
Analysis III (BAUG) Assignment 12
Prof. Dr. Alessandro Sisto
Organizer: Davide Spriano

The first 4 questions of this exercise sheet review the topics connected to beams (static
and dynamics). You should try to solve at least one point for each of them.

Question 5 is Exercise 4.1 of Lecture 10. Giving a full correct solution may be not easy,
but it is a good exercise to think at least a little bit about it.

Question 1:

For each of the following pairs of functions f, g, find the solution to the following IBVP:

PDE : utt(x, t) = −uxxxx(x, t) for 0 < x < 1 and t > 0

BC : u(0, t) = 0, uxx(0, t) = 0, u(1, t) = 0, uxx(1, t) = 0 for t ≥ 0

IC : u(x, 0) = f(x), ut(x, 0) = g(x) for 0 ≤ x ≤ 1

(i) f(x) = g(x) = sin(πx) for x ∈ [0, 1].

Solution:
Recall from the lectures that the solution to this general IBVP is given by:

u(x, t) =
∞∑
n=1

sin(nπx)
(
an sin((nπ)2t) + bn cos((nπ)2t)

)
where the constants an and bn satisfy:{

u(x, 0) = f(x) =
∑∞

n=1 bn sin(nπx)
ut(x, 0) = g(x) =

∑∞
n=1(nπ)2an sin(nπx)

In this case, since f(x) = g(x) = sin(πx), it is clear that b1 = 1, bn = 0 for n ≥ 2,
a1 = 1

π2 and an = 0 for n ≥ 2. Thus, we obtain that the solution in this case is:

u(x, t) = sin(πx)

(
1

π2
sin(π2t) + cos(π2t)

)

(ii) f(x) = 1− x2 and g(x) = 0 for x ∈ [0, 1].
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Solution:
Recall from the lectures that the solution to this general IBVP is given by:

u(x, t) =
∞∑
n=1

sin(nπx)
(
an sin((nπ)2t) + bn cos((nπ)2t)

)
where the constants an and bn satisfy:{

u(x, 0) = f(x) =
∑∞

n=1 bn sin(nπx)
ut(x, 0) = g(x) =

∑∞
n=1(nπ)2an sin(nπx)

In this case, since g(x) = 0, it is clear that an = 0 for n ≥ 1. Note that the bn’s
are the coefficients of the sine Fourier series of f (in the interval [0, 1]). Thus, we
have:

bn =2

∫ 1

0

(1− x2) sin(nπx) dx

=2

[
−(1− x2) 1

nπ
cos(nπx)

]1
0

− 2

∫ 1

0

2x
1

nπ
cos(nπx) dx

=
2

nπ
− 4

nπ

[
x

1

nπ
sin(nπx)

]1
0

+
4

nπ

∫ 1

0

1

nπ
sin(nπx) dx

=
2

nπ
+

4

n2π2

[
− 1

nπ
cos(nπx)

]1
0

=
2

nπ
+

4 (1− (−1)n)

n3π3

We conclude that the solution in this case is:

u(x, t) =
∞∑
n=1

(
2

nπ
+

4 (1− (−1)n)

n3π3

)
sin(nπx) cos((nπ)2t)

Question 2:

Suppose we have a beam of length 10 (parametrized by 0 ≤ x ≤ 10) embedded in the wall
at one end, free at the other, and suppose EI = 1.

For each of the scenarios below, find the deflection curve by first writing up the cor-
responding ODE with the corresponding boundary conditions (see hints for answer), and
then solving the obtained boundary value problem using the Laplace transform.

(i) We apply force F = 1 downwards at the point x = 5.
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Solution:
The ODE we want to solve is y′′′′(x) = −δ(x − 5) with boundary conditions
y(0) = y′(0) = y′′(10) = y′′′(10) = 0.

Applying the Laplace transform to this ODE, we get

s4Y (s)−s3y(0)−s2y′(0)−sy′′(0)−y′′′(0) = s2(s2+1)Y (s)−sy′′(0)−y′′′(0) = −e−5s.

Let A = y′′(0) and B = y′′′(0), then s4Y (s)− As−B = −e−5s, hence

Y (s) =
As+B − e−5s

s4
=
A

s3
+
B

s4
− e−5s

s4

Applying the inverse Laplace transform, we obtain

y(x) =
A

2
x2 +

B

6
x3 − 1

6
(x− 5)3u(x− 5).

This also needs to satisfy the boundary conditions at x = 10, and using that
u(x− 5) = 1 around x = 10 we get y′′(x) = A+Bx− (x− 5) and y′′′(x) = B− 1,
so

0 = y′′(10) = A+ 10B − 5

0 = y′′′(10) = B − 1.

Solving this we get B = 1 and A = −5, hence the solution of the ODE is

y(x) = −5

2
x2 +

1

6
x3 − 1

6
(x− 5)3u(x− 5).

(ii) The force we apply is described by the function

f(x) =

{
0 for x < 4

8− 2x for 4 ≤ x.

Solution:
The ODE we want to solve is y′′′′(x) = −2u(x−4)(x−4) with boundary conditions
y(0) = y′(0) = y′′(10) = y′′′(10) = 0.

Applying the Laplace transform to this ODE, we get

s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0) = s4Y (s)− sy′′(0)− y′′′(0) = −2e−4s

s2
.

3



Let A = y′′(0) and B = y′′′(0), then s4Y (s)− As−B = −2e−4s

s2
, hence

Y (s) =
As3 +Bs2 − 2e−4s

s5
=
A

s3
+
B

s4
− 2e−4s

s6
.

Taking the Laplace inverse, we get

y(x) =
A

2
x2 +

B

6
x3 − 1

60
(x− 4)5u(x− 4).

This function must also satisfy the remaining two boundary conditions. Using
that u(x− 4) = 1 around the point x = 10, we have y′′(x) = A+Bx− 1

3
(x− 4)3

and y′′′(x) = B − (x− 4)2. Therefore,

0 = y′′(10) = A+ 10B − 72

and
0 = y′′′(10) = B − 36.

Solving this, we get B = 36 and A = −288, so the deflection curve is

y(x) = −144x2 + 6x3 − 1

60
(x− 4)4u(x− 4).

Question 3:

Suppose we have a beam of length 3 (parametrized by 0 ≤ x ≤ 3) simply supported at
both ends, and suppose EI = 4

For each of the scenarios below, find the deflection curve by first writing up the cor-
responding ODE with the corresponding boundary conditions (see hints for answer), and
then solving the obtained boundary value problem using the Laplace transform.

(i) We simultaneously apply force F = 1 downwards at both of the points x = 1 and
x = 2.

Solution:
The ODE we want to solve is 4y′′′′(x) = −δ(x − 1) − δ(x − 2) with boundary
conditions y(0) = y′′(0) = y(3) = y′′(3) = 0.

Applying the Laplace transform to this ODE, we get

4s4Y (s)−4s3y(0)−4s2y′(0)−4sy′′(0)−4y′′′(0) = 4s4Y (s)−4s2y′(0)−4y′′′(0) = −e−s−e−2s.

4



Let A = y′(0) and B = y′′′(0), then 4s4Y (s)− 4As2 − 4B = −e−s − e−2s, hence

Y (s) =
4As2 + 4B − e−s − e−2s

4s4
=
A

s2
+
B

s4
− e−s

4s4
− e−2s

4s4
.

Taking the Laplace inverse, we get

y(x) = Ax+
B

6
x3 − 1

24
(x− 1)3u(x− 1)− 1

24
(x− 2)3u(x− 2).

This function must also satisfy the remaining two boundary conditions :

0 = y(3) = 3A+
9B

2
− 1

3
− 1

24

and, since u(x− 1) = u(x− 2) = 1 around the point x = 3, y′′(x) = Bx− 1
4
(x−

1)− 1
4
(x− 2) around x = 3, thus

0 = y′′(3) = 3B − 1

2
− 1

4
.

Solving this, we get A = −1/4 and B = 1/4, so the deflection curve is

y(x) = −1

4
x+

1

24
x3 − 1

24
(x− 1)3u(x− 1)− 1

24
(x− 2)3u(x− 2).

(ii) The force we apply is described by the function

f(x) =

{
1 for x < 2

0 for 2 ≤ x.

Solution:
The ODE we want to solve is 4y′′′′(x) = 1 − u(x − 2) with boundary conditions
y(0) = y′′(0) = y(3) = y′′(3) = 0.

Applying the Laplace transform to this ODE, we get

4s4Y (s)−4s3y(0)−4s2y′(0)−4sy′′(0)−4y′′′(0) = 4s4Y (s)−4s2y′(0)−4y′′′(0) =
1− e−2s

s
.

Let A = y′(0) and B = y′′′(0), then 4s4Y (s)− 4As2 − 4B = 1−e−2s

s
, hence

Y (s) =
4As3 + 4Bs+ 1− 1e−2s

4s5
=
A

s2
+
B

s4
+

1

4s5
− e−2s

4s5
.

5



Taking the Laplace inverse, we get

y(x) = Ax+
B

6
x3 +

1

96
x4 − 1

96
(x− 2)4u(x− 2).

This function must also satisfy the remaining two boundary conditions :

0 = y(3) = 3A+
9B

2
+

27

32
− 1

96
= 3A+

9B

2
+

5

6

and, since u(x − 2) = 1 around the point x = 3, y′′(x) = Bx + 1
8
x2 − 1

8
(x − 2)2

around x = 3, thus

0 = y′′(3) = 3B +
9

8
− 1

8
= 3B + 1.

Solving this, we get A = 2/9 and B = −1/3, so the deflection curve is

y(x) =
2

9
x− 1

18
x3 +

1

96
x4 − 1

96
(x− 2)4u(x− 2).

Question 4:

Suppose we have a water tower (beam column) of length 10 (parametrized by 0 ≤ x ≤ 10)
and load W = 10 and EI = 10. Suppose that the lateral forces are described by the
following function:

f(x) =

{
0 for x < 5

20 for 5 ≤ x.

What is the corresponding ODE for the deflection curve. Solve the ODE to find the
deflection curve.

You can use the following formulas in your solutions:

L−1( 1

s(s2 + 1)
) = 1− cos(x)

L−1( 1

s2(s2 + 1)
) = x− sin(x)

L−1( 1

s3(s2 + 1)
) = −1 +

x2

2
+ cos(x)
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Solution:
Here f(x) = 20u(x − 5), so the ODE we want to solve is y′′′′(x) + y′′(x) = 2u(x − 5)
with boundary conditions y(0) = y′(0) = y′′(10) = y′′′(10) = 0.

Applying the Laplace transform to this ODE, we get

s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0) + s2Y (s)− sy(0)− y′(0)

= s2(s2 + 1)Y (s)− sy′′(0)− y′′′(0) =
2e−5s

s
.

Let A = y′′(0) and B = y′′′(0), then s2(s2 + 1)Y (s)− As−B = 2e−5s

s
, hence

Y (s) =
As2 +Bs+ 2e−5s

s3(s2 + 1)
=

A

s(s2 + 1)
+

B

s2(s2 + 1)
+

2e−5s

s3(s2 + 1)

Using the formulas above, we see that the inverse Laplace transform is

y(x) = A−A cos(x)+Bx−B sin(x)−2u(x−5)+(x−5)2u(x−5)+2 cos(x−5)u(x−5).

Now this also needs to satisfy the boundary conditions at x = 10, and using that
u(x− 5) = 1 around x = 10 we get y′′(x) = A cos(x) +B sin(x) + 2− 2 cos(x− 5) and
y′′′(x) = −A sin(x) +B cos(x) + 2 sin(x− 5), so

0 = y′′(10) = A cos(10) +B sin(10) + 2− 2 cos(5)

0 = y′′′(10) = −A sin(10) +B cos(10) + 2 sin(5).

We can solve this e.g. by multiplying the first equation by sin(10), the second by
cos(10) and adding them together. Then we get:

0 = B(sin2(10)+cos2(10))+2 sin(10)−2(sin(10) cos(5)−sin(5) cos(10)) = B+2 sin(10)−2 sin(5)

and hence B = 2 sin(5)− 2 sin(10). Similarly, multiplying the first one by cos(10), the
second one by sin(10) and looking at the difference, we get

0 = A(cos2(10)+sin2(10))+2 cos(10)−2(cos(10) cos(5)+sin(10) sin(5)) = A+2 cos(10)−2 cos(5),

hence A = 2 cos(5) − 2 cos(10). Plugging this back in the above formula for y(x), we
obtain the deflection curve.

y(x) =2 cos(5)− 2 cos(10)− (2 cos(5)− 2 cos(10)) cos(x) + (2 sin(5)− 2 sin(10))x

− (2 sin(5)− 2 sin(10)) sin(x)− 2u(x− 5) + (x− 5)2u(x− 5) + 2 cos(x− 5)u(x− 5).
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Question 5:

The goal of this exercise is to show that for any a > 0, the Dirac delta function δ(t − a)
behave as the ”derivative” of the Heaviside step function u(t − a). Recall that the delta
function is defined to be such that for each integrable function f , the following holds:∫ ∞

0

f(t)δ(t− a)dt = f(a).

Show that the ”derivative” of the Heaviside step function behaves as δ.

Solution:
There are several ways to show this. Here we present 2 of them. If your solution
uses different ideas and you want to know if it is correct, you can write directly to
davide.spriano@math.ethz.ch .

With the definition of δ Let u′(t− a) be the derivative of u(t− a) (note that the
derivative of u(t−a) is not well defined, but pretend it was). Let f : [0,∞)→ R be any
integrable function. Note that this implies limt→∞ f(t) = 0. Then using integration by
parts we have:

∫ ∞
0

f(t)u′(t− a)dt = f(t)u(t− a)|∞0 −
∫ ∞
0

f ′(t)u(t− a)dt =

= 0− 0−
∫ ∞
a

f ′(t)dt = f(t)|∞a = f(a).

Thus the ”derivative” of the Heaviside step function has to behave exactly like the
delta function. In this sense, we say that δ(t− a) is the derivative of u(t− a).

With Laplace We show that the delta function behaves like the derivative of the
Heaviside function with respect to the Laplace transform. Again, let a > 0.

Recall that

L{u(t− a)} =
e−as

s
.

Moreover, we have that

L{u′(t− a)} = s

(
e−as

s

)
− u(0− a) = e−as = L{δ(t− a)} .

In particular, δ behaves as the derivative of u with respect to the Laplace transform.
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