Schnellübung 5

1. Bestimmen Sie

a)
$$\int (t-x) dx$$
;

$$\mathbf{b)} \ \int (t-x) \, dt;$$

c)
$$\int x e^{x^2} dx;$$

d)
$$\int x (1+x^2)^9 dx;$$

e)
$$\int \frac{1-x^5}{1-x} dx$$
;

f)
$$\int \frac{x^2 + 4x + 3}{x + 1} dx$$
.

- **2.** Bestimmen Sie die Krümmungsfunktion $t \mapsto k(t)$ sowie die Evolute $t \mapsto \vec{z}(t)$ der kubischen Parabel $t \mapsto \vec{r}(t) = (t, t^3), t \in \mathbb{R}$.
 - **a)** Wo wird die Krümmung minimal oder maximal? (Beachten Sie hierbei das Vorzeichen.)
 - **b)** Wie verhält sich $\vec{z}(t)$ in der Nähe von t = 0?
- **3.** Die Funktion $f(x) := \sqrt{x}$ soll im Intervall [0,1] derart durch eine lineare Funktion g(x) := x + c approximiert werden, dass das Integral

$$\int_{0}^{1} \left(f(x) - g(x) \right)^{2} dx$$

minimiert wird. Bestimmen Sie den Wert von c, der diese Grösse minimiert.

4. Es sei f eine stetige Funktion definiert auf \mathbb{R} . Wir definieren

$$F \colon x \mapsto \int_{0}^{\sin x} f(t) dt$$
.

Bestimmen Sie F'.