|2—=

>, for all € >0

so the integral converges at infinity (by a standard comparison argument). Now, one also needs to
analyse the behaviour as  — 1 and z — 0. As 22 — 1 = (z + 1)(z — 1), one needs to check that

' ? log(z)
/Olog(x)dx, and/ 1dz (2)

1 T —
2

converge. For the first integral, the change of variable y = —log(z) yields
1 1 o)
/ |log(x)|dz = —/ log(z)dx :/ ye Ydy < oo
0 0 0

which converges as e™¥ < 5 for y large enough (for example). Now, as log(z) ~  — 1 when

1
L+ |yl
x — 1, the function

log(x

~

rz—1

1

is bounded in [3, 2], so the second integral in converges.

IX. Potential.

Is the vector-field F(z,y,z) = (32%y + 23,3y?z + 22,3222 + 3®) conservative on R3? If it is, then
determine a potential for F.

Solution: We check directly that F is exact by an explicit computation. As R? is a starred
domain, this implies that F derives from a potential, and by integrating with respect to the
different variables, we find that

F=V{f,

where f : R3 - R, (x,y,2) — x3y L4 y3z.

X. Green’s theorem. The Piriform curve C in R? is the set
C={(z,y) eR? | y* =2*(2—2)}.

us

A parametrization of C'is given by v : [~ %, 2F] — R?,

B 1+ sin(¥)
(1) = (Cos(t)(l - sin(t)))

The Piriform curve is the boundary of the set

Q:Rz{(x,y):0§m§2 and — x3(2—x)§y§\/x3(2—x)}.
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Figure 1: The Piriform curve

Compute the area of (2.
Solution: As this curve is clockwise parametrised, we choose the parametrisation of —y to get the
area, so that by Green’s theorem

3m

Area(€) = —/_ﬂ{y dr = Ay dr = /_ cos2(t)(1 + sin(t))dt

3 31
a Ea
= / cos?(t) dt +/ cos?(t) sin(t) dt
-3 -3
_ /SZW 1+ cos(2t) gt
= 2
2
Here, we used the formula
3m/2 1 i
/ cos?(t) sin(t) dt = {— cosg(t)} =0
—x/2 3 _z

XI. Integration by substitution The cardioid C is the curve in R? defined by
C={(z,y) eR* | (2 +y° - 22)* = 4(a” +3*)}
C is the boundary of the set
Q= {(tx,ty) eR? | t € [0,1], (x,y) € C}.
Compute the area of €.
Solution Using polar coordinates x = r cos(¢) and y = rsin(y), we have for all (x,y) # (0,0):

d(z? +y?) = (2% +y* — 22)% & 4r? = (r? — 2r cos(p))?
& 2r = [r? — 2rcos(¢)| = r|r — 2cos(p)]
& 2= |r—2cos(p)]

Therefore, the function
C\{(0,0)} 3 (rcos(p), rsin(p)) — r — 2cos(p)
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Figure 2: The cardioid

is pointwise equal to —2 and 2. As C\{(0,0)} is connected, this function is constant. As (4,0) =
(4 cos(0),4sin(0)) € C\{(0,0)} and 4 — 2 cos(0) = 2 we deduce that for all (z,y) # (0,0)

Az +y?) = (2® +y* —22)> & 2 =1 — 2cos(yp)
<1 =2(1+cos(p))

Therefore, we have

21 p2(1+cos(yp))
Area(2) = / 1 dzdy = / / r drdy
Q 0 0

2m 27 2(1+cos(y))
r
o L2,

27
= /0 2(1 + cos(p))? de

2m
= 2/ 1+ cos?(¢) + 2cos(y) dp
0

2m
=2 (27r + / L cos(2p) cos(2¢) dgo)
0 2
=2(2mr 4+ m) = 6m.
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