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I. Differential equations.
Find the solutions of the following first order linear differential equations

1. 7y′ + 2y = 2x3 − 5x2 + 4x− 1.

2. y′ + y = xe−x.

3. y′ − 2y = cos(x) + 2 sin(x).

4. y′′ − 2y′ + y = x, y(0) = y′(0) = 0.

5. y′′ + 9y = x+ 1, y(0) = 0.

6. (x+ 1)y′ + xy = x2 − 2x+ 1, y(1) = 1, where x > −1.

Solution

1. First, the solutions of the homogeneous equation 7y′+2y = 0 are y(x) = λe−
2x
7 , where λ ∈ R. Now,

we look for a polynomial solution (necessarily of degree 3). We see that P (x) = ax3 + bx2 + cx+ d
is a solution of the differential equation if and only if

7(3ax2 + bx+ c) + 2(ax3 + bx2 + cx+ d) = 2x3 − 5x2 + 4x− 1

which gives the solution P (x) = x3−13x2 +93x−326. Therefore, the general solution is the family

yλ(x) = λe−
2x
7 + x3 − 13x2 + 93x− 326, λ ∈ R

2. Here, y(x) = λe−x (λ ∈ R) are the solutions of the homogeneous equation. Let y0(x) = λ(x)e−x
be a solution of the (non-homogeneous) differential equation. Then we get

y′0(x) + y0(x) = λ′(x)e−x = xe−x

if and only if λ′(x) = x, so that λ(x) = x2

2 is a solution, and y0(x) = x2

2 e
−x is a solution of the

equation, and the general solution is the family

yλ(x) =
(
x2

2 + λ

)
e−x, λ ∈ R.

3. As previously, we find

yλ(x) = λe2x − 4
5 cos(x)− 3

5 sin(x), λ ∈ R.

4. The solution of the homogeneous equation is y(x) = λ1e
x + λ2xe

x (λ1, λ2 ∈ R), and the linear
solution x 7→ x+ 2 a solution of the equation. Therefore, we find that the general solution is

y(x) = λ1e
x + λ2xe

x + (x+ 2),

and the conditions y(0) = y′(0) = 0 give

λ1 + 2 = 0, λ1 + λ2 + 1 = 0

so that λ1 = −2 and λ2 = 1. Finally, we deduce that the solution is

y(x) = (x− 2)ex + (x+ 2).

5. The solutions are

yλ(x) = −1
9 cos(3x) + λ sin(x) + x+ 1

9 , λ ∈ R.
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6. Using separation of variables, y is a solution of the homogeneous equation (x + 1)y′ + xy = 0 on
(−1,∞) if and only if

y′ = − x

x+ 1y =
(
−1 + 1

1 + x

)
y

which holds if and only if

y(x) = λe−x+log(1+x) = λ(x+ 1)e−x, for some λ ∈ R.

Now, looking for a polynomial solution of degree 1 of the differential equation, one easily infers
that y0(x) = x− 3 is such solution. Therefore, we have

y(x) = λ (1 + x) e−x + x− 3.

Now, the condition y(1) = 1 yields 2λe−1 − 2 = 1, or λ = 3e
2 . Finally, the unique solution is

y(x) = 3
2(1 + x)e1−x + x− 3

II. Differential equations (2).
Solve the following differential equations :

1. (1 + ex)y′′ + 2exy′ + (2ex + 1)y = xex, with the change of function z = (1 + ex)y.

2. y′′ − y′ − e2xy = e3x, with the change of variable t = ex.

Solution:

1. The function z is smooth and y is a solution of the differential equation if and only if

z′′ + z = xex,

which implies that

z(x) = λ1 cos(x) + λ2 sin(x) + x− 1
2 ex,

and

y(x) = 1
1 + ex

(
λ1 cos(x) + λ2 sin(x) + x− 1

2 ex
)

for some λ1, λ2 ∈ R.

2. y is a solution of the equation if and only

z′′ − z = t,

and we find the solutions of this equation to be

z(t) = λ1e
t + λ2e

−t − t.

Finally, we have

y(x) = λ1e
ex + λ2e

−ex − ex, λ1, λ2 ∈ R.

III. Extrema (1). Find the local and global extrema of the following functions.

1. f(x, y) = x2 + y2 + xy + 1.

2. f(x, y) = x2 + y2 + 4xy − 2.

3. f(x, y) = y(x2 + log2(y)), with y > 0.
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Solution:

1. As ∇f(x, y) = (2x+ y, x+ 2y), so (0, 0) is the only critical point of f . Furthermore, as

f(x, y) =
(
x+ y

2

)2
+ 3y2

4 + 1 ≥ 1 = f(0, 0),

so (0, 0) is the unique global minimum of f .

2. We have

f(0, 0) = −2

while

f(x, 0) = 5x2 − 2 > f(0, 0),

while f(x,−x) = −1 = 2x2 − 2 = f(0, 0).

3. We have ∇f(x, y) = (2xy, x2 +log2(y)+2 log(y)). As y > 0, we obtain x = 0, log2(y)+2 log(y) = 0,
which holds log(y) (log(y) + 2) = 0, so that y = 1 or y = e−2.

IV. Extrema (2). Find the maximum of the following functions on the given compact sets K ⊂ R2:

1. f(x, y) = xy(1− x− y) on K = {(x, y) : x, y ≥ 0, x+ y ≤ 1}.

2. f(x, y) = x− y + x3 + y3 on K = [0, 1]2.

3. f(x, y) = sin(x) sin(y) sin(x+ y) on K =
[
0, π2

]2
.

Solution:

1. On the boundary ∂K, x = 0, y = 0, so that f = 0 on ∂K. As f(1/4, 1/4) > 0 the maximum of f
is attained in an interior point of K. As

∇f(x, y) = (y(1− 2x− y), x(1− x− 2y))

the only critical points on K is

x = y = 1
3 .

Therefore, the only local maximum of f is (1/3, 1/3) and the maximum is equal to 1/27.

2. As ∂xf(x, y) = 1 + 3x2 > 0, f has no critical point in the interior of K. Therefore, the maximum
of f must be attained on the boundary of K. We have

f(x, 0) = x+ x3,

which has its maximum at (1, 0). As f(0, y) = −y+ y3 ≤ 2 if y ∈ [0, 1], and f(1, y) = 2− y+ y3 ≤
2 − y + y = 2, this implies that the maximum of f on K is equal to 3, attained uniquely at
(1, 0) ∈ ∂K.

3. We first study f in the interior of K. By the addition formula, we have

∇f(x, y) = (sin(y) sin(2x+ y), sin(x) sin(x+ 2y)) ,

so that (x, y) is a critical point of f if and only if{
2x+ y = π

x+ 2y = π.

Therefore, the only critical point of f is
(
−π3 ,

π

3

)
, and f

(π
3 ,
π

3

)
= 3
√

3
2 .
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Now, we study f on ∂K. As f(0, t) = f(t, 0) = 0, and by symmetry, we deduce that we only need
to study t 7→ f(π/2, t) on

[
0, π2

]
. As

f
(π

2 , t
)

= sin(t) sin
(
t+ π

2

)
= sin(t) cos(t) = 1

2 sin(2t),

this implies that the maximum of t 7→ f(π/2, t) on
[
0, π2

]
is equal to 1

2 . As 1
2 ≤

3
√

3
2 , we deduce

that max
K

f = 3
√

3
2 , attained uniquely in (π/3, π/3).

V. Implicit functions. Show that the relation

exy + y2 − xy − 3y + 2x = −1

defines y as a function of x for x close to 0 and y close to 1. Compute y′(0). Solution: Let f(x, y) =
exy + y2 − xy + 2x+ 1. We have

∂yf(x, y) = xexy + 2y − x− 3 =⇒ ∂yf(0, 1) = −1 6= 0

As we also have f(0, 1), we deduce by the theorem of implicit functions that there exists open intervals
I, J ⊂ R such that 0 ∈ I, j ∈ J , and a smooth (as f is smooth) function g : I → J such that

∀(x, y) ∈ I × J, f(x, y) = 0⇔ y = g(x).

Now, we have g(0) = 1, and for all x ∈ I, we have

exg(x) + g(x)2 − xg(x)− 3g(x) + 2x+ 1 = 0.

By differentiating this relation, we get

(g(x) + xg′(x))exg(x) + 2g′(x)g(x)− g(x)− xg′(x)− 3g′(x) + 2 = 0,

and by evaluating at x = 0, and recalling that g(0) = 1, we find

1 + 2g′(0)− 1− 3g′(0) + 2 = 0⇔ g′(0) = 2.

VI. Line integrals. Compute the line integrals
ˆ
γ

f(s) · d~s,

in R2 where

1. f(x, y) = (xy, x+ y), where γ is the arc of parabola y = x2, −1 ≤ x ≤ 2 in direct orientation.

2. f(x, y) = (y sin(x), x cos(y)), where γ is the line segment from (0, 0) to (1, 1).

3. f(x, y) = (y, 2x) and γ is the boundary (with usual orientation) of the domain defined by the
equations {

x2 + y2 − 2x ≤ 0
x2 + y2 − 2y ≤ 0.

Solution:

1. We have
ˆ
γ

f(s) · d~s =
ˆ 2

−1
(x3 + (x+ x2)× 2x)dx = 69

4 .
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2. We have
ˆ
γ

f(s) · d~s =
ˆ 1

0
x(cos(x) + sin(x))dx

= [x(sin(x)− cos(x))]10 −
ˆ 1

0
(sin(x)− cos(x))dx

= sin(1)− cos(1) + [cos(x) + sin(x)]10 = sin(1)− cos(1) + (cos(1) + sin(1))− 1 = 2 sin(1)− 1.

3. The domain is a reunion of two quarters of disks, that we parametrise by polar coordinates, as
follows

γ1(t) = (cos(t), 1 + sin(t)), −π2 ≤ t ≤ 0

γ2(t) = (1 + cos(t), sin(t)), π

2 ≤ t ≤ π.

Therefore, we have
ˆ
γ

f(s) · d~s =
ˆ
γ1

f(s) · d~s+
ˆ
γ2

f(s) · · · d~s

=
ˆ 0

−π2

(
−(1 + sin(t)) sin(t) + 2 cos2(t)

)
dt+

ˆ π

π
2

(
− sin2(t) + 2(1 + cos(t)) cos(t)

)
dt

=
(π

4 + 1
)

+
(π

4 − 2
)

= π

2 − 1

where we used the duplication formula.

VII. Change of variable.

1. Compute
ˆ

∆

dxdy

1 + x2 + y2 ,

where ∆ =
{

(x, y) : x2 + y2 ≤ 1, 0 ≤ x, y ≤ 1
}
.

2. ˆ
B

dxdydz√
x2 + y2 + (z − a)2

.

where B is the unit ball in R3, and a > 1. Solution:

1. Taking polar coordinates, we have
ˆ

∆

dxdy

1 + x2 + y2 = 1
4 × 2π

ˆ 1

0

r

1 + r2 = π

2

[
1
2 log(1 + r2)

]
= π

4 log(2).

2. Taking spherical coordinates 
x = r sin(θ) sin(ϕ)
y = r cos(θ) sin(ϕ)
z = r cos(ϕ)

we find
ˆ
B

dxdydz√
x2 + y2 + (z − a)2

=
ˆ 1

0

ˆ π

−π

ˆ π

0

r2 sin(ϕ)√
r2 + a2 − 2ar cos(ϕ)

dθdϕdr

= 2π
ˆ 1

0
r2

(ˆ π

0

sin(ϕ)dϕ√
r2 + a2 − 2ar cos(ϕ)

)
dr.
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Now, making the change of variable t = r2 +a2−2ar cos(ϕ), we obtain (as dt = 2ar sin(ϕ)dϕ)
ˆ
B

dxdydz√
x2 + y2 + (z − a)2

= 2π
ˆ 1

0
r2

(ˆ (r+a)2

(r−a)2

dt

2ar
√
t

)
dr

= 4π
a

ˆ 1

0
r2dr = 4π

3a .

VIII. Fubini’s theorem
By using Fubini’s theorem to evaluate the following integral (one can admit that it converges) in
two different ways

ˆ
[0,∞)×[0,∞)

dxdy

(1 + x2y)(1 + y) ,

deduce the value of
ˆ ∞

0

log(x)
x2 − 1dx.

Solution: As the function integrated is positive and locally bounded, we can use directly Fubini’s
theorem on bounded domains. For all y > 0, by classical growth comparison theorem, the integral

ˆ ∞
0

dx

(1 + x2y)(1 + y)

converges and we compute directly
ˆ ∞

0

dx

(1 + x2y)(1 + y) = 1
1 + y

[
1
√
y

arctan(x√y)
]∞

0
= π

2√y(1 + y)

as arctan(x√y) −→
x→∞

π

2 (recall that y > 0) and arctan(0) = 0. Now, as

1
√
y(1 + y) ∼

1
y

3
2

as y →∞.

the following integral converges
ˆ ∞

0

dy
√
y(1 + y) .

Now, the change of variable t = √y yields
ˆ ∞

0

dy
√
y(1 + y) = 2

ˆ ∞
0

dt

1 + t2
= 2 [arctan(t)]∞0 = π.

Therefore, we have
ˆ ∞

0

ˆ ∞
0

dxdy

(1 + x2y)(1 + y) =
ˆ ∞

0

(ˆ ∞
0

dx

(1 + x2y)(1 + y)

)
dy = π2

2 . (1)

Now, we fix x > 0 and x 6= 1 and we make the decomposition

1
(1 + x2y)(1 + y) = 1

1− x2

(
− x2

1 + x2y
+ 1

1 + y

)
which implies that we have for all R > 0
ˆ R

0

dy

(1 + x2y)(1 + y) = 1
1− x2

ˆ R

0

(
− x2

1 + x2y
+ 1

1 + y

)
dy = 1

1− x2

[
− log(1 + x2y) + log(1 + y)

]R
0

= 1
1− x2 log

(
1 +R

1 +Rx2

)
−→
R→∞

1
1− x2 log

(
1
x2

)
= 2 log(x)

x2 − 1 ,
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where we used

1 +R

1 +Rx2 =
1 + 1

R

x2 + 1
R

−→
R→∞

1
x2 .

Finally, we have
ˆ ∞

0

(ˆ ∞
0

dy

(1 + x2)(1 + y)

)
dx = 2

ˆ ∞
0

log(x)
x2 − 1dx

and by Fubini and (1), we obtain
ˆ ∞

0

log(x)
x2 − 1dx = π2

4 .

Remark 1. One can see directly that this integral converges as follows. First, at infinity, we have

log(x)
x2 − 1 ∼

log(x)
x2 = O

(
1

|x|2−ε

)
, for all ε > 0

so the integral converges at infinity (by a standard comparison argument). Now, one also needs to
analyse the behaviour as x→ 1 and x→ 0. As x2 − 1 = (x+ 1)(x− 1), one needs to check that

ˆ 1

0
log(x)dx, and

ˆ 2

1
2

log(x)
x− 1 dx (2)

converge. For the first integral, the change of variable y = − log(x) yields
ˆ 1

0
| log(x)|dx = −

ˆ 1

0
log(x)dx =

ˆ ∞
0

ye−ydy <∞

which converges as e−y ≤ 1
1 + |y|3 for y large enough (for example). Now, as log(x) ' x− 1 when

x→ 1, the function

log(x)
x− 1

is bounded in [ 1
2 , 2], so the second integral in (2) converges.

IX. Potential.
Is the vector-field F (x, y, z) = (3x2y + z3, 3y2z + x3, 3xz2 + y3) conservative on R3? If it is, then
determine a potential for F .
Solution: We check directly that F is exact by an explicit computation. As R2 is a starred
domain, this implies that F derives from a potential, and by integrating with respect to the
different variables, we find that

F = ∇f,

where f : R3 → R, (x, y, z) 7→ x3y + xz3 + y3z.
X. Green’s theorem. The Piriform curve C in R2 is the set

C = {(x, y) ∈ R2 | y2 = x3(2− x)}.

A parametrization of C is given by γ : [−π2 ,
3π
2 ]→ R2,

γ(t) =
(

1 + sin(t)
cos(t)(1 + sin(t))

)
The Piriform curve is the boundary of the set

Ω = R2
{

(x, y) : 0 ≤ x ≤ 2 and −
√
x3(2− x) ≤ y ≤

√
x3(2− x)

}
.
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x

y

Figure 1: The Piriform curve

Compute the area of Ω.
Solution: As this curve is clockwise parametrised, we choose the parametrisation of −γ to get the
area, so that by Green’s theorem

Area(Ω) = −
ˆ
−γ

y dx =
ˆ
γ

y dx =
ˆ 3π

2

−π2
cos2(t)(1 + sin(t))dt

=
ˆ 3π

2

−π2
cos2(t) dt+

ˆ 3π
2

−π2
cos2(t) sin(t) dt

=
ˆ 3π

2

−π2

1 + cos(2t)
2 dt = π.

Here, we used the formula
ˆ 3π/2

−π/2
cos2(t) sin(t) dt =

[
−1

3 cos3(t)
] 3π

2

−π2

= 0

XI. Integration by substitution The cardioid C is the curve in R2 defined by

C = {(x, y) ∈ R2 | (x2 + y2 − 2x)2 = 4(x2 + y2)}

C is the boundary of the set

Ω := {(tx, ty) ∈ R2 | t ∈ [0, 1], (x, y) ∈ C}.

Compute the area of Ω.

Solution Using polar coordinates x = r cos(ϕ) and y = r sin(ϕ), we have for all (x, y) 6= (0, 0):

4(x2 + y2) = (x2 + y2 − 2x)2 ⇔ 4r2 = (r2 − 2r cos(ϕ))2

⇔ 2r = |r2 − 2r cos(ϕ)| = r|r − 2 cos(ϕ)|
⇔ 2 = |r − 2 cos(ϕ)|.

Therefore, the function
C\{(0, 0)} 3 (r cos(ϕ), r sin(ϕ)) 7→ r − 2 cos(ϕ)
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Figure 2: The cardioid

is pointwise equal to −2 and 2. As C\{(0, 0)} is connected, this function is constant. As (4, 0) =
(4 cos(0), 4 sin(0)) ∈ C\{(0, 0)} and 4− 2 cos(0) = 2 we deduce that for all (x, y) 6= (0, 0)

4(x2 + y2) = (x2 + y2 − 2x)2 ⇔ 2 = r − 2 cos(ϕ)
⇔ r = 2(1 + cos(ϕ))

Therefore, we have

Area(Ω) =
ˆ

Ω
1 dxdy =

ˆ 2π

0

ˆ 2(1+cos(ϕ))

0
r drdϕ

=
ˆ 2π

0

[
r2

2

]2(1+cos(ϕ))

0
dϕ

=
ˆ 2π

0
2(1 + cos(ϕ))2 dϕ

= 2
ˆ 2π

0
1 + cos2(ϕ) + 2 cos(ϕ) dϕ

= 2
(

2π +
ˆ 2π

0

1 + cos(2ϕ)
2 dϕ

)
= 2 (2π + π) = 6π.
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