
Analysis III for D-BAUG, Fall 2018 — Lecture 11

Lecturer: Alex Sisto (sisto@math.ethz.ch)∗

1 Beams (Balken)

Beams are basic mechanical systems that appear over and over in civil engineering. We consider a
beam of length L whose axis of symmetry is aligned with the x-axis, the left endpoint of the beam
is at the origin, and the right endpoint at x = L.

Forces acting on the beam cause the beam to deflect. The shape of the beam under the influence
of external forces is described by the deflection curve y(x).

Here upward is considered the positive direction. Therefore y(x) > 0 if the deflection curve
lies above the symmetry axis at point x, and y(x) < 0 if it lies below. Later we will also consider
vertical beams, or beam columns.

When we analyze beams, there are two basic cases to consider. The first is the static case, where
the beam is in static equilibrium and does not move. In this case the deflection curve y = y(x)
does not depend on time, and its shape is determined by an ODE. The second case is the dynamic
case, where there is a net force acting on the beam. This leads to acceleration and implies that
the deflection curve changes over time. In this case its shape y = y(x, t) is determined by a PDE.
Today we focus on the static case.

∗These notes were originally written by Menny Akka and edited by Martin Larsson. Some material was also taken
from Alessandra Iozzi’s notes.
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2 The Euler-Bernoulli beam equation

The deflection curve y(x) of a static beam satisfies the Euler-Bernoulli beam equation,

EIy′′′′(x) = f(x),

where E is the Young modulus of elasticity, I is the moment of inertia of a cross-section of the
beam, and f(x) is the load, or force per unit length, acting on the beam. We will not derive this
equation here; let us only mention that the parameter E depends on the material the beam is made
of, while I depends on the geometry of the beam.

To solve this fourth-order ODE we need four boundary conditions. What they are depends on
how the beam is attached at the endpoints. There are three main types:

(i) Embedded: y(0) = y′(0) = 0,

(ii) Free end: y′′(0) = y′′′(0) = 0,

(iii) Simply supported: y(0) = y′′(0) = 0.

(In all three cases, “0” can be replaced by “L” to describe the other end.)

Example 2.1. Here are a few examples of beams attached in various ways, along with correspond-
ing boundary conditions:

• Embedded at both ends: y(0) = y′(0) = y(L) = y′(L) = 0.

• Cantilever beam, for instance a diving board or an airplane wing: y(0) = y′(0) = y′′(L) =
y′′′(L) = 0.

• Simply supported at both ends: y(0) = y′′(0) = y(L) = y′′(L) = 0.
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3 Elastic foundation

In some situations the beam rests on a foundation which is elastic and contributes an upward force
acting along the length of the beam:

The force exerted by the elastic foundation depends on how compressed the foundation is. It is
proportional to the deflection of the beam at each point. Adjusting the Euler-Bernoulli equation
to account for this results in the ODE

EIy′′′′(x) = f(x)− ky(x),

where k > 0 is the spring constant (or modulus) associated with the elastic foundation. Note that
a negative deflection y(x) < 0 leads to the additional positive load −ky(x) on the right-hand side,
which is consistent with our convention that the positive direction is upwards. For the purpose of
solving this equation it is often convenient to write it as

y′′′′(x) + 4a4y(x) =
f(x)

EI
,

where a =
(

k
4EI

)1/4
.

4 Beam columns (“water towers”)

Another important type of beam is the beam column, which consists of a vertical beam with a mass
at the top:

The deflection curve is now parameterized by x, which runs from 0 (the bottom of the beams)
to L (the top of the beam), and we choose rightwards1 as the positive direction for the deflection
curve y(x). Adjusting the Euler-Bernoulli equation to account for this situation results in the ODE

y′′′′(x) +
W

EI
y′′(x) =

f(x)

EI
.

1Note that the convention is changed form the first version of this lecture note in order to match the picture.
This is just a convention and does not effect the way the exercises are solved.
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Here f(x) is an external horizontal load on the beam, for example the wind pressure w(x) = w in
the picture. Again, f(x) is positive if the load acts rightwards. The mass W (the water on top) is
called the axial load.

5 Solving the beam equation using the Laplace transform

The Laplace transform has two key advantages that makes it a very useful tool for solving the
beam equation: (i) differential equations become algebraic equations, and (ii) the Laplace transform
interacts nicely with the Heaviside and Dirac delta functions.

Small mathematical issue: We’ll be computing the Laplace transform Y (s) = L{y(x)} =∫∞
0
e−sxy(x)dx of the deflection curve y(x). However, y(x) is only defined for 0 ≤ x ≤ L, so how

can we perform this calculation? The answer is simple: we view y(x) as a function defined for all
x ≥ 0, take the Laplace transform, solve for Y (s), and compute the inverse Laplace transform to
obtain y(x) (for all x ≥ 0). However, only the values of y(x) for 0 ≤ x ≤ L matter for the solution
of the beam equation.

We’ll solve the three-point beam bending problem:

That is, we have a simply supported beam with a downward point load of size F at location
x = a. Notice how the Dirac delta function allows us to capture point loads: we want our downward
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load f(x) be zero for x 6= a, and at the same time have a total load
∫ L

0
f(x)dx = F . This is exactly

what the Dirac delta function accomplishes via the sifting property.
This leads to the following problem:

Find y = y(x) such that

(1)


EIy′′′′(x) = −Fδ(x− a), 0 < x < L, (ODE)

y(0) = y′′(0) = 0

y(L) = y′′(L) = 0
(BC)

Example 5.1. Let’s solve the problem (1) with EI = 1, L = 2, F = 1, a = 1. The ODE then
becomes

y′′′′(x) = −δ(x− 1).

We could integrate this directly, but let’s instead use the Laplace transform to see how it works.
With Y (s) = L{y(x)} we get

s4Y (s)− s3y(0)− s2y′(0)− sy′′(0)− y′′′(0) = −e−s.

Here y(0) = y′′(0) = 0 due to the boundary conditions. As we do not yet know the values of the
other derivatives at zero, let’s write c1 = y′(0) and c2 = y′′′(0) for the moment. Then

Y (s) =
−e−s

s4
+
c1
s2

+
c2
s4
.

From the table of Laplace transforms we know that L−1{ 1
s2 } = x and L−1{ 1

s4 } = x3

6 . By the

t-shifting property, L−1{ 1
s4 e
−s} = (x−1)3

6 u(x− 1), where u(x) is the Heaviside function. Therefore,

y(x) =
−(x− 1)3

6
u(x− 1) + c1x+

c2
6
x3. (5.1)

It remains to identify c1 and c2. For this we use the remaining boundary conditions. First, we have

0 = y′′(2) =
−3× 2× (2− 1)

6
+ 0 +

c2
6
× 3× 2× 2 = −1 + 2c2

and therefore c2 = 1/2. Then we get

0 = y(2) =
−(2− 1)3

6
+ c1 × 2 +

1

2× 6
× 23 =

1

2
+ 2c1,

and therefore c1 = −1/4. Plugging these values of c1 and c2 into (5.1) we finally end up with the
solution,

y(x) =
−(x− 1)3

6
u(x− 1)− x

4
+
x3

12
.
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Example 5.2. You may be asked to translate a diagram of the following type into a corresponding
beam equation:

Figure 1: A beam with free ends and foundation with modulus k.

In this case, we clearly need to use the beam equation with elastic foundation. That is, we should
consider the ODE

EIy′′′′(x) + ky(x) = f(x).

Since the beam has free ends, the boundary conditions are

y′′(0) = y′′′(0) = y′′(L) = y′′′(L) = 0.

Finally, we need to find the function f(x). It is supposed to be zero outside the interval [a, b],
and move linearly from the value −w1 at x = a to the value −w2 at x = b (pay attention to the
minus signs: the load is directed downwards!). This can be done by first finding the linear function
through −w1 at a and −w2 at b, namely

−x− a
b− a

w2 −
x− b
a− b

w1.

This function is not zero outside [a, b], but we can use the Heaviside function to make it zero there:
simply multiply by u(x− a)− u(x− b). Indeed, this factor is one for a ≤ x < b and zero otherwise.
Therefore we get

f(x) = −
(
x− a
b− a

w2 +
x− b
a− b

w1

)
(u(x− a)− u(x− b)) .

Now you can solve the resulting equation using the Laplace transform!
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