
Analysis III for D-BAUG, Fall 2018 — Lecture 7

Lecturer: Alex Sisto (sisto@math.ethz.ch)∗

1 Characteristic lines

Last time we considered the one-dimensional wave equation,

utt = c2uxx, (x, t) ∈ R× (0,∞). (1.1)

We ended by defining the characteristic lines of a point (x0, t0), and observing that they determine
a triangle, which is known as the characteristic triangle or domain of dependence:
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Recall D’Alembert’s solution

u(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct
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where f(x) and g(x) specify the initial conditions u(x, 0) = f(x) and ut(x, 0) = g(x). It follows
from this expression that the solution u(x0, t0) at the point (x0, t0) is completely determined by
f(x) and g(x) on the base and the base vertices of the domain of dependence. In fact, the solution
u(x, t) at any point (x, t) inside the domain of dependence is pinned down by f(x) and g(x) on the
base and the base vertices.

We also consider the region of influence of an interval [x1, x2]:

∗These notes were originally written by Menny Akka and edited by Martin Larsson. Some material was also taken
from Alessandra Iozzi’s notes.
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Its name comes from the fact that the solution u(x, t) at points (x, t) inside the region of influence
depend on (but are not necessarily fully determined by) the initial conditions f(x) and g(x) on the
interval [x1, x2].

Both the domain of dependence and the region of influence are bounded by two characteristic
lines. In formulas, these lines are given by

x− ct = const. and x+ ct = const.

For the domain of dependence of a point (x0, t0), the two constants are x0−ct0 and x0+ct0, respec-
tively. For the region of influence of an interval [x1, x2], the constants are x1 and x2, respectively.
Notice the connection with the change of variables ξ = x− ct and η = x+ ct that we used to derive
D’Alembert’s solution of the wave equation:

Let ξ(x, t) = x− ct and η(x, t) = x+ ct be the change of variables that transforms
the wave equation (1.1) into the much simpler equation uξη = 0. The characteristic
lines are precisely those lines in the (x, t) plane along which either ξ(x, t) or η(x, t)
is constant.

2 Method of characteristics

We mentioned last time that the change of variables technique used to derive D’Alembert’s solution
can be used for more general PDE. We now describe a general method to find the “right” change
of variables. Consider the following PDE,

Auxx +Buxy + Cuyy = F (x, y, u, ux, uy), (2.1)

where the coefficients A, B, and C are allowed to depend on x and y, and F on the right-hand side
is some function. That is, we consider a second-order PDE with possibly non-constant coefficients.
We do not worry about initial conditions, nor boundary conditions. The goal is to find new variables
(ξ, η) such that the PDE becomes simpler in these new variables. Here is a recipe for doing this.
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Method of characteristics.

(i) Start with a hyperbolic PDE (2.1).

(ii) Regard y as a function of x, and consider the following so-called character-
istic ODE:

A(x, y)(y′)2 −B(x, y)y′ + C(x, y) = 0,

where y′ stands for dy
dx .

(iii) Find two families solutions y(x) of the characteristic ODE.a

(iv) Find a function ξ(x, y) so that, when plugging any solution y = y(x) from
one of the families, you have ξ(x, y(x)) = const..

(v) Find a function η(x, y) that does the same for the other family.

Then, using ξ and η as new variables, the PDE (2.1) takes the form

uξη = G(ξ, η, u, uξ, uη)

for some function G.

aEach family needs to be so that for each x0, y0 there is a solution y(x) in the family so that
y0 = y(x0). Moreover, if y1, y2 are solutions each from one of the families and y1(x0) = y2(x0),
then one needs that y′1(x0) 6= y′2(x0).

Example 2.1. Let’s verify that this works for the one-dimensional wave equation (1.1), writing y
instead of t. Then A = −c2, B = 0, and C = 1. The function F is just zero. The characteristic
ODE becomes

−c2(y′)2 + 1 = 0,

which just says that y′ = ± 1
c . Thus, two families of solutions of the characteristic ODE are

t(x) = x
c + const. and t(x) = −xc + const. (each family is hence parameterized by the additive

constant). To find ξ, notice that t = x
c + const. can be written as x − ct = const.. Hence set

ξ(x, t) = x − ct, and notice that by design ξ(x, t(x)) = const.. Hence, ξ is one of the functions we
are looking for. The other one is η(x, t) = x+ ct, as can be easily verified.

Hence, the method of characteristics allows one to algorithmically find the correct “guess” for
the change of variables we used to solve the wave equation by reducing it to the simplified PDE
uξη = 0.

If the PDE (2.1) has non-constant coefficients, the resulting change of variables will be nonlinear.
We now consider an example of this situation.

Example 2.2. Consider the PDE

xuxx − yuxy + ux = 0.1 (2.2)

For this PDE we have A = x, B = −y, C = 0. Therefore, B2 − 4AC = (−y)2 > 0, so the equation
is hyperbolic. Its characteristic ODE is

x(y′)2 + yy′ = 0.

1for x, y > 0.
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This is equivalent to (xy′ + y)y′ = 0, which is equivalent to

y′ = 0 or xy′ + y = 0.

One family of solutions is given by y(x) = const., and we can just set ξ(x, y) = y. The other
solution we can consider is y(x) = const./x. Since y = const./x can be re-arranged as xy = const.,
we see that we can choose η(x, y) = xy.

Using the chain rule (exercise!) we find that

xuxx − yuxy + ux = −y2uξη.

Therefore the original PDE (2.2) holds if and only if

uξη = 0.

We already know what the solution of this PDE is (we solved it last time): u(ξ, η) = Φ(ξ) + Ψ(η),
where Φ and Ψ are two arbitrary functions. Switching back to the original variables (x, y), we
obtain the general solution of the PDE (2.2):

u(x, y) = Φ(y) + Ψ(xy).
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