Serie 6

1. Bestimmen Sie den Konvergenzradius ρ der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} \frac{1}{(3n+1)^4} x^n$$
,

b)
$$\sum_{n=1}^{\infty} (\ln(7n))^n x^n$$
,

c)
$$\sum_{n=1}^{\infty} \frac{x^n}{n\pi^n}$$
,

d)
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!} x^n$$
.

a) Beweisen Sie die partielle Summationsregel

$$\sum_{k=1}^{n} (a_{k+1} - a_k)b_k = a_{n+1}b_{n+1} - a_1b_1 - \sum_{k=1}^{n} a_{k+1}(b_{k+1} - b_k).$$

b) Bestimmen Sie alle $z \in \mathbb{C}$, für welche die folgende Reihe konvergiert:

$$\sum_{k=1}^{\infty} \frac{z^k}{k}.$$

Hinweis: Der schwierige Fall ist |z|=1: Für z=1 erhält man die bekannte harmonische Reihe. Für $z \neq 1$ können Sie Teil (a) mit $a_k = 1 + z + \cdots z^{k-1} = 1$ $\frac{1-z^k}{1-z}$ und $b_k=\frac{1}{k}$ verwenden.

3. Schreiben Sie die Lösungen der folgenden Gleichungen für z in Normalform (d.h. in der Form $z = a + i b \text{ mit } a, b \in \mathbb{R}$):

a)
$$z = (5+3i)(7-2i)$$
 c) $z^3 = i$ **e)** $z = \frac{9-4i}{2+3i}$ **b)** $z = \frac{6-i}{5+2i}$ **d)** $z = (1+i)^5$ **f)** $z^2 + 1 - i = 0$

c)
$$z^3 = i$$

e)
$$z = \frac{9-4i}{2+3i}$$

b)
$$z = \frac{6-i}{5+2i}$$

d)
$$z = (1+i)^5$$

f)
$$z^2 + 1 - i = 0$$

4. Skizzieren Sie die Lösungesmengen von

a)
$$0 < \text{Re}(z) < 1$$

$$\mathbf{c)} \ \left| \frac{z}{z+1} \right| = 2$$

a)
$$0 < \text{Re}(z) < 1$$
 c) $\left| \frac{z}{z+1} \right| = 2$ **e**) $\text{Im}\left(\left| \frac{z-\mathbf{i}}{z+1} \right| \right) = 0$

b)
$$|z| = \text{Re}(z) + 1$$

b)
$$|z| = \text{Re}(z) + 1$$
 d) $|z - 2| + |z + 2| = 5$ **f)** $\left| \frac{z - \mathbf{i}}{z + 1} \right| = 1$

f)
$$\left| \frac{z - \mathbf{i}}{z + 1} \right| = 1$$

5. Berechnen Sie die komplexen Lösungen der Gleichung

$$z^5 + \bar{z} = 0.$$

6. Finden Sie die komplexen Lösungen der Gleichung

$$|z|^2 - z|z| + z = 0.$$

Abgabe: Donnerstag, 1. November 2018 bis 13:00, in den Fächlein des jeweiligen Übungsleiters im HG F 28.

7. Online-Aufgaben

Abgabe der Multiple-Choice Aufgaben: Online bis Donnerstag 1. November 20:00.

Es sind jeweils mehrere Antworten möglich.

a) Welche der folgenden Aussagen sind richtig?

(a)
$$i^2 = -1$$
.

(b)
$$\frac{1}{i} = -i$$
.

(c)
$$i^3 = -i$$
.

(d)
$$i^{17} = i$$
.

(e)
$$\frac{1}{i^4} = -1$$
.

b) Für die komplexe Zahl $z=\frac{1+4i}{4+i}$ gilt...

(a)
$$z = i$$
.

(b)
$$z = \frac{8-15i}{17}$$
.
(c) $z = \frac{8-15i}{15}$.
(d) $z = \frac{15i}{17}$.

(c)
$$z = \frac{8-15i}{15}$$

(d)
$$z = \frac{15i}{17}$$

- c) Sei z = 2 3i. Welches ist die der Imaginärteil der komplex konjugierten Zahl
 - (a) 3.

- **(b)** −3.
- **(c)** 3*i*.
- **(d)** -3i.
- **d)** Für die komplexe Zahl $z=(2-i)^3$ gilt...
 - (a) z = 8 + i.
 - **(b)** z = 2 11i.
 - (c) z = 8 i.
 - **(d)** z = 2 13i.
- **e**) $\left(\frac{\sqrt{3}}{2} \frac{i}{2}\right)^{327}$ ist...
 - (a) 327*i*.
 - **(b)** -i.
 - (c) $(\frac{\sqrt{3}}{2})^{327}$. (d) $\frac{\sqrt{3}}{2} \frac{i}{2}$.