
Analysis III (BAUG) Assignment 6
Prof. Dr. Alessandro Sisto Due 1st November 2018
Coordinator: Davide Spriano

Fourier expansions and IBVP

Question 1

Solve the following wave equations. (At least 2 exercises)

(i)

PDE : utt(x, t) = 2uxx(x, t) for 0 < x < 2π and t > 0

BC : u(0, t) = 0, u(2π, t) = 0 for t ≥ 0

IC : u(x, 0) = sin(x
2
) + sin(5x

2
) for 0 ≤ x ≤ 2π

ut(x, 0) = 4 sin(3x) for 0 ≤ x ≤ 2π

Solution:
Here the initial conditions are already a sine expansion with c1 = c5 = 1, b6 = 4
and ai = bj = 0 for other values. Also, c2 = 2, so c =

√
2. Using the general

formula, we get that the solution of this PDE is

u(x, t) = sin(x
2
) cos(

√
2t
2

) + sin(5x
2

) cos(5
√
2t

2
) + 4

3
√
2

sin(3x) sin(3
√

2t)

(ii)

PDE : utt(x, t) = 4uxx(x, t) for 0 < x < 10 and t > 0

BC : u(0, t) = 0, u(10, t) = 0 for t ≥ 0

IC : u(x, 0) = 2 sin(3πx)− 4 cos( (2x+5)π
10

) for 0 ≤ x ≤ 10

ut(x, 0) = 4 cos2(πx− π
4
)− 2 for 0 ≤ x ≤ 10

Solution:
Using cos(t + π

2
) = − sin(t), we see that u(x, 0) = 2 sin(3πx) + 4 sin(2xπ

10
), thus

c30 = 2 and c2 = 4.

Also, cos(2t) = 2 cos2(t) − 1 and sin(t) = cos(t − π/2) imply that ut(x, 0) =
2 cos(2πx− π

2
) = 2 sin(2πx), meaning b20 = 2.
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Also, c2 = 4, so c = 2 here. Now the formula gives the following solution of the
PDE:

u(x, t) = 4 sin(2πx
10

) cos(2π·2t
10

) + 2 sin(3πx) cos(3π · 2t) + 2
2π·2 sin(2πx) sin(2π · 2t)

(iii)

PDE : utt(x, t) = 3uxx(x, t) for 0 < x < 6 and t > 0

BC : u(0, t) = 0, u(6, t) = 0 for t ≥ 0

IC : u(x, 0) = sin(2πx) for 0 ≤ x ≤ 6

ut(x, 0) = 3 for 0 ≤ x ≤ 6

Solution:
u(x, 0) is already a sine expansion: c12 = 1, cn = 0 otherwise.

The Fourier coefficients of ut(x, 0) are the following:

bn =
2

6

∫ 6

0

3 sin(nπx
6

) dx = 2
6

[−3·6
nπ

cos(nπx
6

)
]6
0

=

{
0 if n is even
12
πn

if n is odd.

c2 = 3, so c =
√

3, and hence the formula gives the following solution:

u(x, t) = sin(2πx) cos(2π·
√

3t)+
∑∞

k=0
12

π(2k+1)
· 6
(2k+1)π·

√
3

sin( (2k+1)π
6

x) sin( (2k+1)π·
√
3

6
t)

(iv)

PDE : utt(x, t) = uxx(x, t) for 0 < x < π and t > 0

BC : u(0, t) = 0, u(π, t) = 0 for t ≥ 0

IC : u(x, 0) = x for 0 ≤ x ≤ π

ut(x, 0) = x+ 3 for 0 ≤ x ≤ π
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Solution:
The Fourier sine coefficients of u(x, 0) are the following:

cn =
2

π

∫ π

0

x sin(nx) dx =

[
− 2

nπ
x cos(nx)

]π
0

+
2

nπ

∫ π

0

cos(nx) dx

=

[
− 2

nπ
x cos(nx)

]π
0

+

[
− 2

n2π
sin(nx)

]π
0

=

{
− 2
n

if n is even
2
n

if n is odd.

The same computation as above shows that the Fourier sine coefficients of the
function φ(x) = 3 on [0, π] are

dn =

{
0 if n is even
12
πn

if n is odd,

so the Fourier sine coefficients of ut(x, 0) are

bn = cn + dn =

{
− 2
n

if n is even
12+2π
πn

if n is odd,

Furthermore, c2 = 1, so c = 1 and the solution of the PDE here (using the values
bn, cn above) is:

u(x, t) =
∑∞

n=1 cn sin(nx) cos(nt) +
∑∞

n=1
bn
n

sin(nx) sin(nt)

Question 2

Use d’Alembert’s formula for the following problems about wave equations on infinite
strings. (At least 2 exercises)

(i)

PDE : utt(x, t) = uxx(x, t) for −∞ < x <∞ and t > 0

IC : u(x, 0) = x for −∞ < x <∞
ut(x, 0) = cos(x) for −∞ < x <∞

Compute u(x, t) for all x and all t ≥ 0.
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Solution:
Here c2 = 1 so c = 1. For f(x) = u(x, 0) and g(x) = ut(x, 0), d’Alembert’s
formula gives

u(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(s) ds

=
x− t+ x+ t

2
+

1

2

∫ x+t

x−t
cos(s) ds = x+

1

2
(sin(x+ t)− sin(x− t)).

(ii)

PDE : utt(x, t) = uxx(x, t) for −∞ < x <∞ and t > 0

IC : u(x, 0) =

{
8x− 2x2 for 0 ≤ x ≤ 4

0 otherwise

ut(x, 0) =

{
16 for 0 ≤ x ≤ 4

0 otherwise

Compute u(11, 3) and u(5, 2).

[Exam question, 2013]

Solution:
Again we use d’Alembert with the usual functions f and g for the initial condi-
tions. c2 = c = 1.

u(11, 3) =
f(14) + f(8)

2
+

1

2

∫ 14

8

g(s) ds = 0

because f and g are 0 on the interval [8, 14].

u(5, 2) =
f(7) + f(3)

2
+

1

2

∫ 7

3

g(s) ds =
0 + 6

2
+

1

2

∫ 4

3

16 ds = 3 + 8 = 11
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(iii)

PDE : utt(x, t) = uxx(x, t) for −∞ < x <∞ and t > 0

IC : u(x, 0) = 0 for −∞ < x <∞

ut(x, 0) =

{
1 for − 1 ≤ x ≤ 1

0 otherwise

Compute u(x, t) for all x and all t ≥ 0.

[Exam question, 2008]

Solution:
Once again, c2 = c = 1.

u(x, t) =
f(x+ t) + f(x− t)

2
+

1

2

∫ x+t

x−t
g(s) ds =

1

2

∫ x+t

x−t
g(s) ds

=



0 if x− t ≤ x+ t < −1
1+x+t

2
if x− t < −1 and − 1 ≤ x+ t ≤ 1

1 if x− t < −1 and 1 < x+ t

t if − 1 ≤ x− t ≤ x+ t ≤ 1
1−x+t

2
if − 1 ≤ x− t ≤ 1 and 1 < x+ t

0 if 1 < x− t ≤ x+ t.

(iv)

PDE : utt(x, t) = uxx(x, t) for −∞ < x <∞ and t > 0

IC : u(x, 0) =
1

x2 + 1
for −∞ < x <∞

ut(x, 0) =
1

x2

Compute u(x, t) for all x and all t ≥ 0.

Solution:
Once again, c2 = c = 1. We have

∫ x+t
x−t

1
x2
dx = 1

x−t −
1
x+t

= −2t
x2−t2 .
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Thus

u(x, t) =
1

2

(
1

x2 + 2tx+ t2 + 1
− 1

x2 − 2tx+ t2 + 1

)
+
−t

x2 − t2
.

Question 3

Let f(x) = −2x for x ∈ [0, 10]. Choose the correct Fourier series (sines, cosines or normal
one) and write f as a trigonometric series.

Solution:
Since f is defined on an interval of the form [0, L] and not [−L,L] we will not use the
normal Fourier series. Since f(0) = 0, but f ′(0) = 2 6= 0, we can only use the Fourier
sine series.

The coefficients are as follows:

bn =
2

10

∫ 10

0

−2x sin(
nπx

10
) dx =

[
4

nπ
x cos(

nπx

10
)

]10
0

− 4

nπ

∫ 10

0

cos(
nπx

10
) dx

=

[
4

nπ
x cos(

nπx

10
)

]10
0

+

[
40

n2π2
sin(

nπx

10
)

]10
0

=

{
40
nπ

if n is even

− 40
nπ

if n is odd.

Question 4

Solve the following IBVP.

PDE : ut(x, t) = uxx(x, t) for 0 < x < 10 and t > 0

BC : u(0, t) = 15, u(10, t) = 35 for t ≥ 0

IC : u(x, 0) = 15 for 0 ≤ x < 10

Solution:
We will use the superposition principle. Firstly, we will find a solution that does not
depend on the time that satisfy the PDE and the boundary condition. A function f
of the variable x that satisfy fxx = 0 (because f does not depend on t) has the form
f(x) = Ax+B. By f(0) = 15 and f(10) = 35 we get f(x) = 15 + 2x.

It is important to remember that f is the steady-state solution of the above IBVP.
That means that regardless of the initial condition IC, any solution of the above IBPV
will look like f after an infinite amount of time.
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Suppose that v satisfy the following IBVP:

PDE : ut(x, t) = uxx(x, t) for 0 < x < 10 and t > 0

BC : u(0, t) = u(10, t) = 0 for t ≥ 0

IC : u(x, 0) = 15− f(x) for 0 ≤ x < 10

Then u = v + f is a solution of the original IBVP. But we know how to find such a v.
Moreover, we have that v(x, 0) = 15−f(x) = 15−15−2x = −2x, and the sine Fourier
series for −2x was computed in exercise 5.

Therefore

v(x, t) =
∞∑
n=1

(−1)n
40

nπ
e−(

nπ
10

)2t sin(
nπ

10
x).

As a result, we get a solution of the original IBVP, namely:

u(x, t) = v(x, t) + f(x) = 2x+ 15 +
∞∑
n=1

(−1)n
40

nπ
e−(

nπ
10

)2t sin(
nπ

10
x).

Chain rule training

The goal of this part of exercises it to understand how to the change of variables can
allow us to solve new IVPs, that is to solve Question 8 (which is the hard question of this
exercise sheet). If you solve Question 8, you don’t need to do any other question. However,
Questions 5,6 and 7 are a training to Question 8. You should do as many point of them
as you need to feel confident with the topics presented.

Question 5

Let u(x, y) be a function satisfying uxx = utt. For each of the following change of coordi-
nates, choose the correct PDE satisfied by u with respect to the new coordinates.

(i) ξ = 4x, η = 5t.

� uξξ = uηη;

� 4uξξ = 5uηη;

� 16uξξ − 40uξη + 25uηη = 0;

� 16uξξ − 25uηη = 0.Correct
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Solution:
Since ∂ξ

∂x
= 4, ∂ξ

∂t
= 0, ∂η

∂x
= 0 ∂η

∂t
= 5, we have uxx = 16uξξ and utt = 25uηη. Thus

the correct answer is 16uξξ − 25uηη = 0.

(ii) ξ = x+ 3t, η = t.

� uξξ = uηη;

� −8uξξ = 6uξη + uηη;Correct

� 9uξξ − uηη = 0;

� uξξ = 9uηη + 6uηξ.

Solution:
We have uxx = uξξ and utt = 9uξξ+6uξη+uηη. Thus the second answer is correct.

(iii) ξ = 2x, η = xt

� ξ2uξξ = η2uηη;

� −8
3
ξuξξ = 4 ξ

η
uξη + uηη;

� 4uξξ + 4η2uξη +

((
1
2ξ

)2
− η2

)
uηη = 0;

� 4(uξξ + 2η
ξ
uξη) +

((
2η
ξ

)2
−
(
1
2
ξ
)2)

uηη = 0.correct

Solution:
Consider the following: ∂ξ

∂x
= 2, ∂ξ

∂t
= 0, ∂η

∂x
= t and ∂η

∂t
= x. Since x = 1

2
ξ and
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t = 2η
ξ

, we have ∂η
∂x

= 2η
ξ

and ∂η
∂t

= 1
2
ξ. Thus:

ux = 2 · uξ +
2η

ξ
· uη = 2uξ +

2η

ξ
uη;

ut = 0 · uξ +
1

2
ξ · uη =

1

2
ξuη;

uxx =
∂

∂x

(
2uξ +

2η

ξ
uη

)
=
∂ξ

∂x

∂

∂ξ

(
2uξ +

2η

ξ
uη

)
+
∂η

∂x

∂

∂η

(
2uξ +

2η

ξ
uη

)
=

= 2

(
2uξξ − 2

η

ξ2
uη + 2

η

ξ
uηξ

)
+ 2

η

ξ

(
2uξη +

2

ξ
uη + 2

η

ξ
uηη

)
=

= 4

(
uξξ + 2

η

ξ
uξη +

η2

ξ2
uηη

)
utt =

∂

∂t

(
1

2
ξuη

)
=
∂ξ

∂t

∂

∂ξ

(
1

2
ξuη

)
+
∂η

∂t

∂

∂η

(
1

2
ξuη

)
=

=
1

4
ξ2uηη

Thus the PDE translates as uξξ + η
ξ
uξη +

(
η2

ξ2
− 1

16
ξ2
)
uηη = 0.

Question 6

Consider a vibrating infinite string that vibrates with propagation speed c, where c repre-
sents the speed of light (for instance the wave caused by a light beam). Suppose that an
observer is moving next to it with constant speed v (starting from x = 0 at time t = 0). If
we consider Einstein’s theory of relativity, the change of coordinates between the system
of the string (coordinates x, t) and the observer (coordinates ξ, η) is ξ = γ(x − vt) and
η = γ

(
t− vx

c2

)
, where γ = 1√

1− v2
c2

is a constant. What is the PDE satisfied by the string

from the point of view of the observer?

Solution:
As before, we compute the derivatives of the coordinates. We have ∂ξ

∂x
= γ, ∂ξ

∂t
= −γv,
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∂η
∂x

= −γv
c2

and ∂η
∂t

= γ. Thus we get

ux = γuξ −
γv

c2
uη

ut = −γvuξ + γuη

uxx = γ2uξξ −
γ2v

c2
uηξ −

γ2v

c2
uξη +

(γv
c2

)2
uηη = γ2

(
uξξ − 2

v

c2
uξη +

( v
c2

)2
uηη

)
utt = γ2v2uξξ − vγ2uηξ − vγ2uξη + γ2uηη = γ2

(
v2uξξ − 2vuηξ + uηη

)
Thus from utt = c2uxx, we get

γ2
(
v2uξξ − 2vuηξ + uηη

)
= γ2c2

(
uξξ − 2

v

c2
uξη +

( v
c2

)2
uηη

)
⇔ v2uξξ − 2vuηξ + uηη = c2uξξ − 2vuξη +

v2

c2
uηη

⇔
(

1− v2

c2

)
uηη = (c2 − v2)uξξ

⇔ uηη = c2uξξ.

In particular, we observe exactly the same wave equation. This is because in general
relativity, the speed of light is constant in all systems of reference, thus a wave with
propagation speed c looks exactly the same in all systems of reference.

Question 7

Consider the following IVP.

PDE : utt(x, t) = uxx for −∞ < x <∞ and t > 0

IC : u(x, 0) = f(x) for −∞ < x <∞ and t > 0

ut(x, 0) = g(x) for −∞ < x <∞ and t > 0

For each coordinate change of exercise 5, write the corresponding IVP for v(ξ, η) =
u(ξ(x, t), η(x, t)).

Solution:

(i) ξ = 4x, η = 5t. We know that the PDE is 16vξξ = 25vηη. Moreover, we have that
x = 1

4
ξ and t = 1

5
η. Thus u(x, 0) = f(x) is equivalent to v(1

4
ξ, 0) = f(1

4
ξ). It is
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clear that this is equivalent to v(ξ, 0) = f(ξ). For the first derivative, we have
that ut = 5vη. Thus we obtain:

PDE : 16vξξ = 25vηη for −∞ < x <∞ and t > 0

IC : v(ξ, 0) = f(ξ) for −∞ < x <∞ and t > 0

vη(ξ, 0) =
1

5
g(ξ) for −∞ < x <∞ and t > 0

(ii) ξ = x + 3t, η = t. We know that the PDE is −8vξξ = 6vξη + vηη. As before, we
obtain x = ξ − 3η, and thus, since η = t, v(ξ, 0) = f(ξ). Consider ut. We know
that ut = −3vξ + vη, thus ut(x, 0) = g(x) is equivalent to −3vξ(ξ − 0, 0) + vη(ξ −
0, 0) = g(ξ − 0). This, however, can be improved. Indeed, consider the function
v(ξ, 0) = f(ξ) as a function of the only variable ξ. We have that vξ(ξ, 0) = f ′(ξ).
Thus we obtain:

PDE : − 8vξξ = 6vξη + vηη for −∞ < x <∞ and t > 0

IC : v(ξ, 0) = f(ξ) for −∞ < x <∞ and t > 0

vη(ξ, 0) = g(ξ) + f ′(ξ) for −∞ < x <∞ and t > 0

(iii) ξ = 2x, η = xt. We know that the PDE is uξξ + η
ξ
uξη +

(
η2

ξ2
− 1

16
ξ2
)
uηη = 0.

Moreover we have that x = 1
2
ξ and t = 2η

ξ
. Thus u(x, 0) = f(x) translates

as v(1
2
ξ, 0) = f(1

2
ξ). Thus also in this case we have v(ξ, 0) = f(ξ). Consider

ut = 1
2
ξvη. We have that ut(x, 0) = g(x) translates as 1

4
ξvη(

1
2
ξ, 0) = g(1

2
ξ), thus

vη(ξ, 0) = 2
ξ
g(ξ). We obtain:

PDE : uξξ +
η

ξ
uξη +

(
η2

ξ2
− 1

16
ξ2
)
uηη = 0 for −∞ < x <∞ and t > 0

IC : v(ξ, 0) = f(ξ) for −∞ < x <∞ and t > 0

vη(ξ, 0) =
2

ξ
g(ξ) for −∞ < x <∞ and t > 0

Question 8

This question is harder then the other ones. If you have problems with it, Questions 5 – 7
may be of help.
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(i) Consider a vibrating infinite string, and suppose that an observer is moving next to it
with constant speed v (starting from x = 0 at time t = 0). What is the PDE satisfied
by the string from the point of view of the observer? (Use Newtonian physic)

Solution:

We know that the vibrating string satisfy the PDE utt = c2uxx for some c. Let
ξ and η denote the coordinate in the reference system of the observer. That is,
ξ = 0 represents the place where the observer stand and η represents the time.
Since the observer moves at constant speed v, and starts at time t = 0 at the
position x = 0, we have that it’s position after an amount of time t1 is passed is
exactly vt1. Thus at the time t1the coordinate x = vt1 and ξ = 0 describe the
same point. Thus ξ(x, t) = x− vt. Since the time η is the same for all reference
systems (at least in Newtonian physics), we have η(x, t) = t. In order to express
the PDE that the string satisfy from the perspective of the observer, we need to
express the derivatives uxx and utt in terms of the new coordinates ξ, η.

Observe that ∂ξ
∂x

= 1, ∂ξ
∂t

= −v, ∂η
∂x

= 0, and ∂η
∂t

= 1. Thus we have

ux =
∂u

∂x
=
∂u

∂ξ
· ∂ξ
∂x

+
∂u

∂η
· ∂η
∂x

= uξ,

ut =
∂u

∂ξ
· ∂ξ
∂t

+
∂u

∂η
· ∂η
∂t

= −vuξ + uη.

Second derivatives:

uxx =
∂(ux)

∂x
=
∂(ux)

∂ξ
· ∂ξ
∂x

+
∂(ux)

∂η
· ∂η
∂x

=
∂uξ
∂ξ

= uξξ,

utt =
∂(ut)

∂ξ
· ∂ξ
∂t

+
∂(ut)

∂η
· ∂η
∂t

= −v∂(−vuξ + uη)

∂ξ
+
∂(−vuξ + uη)

∂η
=

= v2uξξ − vuηξ − vuξη + uηη = v2uξξ − 2vuηξ + uηη.

Thus uxx = utt translates as c2uξξ = v2uξξ − 2vuηξ + uηη.

(ii) Solve the following IVP.

PDE : utt(x, t)− 2utx = 24uxx(x, t) for −∞ < x <∞ and t > 0

IC : u(x, 0) = 0 for −∞ < x <∞ and t > 0

ut(x, 0) = sin(x) for −∞ < x <∞ and t > 0
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Solution:
Looking at the solution of the problem before, we realize that it looks oddly
similar to the PDE of this exercise. Indeed, observing that 24 = 52− 12, we write
the PDE as follows:

52uxx = uxx − 2uxt + utt.

Thus, this PDE models the vibration of an infinite string from the perspective
of an observer moving at constant speed. So, what we need to do to solve the
problem is to change the variable in order to get to the reference system of the
string (and not of the observer), solve the problem there and then translate it
back in the observer’s perspective.

The change of variables needs to be opposite, so we get ξ = x + t and η = t.
Computing the derivatives as before we get ut = uξ + uη, uxx = uξξ, utt =
uξξ + 2uηξ + uηη and uxt = uξξ + uξη. Thus 52uxx = uxx − 2uxt + utt translates as
52uξξ = uξξ − 2(uξξ = uξη) + uξξ + 2uηξ + uηη, that is 52uξξ = uηη.

Let v be a solution of the IVP with the new coordinates, that is:

PDE : vηη(ξ, η) = 52vξξ(ξ, η) for −∞ < ξ <∞ and η > 0

IC : v(ξ, 0) = 0 for −∞ < ξ <∞ and η > 0

vη(ξ, 0) = sin(ξ) for −∞ < ξ <∞ and η > 0

Note that we obtained the IC as follows: since ξ = x+ t and η = t, we have that
the initial condition u(x, 0) = 0 translates as v(x + 0, 0) = 0, that is v(ξ, 0) = 0.
Similarly, ut(x, 0) = sin(x) translates as vξ(ξ + 0, 0) + vη(ξ + 0, 0) = sin(ξ + 0).
Since the function v(ξ, 0) is constant in the variable ξ, its derivative with respect
to ξ must be zero. Thus ut(x, 0) = sin(x) translates as vη(ξ, 0) = sin(ξ).

We can explicitly compute v using d’Alembert:

v(ξ, η) =
1

10

∫ ξ+5η

ξ−5η
sin(s)ds =

1

10
(cos(ξ + 5η)− cos(ξ − 5η)) .

Thus the original solution of the IVP is

u(x, t) = v(x+ t, t) =
1

10
(cos((x+ t) + 5t)− cos((x+ t)− 5t))) =

=
1

10
(cos(x+ 6t)− cos(x− 4t)).
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