

Mathematik I Herbstsemester 2018 Kapitel 7: Komplexe Zahlen

Prof. Dr. Erich Walter Farkas

 $http://www.math.ethz.ch/^{\sim} farkas$

7. Komplexe Zahlen

- Definition einer komplexen Zahl
- Die Gauss'sche Zahlenebene
- Weitere Grundbegriffe
- Betrag einer komplexen Zahl
- Darstellungformen einer komplexen Zahl
- Die vier Grundrechenarten für komplexe Zahlen
 - Vorbetrachtungen
 - Addition und Subtraktion
 - Multiplikation
 - Division
- Potenzieren und Wurzelziehen
 - Potenzieren
 - Wurzelziehen
 - Die n-te Wurzel aus a

Literatur

- Lothar Papula
- Mathematik für Ingenieure und Naturwissenschaftler Band 1
 Ein Lehr- und Arbeitsbuch für das Grundstudium
 14. Auflage
 Springer Verlag
- Seiten 640 681,
 Seiten 714 717 (Übungsaufgaben mit Lösungen im Anhang)

Definition einer komplexen Zahl

Wir gehen bei unseren Betrachtungen von der einfachen *quadratischen* Gleichung aus:

$$x^2 + 1 = 0 \Leftrightarrow x^2 = -1$$

In $\mathbb R$ gibt es keine Lösung, aber wir erhalten zwei formale Lösungen:

$$x_{1,2}=\pm\sqrt{-1}$$

Definition

Der formale Wurzelausdruck $\sqrt{-1}$ heisst **imaginäre Einheit** und wird durch das Symbol ${\bf j}$ gekennzeichnet:

$$j = \sqrt{-1}$$

Das Quadrat der imaginären Einheit j ist die reelle Zahl -1:

$$j^2 = -1$$

Definition einer komplexen Zahl

Anmerkungen:

- In der Mathematik wird die imaginäre Einheit meist durch das Symbol i gekennzeichnet.
- Die Lösungen der Gleichung $x^2+1=0$ sind dann $x=\pm j$. Sie können als Produkte aus der reellen Zahl +1 oder -1 und der imaginären Einheit j aufgefasst werden:

$$x_1 = 1 \cdot j = j$$
 und $x_2 = -1 \cdot j = -j$

Auf ähnliche "Zahlen" stossen wir beim formalen Lösen der Gleichung

$$x^{2} + 9 = 0$$

$$\Rightarrow \quad x = \pm \sqrt{-9} = \pm \sqrt{9 \cdot (-1)} = \pm \sqrt{9} \cdot \sqrt{-1} = \pm 3j$$

Definition

Unter einer imaginären Zahl bj versteht man das formale Produkt aus der reellen Zahl $b \neq 0$ und der imaginären Einheit j.

Definition einer komplexen Zahl

Bei *quadratischen* Gleichungen treten häufig auch formale Lösungen in Form einer *algebraischen Summe* aus einer *reellen* Zahl und einer *imaginären* Zahl auf. So besitzt beispielweise die Gleichung

$$x^2 - 4x + 13 = 0$$

die formalen Lösungen

$$x_{1,2} \quad = \quad \frac{4 \pm \sqrt{4^2 - 4 \cdot 1 \cdot 13}}{2} = 2 \pm \frac{\sqrt{-36}}{2} = 2 \pm \frac{\sqrt{36}\sqrt{-1}}{2} = 2 \pm 3j.$$

Definition

Unter einer komplexen Zahl z versteht man die formale Summe aus einer reellen Zahl x und einer imaginären Zahl jy:

$$z = x + jy$$

Definition einer komplexen Zahl

- Komplexe Zahl bedeutet soviel wie zusammengesetzte Zahl, nämlich aus einer reellen und einer imaginären Zahl zusammengesetzt.
- Die Darstellungsform z = x + jy ist die *Normalform* einer komplexen Zahl. Sie wird auch als *algebraische* oder *kartesische* Form bezeichnet.
- Die reellen Bestandteile x und y der komplexen Zahl z=x+jy werden als Realteil und Imaginärteil von z bezeichnet. Symbolische Schreibweise:

Realteil von z:
$$Re(z) = x$$

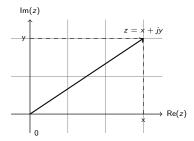
Imaginärteil von z: $Im(z) = y$

Die Menge

$$\mathbb{C} = \{ z \mid z = x + jy \text{ mit } x, y \in \mathbb{R} \}$$

heisst Menge der komplexen Zahlen.

Die Gauss'sche Zahlenebene



Geometrische Darstellung einer komplexen Zahl in der Gauss'schen Zahlenebene

Eine komplexe Zahl z=x+jy lässt sich in der Gauss'schen Zahlenebene durch den Bildpunkt P(z)=(x;y) oder durch den Zeiger $\underline{z}=x+jy$ geometrisch darstellen. Die Bildpunkte der reellen Zahlen liegen dabei auf der reellen Achse, die Bildpunkte der imaginären Zahlen auf der imaginären Achse.

Weitere Grundbegriffe

Gleichheit zweier komplexer Zahlen

Definition

Zwei komplexe Zahlen $z_1 = x_1 + jy_1$ und $z_2 = x_2 + jy_2$ heissen gleich (schreibe $z_1 = z_2$), falls

$$x_1 = x_2 \text{ und } y_1 = y_2$$

gilt, d.h. falls z_1 und z_2 den gleichen Realteil sowie den gleichen Imaginärteil besitzen.

Konjugiert komplexe Zahl

Definition

Die komplexe Zahl

$$z^* = x - jy$$

heisst die zu z = x + jy konjugiert komplexe Zahl.

Weitere Grundbegriffe

Anmerkungen:

ullet Für zwei zueinander konjugiert komplexe Zahlen z_1 und z_2 gilt

$$z_1 = z_2^*$$
 und $z_1^* = z_2$.

- Es ist stets $(z^*)^* = z$.
- Eine komplexe Zahl z mit der Eigenschaft $z^*=z$ ist reell, also $z\in\mathbb{R}$.

Beispiele:

$$z_1 = 7 + 3j \implies z_1^* = 7 - 3j$$

 $z_2 = -4 - 5j \implies z_2^* = -4 + 5j$
 $z_3 = -9j \implies z_3^* = 9j$
 $z_4 = 8 \implies z_4^* = 8$

Betrag einer komplexen Zahl

Definition

Unter dem Betrag |z| der komplexen Zahl z=x+jy versteht man die Länge des zugehörigen Zeigers:

$$|z| = \sqrt{x^2 + y^2}$$

Beispiele:

$$z_1 = 3 - 4j \implies |z_1| = \sqrt{3^2 + 4^2} = 5$$

 $z_2 = 3j \implies |z_2| = \sqrt{0^2 + 3^2} = 3$
 $z_3 = -2 - 8j \implies |z_3| = \sqrt{2^2 + 8^2} \approx 8.25$
 $z_4 = 10 \implies |z_4| = \sqrt{10^2 + 0^2} = 10$

Darstellungformen einer komplexen Zahl

• Algebraische or kartesische Form z = x + jy

Trigonometrische Form

Eine komplexe Zahl z=x+jy können wir auch durch *Polarkoordinaten* $r\geq 0$ und $\phi\in [0,2\pi)$ festlegen: Mithilfe der Transformationsgleichungen

$$x = r \cdot \cos(\phi)$$
$$y = r \cdot \sin(\phi)$$

lässt sich die komplexe Zahl z in der kartesischen Darstellung in die sogenannte trigonometrische Darstellung

$$z = x + jy$$

= $r \cdot \cos(\phi) + j \cdot r \cdot \sin(\phi)$
= $r \cdot (\cos(\phi) + j \cdot \sin(\phi))$

überführen.

Darstellungform einer komplexen Zahl

- ullet Bezeichnungen für r und ϕ in der komplexen Analysis:
 - r: Betrag von z
 - φ: Argument, Winkel, oder Phase von z
- Die zu $z=r\cdot(\cos(\phi)+j\cdot\sin(\phi))$ konjugiert komplexe Zahl z^* lautet daher in der trigonometrischen Darstellungsform

$$z^* = r \cdot (\cos(\phi) - j \cdot \sin(\phi))$$

= $r \cdot (\cos(-\phi) + j \cdot \sin(-\phi))$
= $r \cdot (\cos(2\pi - \phi) + j \cdot \sin(2\pi - \phi))$

Hier gibt es eine geometrische Interpretation!

Beispiele:

$$z_1 = 2(\cos(30^\circ) + j\sin(30^\circ))$$

 $z_2 = 5(\cos(\pi) + j\sin(\pi))$
 $z_3 = 4(\cos(45^\circ) + j\sin(45^\circ))$

Darstellungform einer komplexen Zahl

Unter Verwendung der von Euler stammenden Formel

$$e^{j\phi} = \cos(\phi) + j \cdot \sin(\phi)$$

erhält man aus der trigonometrischen Darstellung $z=r(\cos(\phi)+j\sin(\phi))$ die als Exponentialform bezeichnete (knappe) Darstellungsform

$$z = r \cdot e^{j\phi}$$
.

Beispiele:

$$z_{1} = 3 \cdot e^{j45^{\circ}}$$

$$z_{2} = 8, 2 \cdot e^{j\frac{2}{3}\pi}$$

$$z_{3} = 2, 7 \cdot e^{j\frac{3}{2}\pi}$$

$$z_{4} = 1, 4 \cdot e^{j250^{\circ}}$$

Zusammenfassung der verschiedenen Darstellungsformen

Darstellungsformen einer komplexen Zahl

Algebraische oder kartesische Form

$$z = x + jy$$

 $x \in \mathbb{R}$: Realteil von z $y \in \mathbb{R}$: Imaginärteil von z

Trigonometrische Form

$$z = r \cdot (\cos(\phi) + j\sin(\phi))$$

 $r \ge 0$: Betrag von z

 $\phi \in [0, 2\pi)$: Argument (Winkel) von z

Zusammenfassung der verschiedenen Darstellungsformen

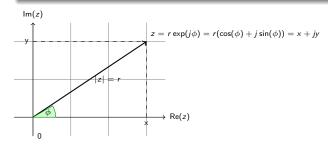
Darstellungsformen einer komplexen Zahl

Exponentialform

$$z = r \cdot \exp(j\phi)$$

 $r \ge 0$: Betrag von z

 $\phi \in [0, 2\pi)$: Argument (Winkel) von z



Umrechnungen zwischen den Darstellungsformen

Umrechnung einer komplexen Zahl: Polarform →Kartesische Form

Eine in der *Polarform* $z=r(\cos(\phi)+j\cdot\sin(\phi))$ oder $z=r\cdot\exp(j\phi)$ vorliegende komplexe Zahl lässt sich mit Hilfe der Transformationsgleichungen:

$$x = r \cdot \cos(\phi)$$
, $y = r \cdot \sin(\phi)$

in die *kartesische* Form $z = x + j \cdot y$ überführen.

Beispiele:

$$z_{1} = 2(\cos(30^{\circ}) + j \cdot \sin(30^{\circ})) = 2(\frac{\sqrt{3}}{2} + j \cdot \frac{1}{2}) = \sqrt{3} + j$$

$$z_{2} = 5(\cos(\pi) + j \cdot \sin(\pi)) = 5(-1 + j \cdot 0) = -5$$

$$z_{3} = 3\exp(j \cdot 3\pi/4) = 3(-\frac{\sqrt{2}}{2} + j \cdot \frac{\sqrt{2}}{2}) = \frac{-3\sqrt{2}}{2} + j \cdot \frac{3\sqrt{2}}{2}$$

Umrechnung einer komplexen Zahl: Kartesische Form → Polarform

Umrechnung einer komplexen Zahl: Kartesische Form \rightarrow Polarform

Eine in der *kartesischen* Form $z=x+j\cdot y$ vorliegende komplexe Zahl lässt sich mit Hilfe der Transformationsgleichungen:

$$r = |z| = \sqrt{x^2 + y^2}$$
, $tan(\phi) = \frac{y}{x}$

und unter Berücksichtung des Quadraten, in dem der zugehörige Bildpunkt liegt, in die *trigonometrische* Form $z=r(\cos(\phi)+j\cdot\sin(\phi))$ bzw. in die *Exponentialform* $z=r\cdot\exp(j\phi)$ überführen.

Umrechnung einer komplexen Zahl: Kartesische Form \rightarrow Polarform

Eine erste Transformation

- Für x > 0, $y \ge 0$ verwenden wir: $\phi = arctan(\frac{y}{x})$
- Für x > 0, y < 0 verwenden wir: $\phi = \arctan(\frac{y}{x}) + 2\pi$
- Für x < 0, verwenden wir: $\phi = \arctan(\frac{y}{x}) + \pi$
- Für x = 0, verwenden wir:
 - $\phi = \pi/2 \text{ für } y > 0$
 - $\phi = 3\pi/2$ für y < 0

Kartesische Form \rightarrow Polarform: Beispiel

Beispiel

$$z = \underbrace{1}_{=x>0} + \underbrace{\sqrt{3}}_{=y>0} j$$

$$\Rightarrow r = |z| = \sqrt{x^2 + y^2} = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2$$

$$\Rightarrow \phi = \arctan(\frac{y}{x}) = \arctan(\sqrt{3}) = \frac{\pi}{3} = 60^{\circ}$$
Also
$$z = 2 \cdot \left(\cos(\frac{\pi}{3}) + j\sin(\frac{\pi}{3})\right) = 2 \cdot e^{j\frac{\pi}{3}}$$

Kartesische Form \rightarrow Polarform: Beispiel

Beispiel Für

$$z_1 = 3 + 4j$$

$$z_2 = -8 - 6 \cdot j$$

finden wir:

$$r_1 = \sqrt{3^2 + 4^2} = 5$$

 $\phi_1 = \arctan(\frac{4}{3}) = 0.927$
 $r_2 = \sqrt{(-8)^2 + (-6)^2} = 10$
 $\phi_2 = \arctan(\frac{-6}{-8}) + \pi = 0,644 + \pi = 3.785$

und somit

$$z_1 = r_1 (\cos(\phi_1) + j \sin(\phi_1)) = r_1 e^{j\phi_1}$$

 $z_2 = r_2 (\cos(\phi_2) + j \sin(\phi_2)) = r_2 e^{j\phi_2}$.

Umrechnung einer komplexen Zahl: Kartesische Form \rightarrow Polarform

Eine andere mögliche Umrechnungsformel

- Für $y \ge 0$, verwenden wir: $\phi = arc \cos(\frac{x}{r})$
- Für y < 0, verwenden wir: $\phi = 2\pi arc \cos(\frac{x}{r})$
- Anmerkung: $r = \sqrt{x^2 + y^2}$

7. Komplexe Zahlen

- Definition einer komplexen Zahl
- Die Gauss'sche Zahlenebene
- Weitere Grundbegriffe
- Betrag einer komplexen Zahl
- Darstellungformen einer komplexen Zahl
- Die vier Grundrechenarten für komplexe Zahlen
 - Vorbetrachtungen
 - Addition und Subtraktion
 - Multiplikation
 - Division
- Potenzieren und Wurzelziehen
 - Potenzieren
 - Wurzelziehen
 - Die n-te Wurzel aus a

Die vier Grundrechenarten für komplexe Zahlen: Vorbetrachtungen

Auf der Zahlenmenge $\mathbb C$ lassen sich - wie bei den reellen Zahlen - vier Rechenoperationen, die sog. *Grundrechenarten* erklären. Es sind dies

- Addition (+)
- Subtraktion (-) als Umkehrung der Addition
- Multiplikation (·)
- Division (:) als Umkehrung der Multiplikation

Da $\mathbb{R}\subset\mathbb{C}$, müssen die vier Grundrechenarten so definiert werden, dass die Rechenregeln für *komplexe* Zahlen im Reellen mit den bereits bestehenden Rechenregeln für *reelle* Zahlen *übereinstimmen* (sog. *Permanenzprinzip*).

Definition von Addition und Subtraktion

Die Rechenoperationen *Addition* und *Subtraktion* sind in der *kartesischen* Darstellungsform wie folgt definiert:

Definition

Summe $z_1 + z_2$ und Differenz $z_1 - z_2$ zweier komplexer Zahlen $z_1 = x_1 + j \cdot y_1$ und $z_2 = x_2 + j \cdot y_2$ werden nach den folgenden Vorschriften gebildet:

$$z_1 + z_2 = (x_1 + x_2) + j \cdot (y_1 + y_2)$$

$$z_1 - z_2 = (x_1 - x_2) + j \cdot (y_1 - y_2)$$

Beispiele

$$z_1 = 4 - 5 \cdot j$$

$$z_2 = 2 + 11 \cdot j$$

$$z_1 + z_2 = (4 + 2) + (-5 + 11) \cdot j = 6 + 6 \cdot j$$

$$z_1 - z_2 = (4 - 2) + (-5 - 11) \cdot j = 2 - 16 \cdot j$$

Definition der Multiplikation

Definition

Unter dem *Produkt* $z_1 \cdot z_2$ zweier komplexer Zahlen $z_1 = x_1 + j \cdot y_1$ und $z_2 = x_2 + j \cdot y_2$ wird die komplexe Zahl

$$z_1 \cdot z_2 = (x_1x_2 - y_1y_2) + j \cdot (x_1y_2 + x_2y_1)$$

verstanden.

Beispiele

$$z_{1} = 2 - 4 \cdot j$$

$$z_{2} = -3 + 5 \cdot j$$

$$z_{1} \cdot z_{2} = (2 - 4 \cdot j) \cdot (-3 + 5 \cdot j)$$

$$= (2 \cdot (-3) - (-4) \cdot 5) + j \cdot (2 \cdot 5 + (-4) \cdot (-3))$$

$$= (-6 + 20) + j \cdot (10 + 12)$$

$$= 14 + 22 \cdot j$$

Multiplikation: Anmerkungen

Formal erhalten wir das gleiche Ergebnis, wenn wir das Produkt

$$z_1 \cdot z_2 = (x_1 + j \cdot y_1) \cdot (x_2 + j \cdot y_2)$$

wie im Reellen gliedweise ausmultiplizieren und dabei die Beziehung

$$j^2 = -1$$

beachten:

$$z_1 \cdot z_2 = (x_1 + j \cdot y_1) \cdot (x_2 + j \cdot y_2)$$

= $x_1 x_2 + j \cdot (x_1 y_2) + j(x_2 y_1) + j^2(y_1 y_2)$
= $(x_1 x_2 - y_1 y_2) + j \cdot (x_1 y_2 + x_2 y_1)$

Beispiel

$$z_1 = 2 - 4 \cdot j, \quad z_2 = -3 + 5 \cdot j$$

$$z_1 \cdot z_2 = (2 - 4 \cdot j) \cdot (-3 + 5 \cdot j)$$

$$= -6 + 10 \cdot j + 12 \cdot j - 20j^2$$

$$= 14 + 22 \cdot j$$

Multiplikation: Anmerkungen

• Wir berechnen die ersten *Potenzen* von *j*:

 $i^2 = -1$

$$j^{3} = j^{2} \cdot j = -1 \cdot j = -j$$

$$j^{4} = j^{2} \cdot j^{2} = (-1) \cdot (-1) = 1$$

$$j^{k+4n} = j^{k} \cdot j^{4n} = j^{k} \cdot (j^{4})^{n} = j^{k} \cdot (1)^{n} = j^{k}$$
 für alle $k \in \mathbb{N}$

• Wir berechnen das *Produkt* aus z und z* und erhalten:

$$z \cdot z^* = (x + j \cdot y) \cdot (x - j \cdot y)$$

$$= x^2 - j \cdot xy + j \cdot xy - j^2 \cdot y^2$$

$$= x^2 + y^2$$

$$= |z|^2$$

Division, Umkehrung der Multiplikation

Wir beschäftigen uns nun mit der *Umkehrung der Multiplikation, der Division*. Dazu betrachten wir die Gleichung

$$z \cdot z_2 = z_1$$

mit vorgegebenen Zahlen $z_1=x_1+j\cdot y_1$ und $z_2=x_2+j\cdot y_2$ ($z_2\neq 0$). Die Unbekannte ist $z=x+j\cdot y$. Die Gleichung umgeformt ergibt

$$z=\frac{z_1}{z_2}.$$

Wir wollen nun die Lösung $z = x + j \cdot y$ berechnen.

$$z \cdot z_2 = (x + j \cdot y) \cdot (x_2 + j \cdot y_2)$$

= $xx_2 - yy_2 + j \cdot (xy_2 + yx_2)$
und
 $z_1 = x_1 + j \cdot y_1$

Division, Umkehrung der Multiplikation

Diese Gleichung kann jedoch nur bestehen, wenn beide Seiten sowohl in ihrem Realteil als auch in ihrem Imaginärteil übereinstimmen:

$$xx_2 - yy_2 = x_1$$
$$xy_2 + yx_2 = y_1$$

Dieses *lineare Gleichungssystem* mit zwei Gleichungen und zwei Unbekannten (nämlich x und y) besitzt *genau eine* Lösung, wenn die Determinante D von null *verschieden* ist:

$$D = x_2^2 + y_2^2 \neq 0$$
 also, wenn $z_2 \neq 0$

Dann finden wir die Lösung:

$$x = \frac{x_1x_2 + y_1y_2}{x_2^2 + y_2^2}$$
$$y = \frac{x_2y_1 - x_1y_2}{x_2^2 + y_2^2}$$

Definition der Division

Definition

Unter dem *Quotient* z_1/z_2 zweier komplexer Zahlen $z_1=x_1+j\cdot y_1$ und $z_2=x_2+j\cdot y_2$ wird die komplexe Zahl

$$\frac{z_1}{z_2} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + j \cdot \frac{x_2 y_1 - x_1 y_2}{x_2^2 + y_2^2}$$

verstanden.

Anmerkung:

$$\frac{z_1}{z_2} = \frac{z_1 z_2^*}{z_2 z_2^*} \\
= \frac{z_1 z_2^*}{|z_2|^2}$$

Division: Beispiele

Beispiel:

Mit $z_1 = 4 - 8 \cdot j$ und $z_2 = 3 + 4 \cdot j \neq 0$ berechnen wir den *Quotienten* z_1/z_2 :

$$\frac{z_1}{z_2} = \frac{4 - 8 \cdot j}{3 + 4 \cdot j} = \frac{(4 - 8 \cdot j)(3 - 4 \cdot j)}{(3 + 4 \cdot j)(3 - 4 \cdot j)}$$

$$= \frac{(4 - 8 \cdot j)(3 - 4 \cdot j)}{3^2 + 4^2}$$

$$= \frac{12 - 16 \cdot j - 24 \cdot j + 32 \cdot j^2}{25}$$

$$= \frac{-20 - 40 \cdot j}{25}$$

$$= \frac{-4 - 8 \cdot j}{5}$$

Division: Beispiele

Beispiel:

Mit $z_1 = 1 + j \cdot \sqrt{3}$ und $z_2 = 1 + j \neq 0$ berechnen wir den *Quotienten* z_1/z_2 :

$$\frac{z_1}{z_2} = \frac{1+\sqrt{3}j}{1+j} = \frac{(1+\sqrt{3}j)(1-j)}{(1+j)(1-j)}$$

$$= \frac{(1+\sqrt{3}j)(1-j)}{1^2+(+1)^2}$$

$$= \frac{1-j+\sqrt{3}j-\sqrt{3}j^2}{2}$$

$$= \frac{(1+\sqrt{3})+(-1+\sqrt{3})j}{2}$$

$$= \left(\frac{1+\sqrt{3}}{2}\right)+\left(\frac{-1+\sqrt{3}}{2}\right)j$$

Division: Beispiele

Beispiel:

Bestimmen Sie alle Zahlen $m \in \mathbb{R}$, sodass

$$rac{-1+m\cdot j}{\sqrt{3}+j}\in\mathbb{R} \qquad (z=a+bj\in\mathbb{R}\Leftrightarrow b=0)$$

• Schritt 1: Wir betrachten den Ausdruck als Division der komplexen Zahlen $z_1 = -1 + m \cdot j$ und $z_2 = \sqrt{3} + j$ und rechnen aus

$$\begin{aligned} \frac{z_1}{z_2} &= \frac{-1 + m \cdot j}{\sqrt{3} + j} = \frac{(-1 + mj)(\sqrt{3} - j)}{(\sqrt{3} + j)(\sqrt{3} - j)} = \frac{-\sqrt{3} + j + m \cdot \sqrt{3}j - mj^2}{(\sqrt{3})^2 - j^2} \\ &= \frac{(-\sqrt{3} + m) + (1 + m\sqrt{3})j}{4} = \frac{-\sqrt{3} + m}{4} + \frac{1 + m\sqrt{3}}{4}j \end{aligned}$$

Schritt 2:

$$\begin{aligned} &\frac{z_1}{z_2} \in \mathbb{R} \Leftrightarrow \textit{Im}\left(\frac{z_1}{z_2}\right) = 0 \\ &\frac{z_1}{z_2} \in \mathbb{R} \Leftrightarrow \frac{1 + m\sqrt{3}}{4} = 0 \Leftrightarrow 1 + m\sqrt{3} = 0 \Leftrightarrow m = -\frac{1}{\sqrt{3}} = -\frac{\sqrt{3}}{3} \end{aligned}$$

Multiplikation und Division in trigonometrischer und exponentieller Darstellung

Multiplikation und Division sind in der trigonometrischen bzw. exponentiellen Schreibweise besonders einfach durchführbar.

$$z_1 = r_1(\cos(\phi_1) + j \cdot \sin(\phi_1))$$

und

Mit

$$z_2 = r_2(\cos(\phi_2) + j \cdot \sin(\phi_2))$$

erhalten wir:

$$z_1 \cdot z_2 = r_1 r_2 [\cos(\phi_1) \cos(\phi_2) - \sin(\phi_1) \sin(\phi_2) + j(\cos(\phi_1) \sin(\phi_2) + \sin(\phi_1) \cos(\phi_2))]$$

Multiplikation und Division in trigonometrischer und exponentieller Darstellung

Unter Verwendung der Additionstheoreme

$$\cos(\phi_1 + \phi_2) = \cos(\phi_1)\cos(\phi_2) - \sin(\phi_1)\sin(\phi_2) \sin(\phi_1 + \phi_2) = \sin(\phi_1)\cos(\phi_2) + \sin(\phi_2)\cos(\phi_1).$$

folgt hieraus weiter

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\phi_1 + \phi_2) + j \cdot \sin(\phi_1 + \phi_2))$$

oder - in der kürzeren Exponentialform - :

$$z_1 \cdot z_2 = r_1 r_2 (\exp(j \cdot (\phi_1 + \phi_2)))$$

Eine analoge Rechnung liefert für den Quotienten zweier komplexer Zahlen:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + j\sin(\phi_1 - \phi_2))
= \frac{r_1}{r_2} \exp(j \cdot (\phi_1 - \phi_2))$$

Multiplikation und Division in trigonometrischer und exponentieller Darstellung

Definition

Bei der *Multiplikation* und *Division* zweier komplexer Zahlen erweist sich die *trigonometrische* bzw. *exponentielle* Darstellungsweise als besonders vorteilhaft. Mit

$$z_1 = r_1(\cos(\phi_1) + j \cdot \sin(\phi_1)) = r_1 \exp(j \cdot \phi_1)$$

$$z_2 = r_2(\cos(\phi_2) + j \cdot \sin(\phi_2)) = r_2 \exp(j \cdot \phi_2)$$

gilt dann für die Multiplikation und die Division:

$$z_1 \cdot z_2 = r_1 r_2 (\cos(\phi_1 + \phi_2) + j \cdot \sin(\phi_1 + \phi_2)) = r_1 r_2 \exp(j \cdot (\phi_1 + \phi_2))$$

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\phi_1 - \phi_2) + j \cdot \sin(\phi_1 - \phi_2)) = \frac{r_1}{r_2} \exp(j \cdot (\phi_1 - \phi_2))$$

Multiplikation und Division in trigonometrischer und exponentieller Darstellung

Beispiel:

$$z_1 = 1 + \sqrt{3}j = 2\left(\cos\left(\frac{\pi}{3}\right) + j\sin\left(\frac{\pi}{3}\right)\right)$$
$$z_2 = -1 + j \quad (2. \text{ Quadrant})$$

• 1. Schritt: Polardarstellung:

$$r_2 = |z_2| = \sqrt{(-1)^2 + 1^2} = \sqrt{2}$$

$$\phi = \arctan \frac{1}{-1} + \pi = \frac{3\pi}{4}$$

$$\Rightarrow \boxed{z_2 = \sqrt{2} \left(\cos\left(\frac{3\pi}{4}\right) + j\sin\left(\frac{3\pi}{4}\right)\right)}$$

Multiplikation und Division in trigonometrischer und exponentieller Darstellung

• 2. Schritt: Multiplikation:

$$z_1 \cdot z_2 = 2\sqrt{2} \left(\cos \left(\frac{\pi}{3} + \frac{3\pi}{4} \right) + j \sin \left(\frac{\pi}{3} + \frac{3\pi}{4} \right) \right)$$
$$= 2\sqrt{2} \left(\cos \left(\frac{13\pi}{12} \right) + j \sin \left(\frac{13\pi}{12} \right) \right)$$

$$\frac{z_1}{z_2} = \frac{2}{\sqrt{2}} \left(\cos \left(\frac{\pi}{3} - \frac{3\pi}{4} \right) + j \sin \left(\frac{\pi}{3} + \frac{3\pi}{4} \right) \right)$$

$$= \sqrt{2} \left(\cos \left(\frac{-5\pi}{12} \right) + j \sin \left(\frac{-5\pi}{12} \right) \right)$$

$$= \sqrt{2} \left(\cos \left(2\pi - \frac{5\pi}{12} \right) + j \sin \left(2\pi - \frac{5\pi}{12} \right) \right)$$

Geometrische Deutung der Multiplikation zweier komplexer Zahlen

Geometrische Deutung

Die Multiplikation einer komplexen Zahl $z_1 = r_1 \exp(j\phi_1)$ mit der komplexen Zahl $z = r \exp(j\phi)$ bedeutet geometrisch eine Drehstreckung des Zeigers z_1 . Dabei wird der Zeiger z_1 nacheinander den folgenden geometrischen Operationen unterworfen:

- Streckung um das r-fache
- 2 Drehung um den Winkel ϕ im positiven Drehsinn (für $\phi > 0$)

Das Ergebnis ist das geometrische Bild des *Produktes* $z \cdot z_1$

Geometrische Deutung der Multiplikation zweier komplexer Zahlen

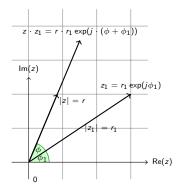


Figure: Die *Multiplikation* einer komplexen Zahl $z_1=r_1\exp(j\phi_1)$ mit der komplexen Zahl $z=r\exp(j\phi)$

Geometrische Deutung der Multiplikation zweier komplexer Zahlen

Anmerkungen

- Da die Multiplikation eine *kommutative* Rechenoperation ist $(z_1 \cdot z = z \cdot z_1)$, kann man bei der geometrischen Konstruktion des Produktes $z_1 \cdot z$ auch vom Zeiger z ausgehen.
- Die Division zweier komplexer Zahlen lässt sich auf die Multiplikation zurückführen. So bedeutet der Quotient z₁/z das Produkt aus z₁ und dem Kehrwert von z:

$$\frac{z_1}{z} = z_1 \cdot \frac{1}{z}$$

$$= (r_1 e^{j\phi_1}) \cdot \frac{1}{r e^{j\phi}}$$

$$= (r_1 e^{j\phi_1}) \cdot (\frac{1}{r} e^{-j\phi})$$

Geometrische Deutung der Multiplikation zweier komplexer Zahlen

Beispiele

Mit
$$z_1 = 2 \cdot e^{j30^{\circ}}$$
, $z_2 = 3 \cdot e^{j80^{\circ}}$, $z_3 = 4 \cdot e^{j140^{\circ}}$, gilt
$$z_1 \cdot z_2 = (2 \cdot 3)e^{j(30^{\circ} + 80^{\circ})} = 6e^{j110^{\circ}}$$

$$\frac{z_1}{z_2} = \frac{2}{3}e^{j(30^{\circ} - 80^{\circ})} = \frac{2}{3}e^{-j50^{\circ}} = \frac{2}{3}e^{j(360^{\circ} - 50^{\circ})} = \frac{2}{3}e^{j310^{\circ}}$$

$$\frac{z_3}{z_1} = \frac{4}{2}e^{j(140^{\circ} - 30^{\circ})} = 2e^{j110^{\circ}}$$

Grundgesetze für komplexe Zahlen (Zusammenfassung)

Eigenschaften der Menge der komplexen Zahlen

- Summe $z_1 + z_2$, Differenz $z_1 z_2$, Multiplikation $z_1 \cdot z_2$, Division z_1/z_2 zweier komplexer Zahlen z_1 und z_2 ergeben wiederum eine komplexe Zahl. Ausnahme: Die Division durch die Zahl 0 ist nicht erlaubt.
- Addition und Multiplikation sind kommutative Rechenoperationen. Für beliebige Zahlen $z_1, z_2 \in \mathbb{C}$ gilt stets:

$$z_1 + z_2 = z_2 + z_1$$

 $z_1 z_2 = z_2 z_1$ Kommutativgesetze

Grundgesetze für komplexe Zahlen (Zusammenfassung)

Eigenschaften der Menge der komplexen Zahlen

• Addition und Multiplikation sind assoziative Rechenoperationen. Für beliebige Zahlen $z_1, z_2, z_3 \in \mathbb{C}$ gilt stets:

$$z_1 + (z_2 + z_3) = (z_1 + z_2) + z_3$$

 $z_1(z_2z_3) = (z_1z_2)z_3$ Assoziativgesetze

 Addition und Multiplikation sind über das Distributivgesetz miteinander verbunden:

$$z_1(z_2 + z_3) = z_1z_2 + z_1z_3$$
 Distributivgesetz

7. Komplexe Zahlen

- Definition einer komplexen Zahl
- Die Gauss'sche Zahlenebene
- Weitere Grundbegriffe
- Betrag einer komplexen Zahl
- Darstellungformen einer komplexen Zahl
- Die vier Grundrechenarten für komplexe Zahlen
 - Vorbetrachtungen
 - Addition und Subtraktion
 - Multiplikation
 - Division
- Potenzieren und Wurzelziehen
 - Potenzieren
 - Wurzelziehen
 - Die n-te Wurzel aus a

Potenzieren: Definition

Potenzieren einer komplexen Zahl

Eine in der Polarform vorliegende komplexe Zahl z wird nach der Formel von Moivre potenziert ($n \in \mathbb{N}$):

In exponentieller Schreibweise:

$$z^n = \left[r \cdot e^{j\phi}\right]^n = r^n \cdot e^{jn\phi}$$

• In trigonometrischer Schreibweise:

$$z^{n} = [r \cdot (\cos(\phi) + j\sin(\phi))]^{n} = r^{n} \cdot (\cos(n\phi) + j\sin(n\phi))$$

Regel: Eine komplexe Zahl $z=r\cdot(\cos(\phi)+j\sin(\phi))=r\cdot e^{j\phi}$ wird in die *n-te Potenz* erhoben, indem man ihren Betrag r in die *n-te Potenz* erhebt und ihr Argument (Winkel) ϕ mit dem Exponenten n multipliziert.

Potenzieren: Beispiele

Beispiel

Wir erheben die komplexe Zahl $z=2\left(\cos\left(\frac{\pi}{3}\right)+j\cdot\sin\left(\frac{\pi}{3}\right)\right)$ in die 3. Potenz:

$$z^{3} = \left[2\left(\cos\left(\frac{\pi}{3}\right) + j \cdot \sin\left(\frac{\pi}{3}\right)\right)\right]^{3}$$

$$= 2^{3}\left(\cos\left(\frac{3\pi}{3}\right) + j \cdot \sin\left(\frac{3\pi}{3}\right)\right)$$

$$= 2^{3}\left(\cos(\pi) + j \cdot \sin(\pi)\right)$$

$$= 8(-1 + j \cdot 0)$$

$$= -8$$

Potenzieren: Beispiele

Beispiel:

$$z = -1 + j \quad \Rightarrow \quad z^4 = ?$$

Mit Polardarstellung:

$$z = \sqrt{2} \left(\cos \left(\frac{3\pi}{4} \right) + j \sin \left(\frac{3\pi}{4} \right) \right)$$

$$z^4 = \left(\sqrt{2} \right)^4 \left(\cos \left(4 \cdot \frac{3\pi}{4} \right) + j \sin \left(4 \cdot \frac{3\pi}{4} \right) \right)$$

$$= 4 \cdot (\cos(3\pi) + j \sin(3\pi))$$

$$= 4 \cdot (\cos \pi + j \sin \pi))$$

$$= 4 \cdot (-1) = \underline{-4}$$

Potenzieren: Beispiele

Beispiel:

$$z = -\sqrt{3} - j \quad \Rightarrow \quad z^6 = ?$$

Zunächst bringen wir z auf die Polarform:

$$Rez = -\sqrt{3}$$

$$\text{Im}z = -1$$

$$r = \sqrt{a^2 + b^2} = \sqrt{\left(-\sqrt{3}\right)^2 + 1^2} = \sqrt{4} = 2$$

$$\phi = \arctan(\frac{-1}{-\sqrt{3}}) + \pi = \frac{1}{6}\pi + \pi = \frac{7\pi}{6}$$

$$z = 2\left(\cos\left(\frac{7\pi}{6}\right) + j\sin\left(\frac{7\pi}{6}\right)\right) = 2e^{j\frac{7\pi}{6}}$$

Potenzieren: Beispiele

Fortsetzung

$$z^{6} = 2^{6} \left(\cos \left(6 \cdot \frac{7\pi}{6} \right) + j \sin \left(6 \cdot \frac{7\pi}{6} \right) \right)$$

$$= 64 \cdot (\cos(7\pi) + j \sin(7\pi))$$

$$= 64 \cdot (\cos \pi + j \sin \pi)$$

$$= 64 \cdot (-1 + 0j)$$

$$= \underline{-64}$$

Potenzieren: Beispiele

Beispiel:

$$z = 1.2 - 2.5j \quad \Rightarrow \quad z^6 = ?$$

Zunächst bringen wir z auf die Polarform:

$$r = \sqrt{1.2^2 + 2.5^2} = 2.7731$$

$$tan(\phi) = -\frac{2.5}{1.2} = -2.0833 \Rightarrow \phi = arctan(-2.0833) + 2\pi = 5.160$$

Daher ist

$$z = 1.2 - 2.5i = 2.7731e^{j \cdot 5.160}$$

und nach der Formel von Moivre folgt weiter:

$$z^{6} = (2.7731e^{j \cdot 5.160})^{6}$$

$$= 2.7731^{6} \cdot e^{j6 \cdot 5.160}$$

$$= 454.77(\cos(30.96) + j \cdot \sin(30.96))$$

$$= 408.32 - 200.23j$$

Potenzieren: Beispiel

Für r=1 besitzt die Formel von Moivre die spezielle Form

$$(\cos(\phi) + j \cdot \sin(\phi))^n = \cos(n\phi) + j \cdot \sin(n\phi)$$

Aus dieser wichtigen Beziehung lassen sich z.B. Formelausdrücke für $\cos(n\phi)$ und $\sin(n\phi)$ herleiten.

$$(\cos(\phi) + j \cdot \sin(\phi))^2 = \cos(2\phi) + j \cdot \sin(2\phi)$$
$$\cos(\phi)^2 - \sin(\phi)^2 + j \cdot (2\cos(\phi)\sin(\phi)) = \cos(2\phi) + j \cdot \sin(2\phi)$$

Durch Vergleich der Real- bzw Imaginärteile auf beiden Seiten erhalten wir die folgenden trigonometrischen Formeln:

$$\cos(2\phi) = \cos(\phi)^2 - \sin(\phi)^2 = 2\cos(\phi)^2 - 1$$

$$\sin(2\phi) = 2\cos(\phi)\sin(\phi)$$

Wurzelziehen

Aus der Algebra ist bekannt, dass eine algebraische Gleichung n-ten Grades vom Typ

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$$

höchstens n reelle Lösungen, auch Wurzeln genannt, besitzt. Werden jedoch auch komplexe Lösungen zugelassen, so gibt es genau n Lösungen.

Fundamentalsatz der Algebra

Eine algebraische Gleichung n-ten Grades

$$a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 = 0$$

besitzt in der Menge $\mathbb C$ der komplexen Zahlen stets $genau\ n$ Lösungen.

Wurzelziehen: Anmerkungen

- Die linke Seite der algebraischen Gleichung ist ein Polynom vom Grade n mit im Allgemeinen komplexen Koeffizienten a₀,..., a_n.
 - Es lässt sich auch im komplexen Zahlenbereich wie folgt in *Linearfaktoren* zerlegen:

$$a_n z^n + a_{n-1} z^{n-1} + ... + a_1 z + a_0 = a_n (z - z_1)(z - z_2)...(z - z_n)$$

- $z_1, z_2, ..., z_n$ sind dabei die *n Polynomnullstellen*, d.h. die *n Lösungen* der algrebraischen Gleichung.
- Bei ausschliesslich reellen Koeffizienten a_i (i=0,1,...,n) treten komplexe Lösungen immer paarweise auf, nämlich als Paare zueinander konjugiert komplexer Zahlen. Mit z_1 ist daher stets auch z_1^* eine Lösung der Gleichung.

Wurzelziehen

Beispiel:

Die algebraische Gleichung 3. Grades

$$z^3 - z^2 + 4z - 4 = 0$$

besitzt nach dem Fundamentalstatz genau drei Lösungen. Durch Probieren finden wir eine Lösung bei $z_1=1$.

$$z^3 - z^2 + 4z - 4 = (z - 1)(z^2 + 4)$$

Die Nullstellen des 1.reduzierten Polynoms z^2+4 liefern die beiden übrigen Lösungen:

$$z^2+4=0 \Rightarrow z_{2,3}=\pm 2j$$

Die obige algebraische Gleichung 3. Grades besitzt somit *eine* reelle Lösung und zwei zueinander konjugiert komplexe Lösungen:

$$z^3 - z^2 + 4z - 4 = 0 \Rightarrow z_1 = 1$$
, $z_2 = 2j$, $z_3 = -2j$

Wurzelziehen

Fortsetzung:

Das Polynom

$$z^3 - z^2 + 4z - 4$$

ist daher auch in der Produktform

$$z^3 - z^2 + 4z - 4 = (z - 1)(z - 2j)(z + 2j)$$

darstellbar (Zerlegung in Linearfaktoren).

Die *n*-te Wurzel aus a

Lösungen der speziellen algebraischen Gleichung $z^n = a$

- Eine komplexe Zahl z heisst eine n-te Wurzel aus a wenn sie der algebraischen Gleichung $z^n = a$ genügt $(a \in \mathbb{C})$.
- Die Gleichung

$$z^n = a = a_0 \cdot e^{j\alpha} \quad (a_0 > 0; n \in \mathbb{N})$$

besitzt im Komplexen genau n verschiedene Lösungen (Wurzeln)

$$z_k = r(\cos(\phi_k) + j \cdot \sin(\phi_k)) = r \cdot e^{j\phi_k} \text{ mit}$$

$$r = \sqrt[n]{a_0} \quad \text{und} \quad \phi_k = \frac{\alpha + k \cdot 2\pi}{n} \qquad k = 0, 1, ..., n - 1.$$

Die zugehörigen Bildpunkte liegen in der Gauss'schen Zahlenebene auf dem Kreis um den Nullpunkt mit dem Radius $r=\sqrt[n]{a_0}$ und bilden die Ecken eines regelmässigen n-Ecks.

Die n-te Wurzel aus a: Beispiel

Beispiel:

Die Gleichung $z^6=1$ hat genau sechs verschiedene Lösungen, deren Bildpunkte in der Gaussschen Zahlenebene an den Ecken eines regelmässigen Sechsecks liegen.

Sie lauten ($a_0 = 1$, $\alpha = 0$):

$$z_k = \cos(k \cdot \frac{2\pi}{6}) + j \cdot \sin(k \cdot \frac{2\pi}{6})$$
 mit $k = 0, 1, 2, 3, 4, 5$

Also

$$z_0 = 1$$

$$z_1 = 0, 5 + \frac{\sqrt{3}}{2}j = \overline{z_5}$$

$$z_2 = -0, 5 + \frac{\sqrt{3}}{2}j = \overline{z_4}$$

$$z_3 = -1$$

Die n-te Wurzel aus a: Beispiel

Beispiel:

Finden Sie alle Lösungen der Gleichung $z^3 = 1 - \sqrt{3}j$.

Zuerst brauchen wir die Polardarstellung von $w = 1 - \sqrt{3}j$

$$\begin{aligned} r &= |w| = \sqrt{1^2 + (\sqrt{3})^2} = \sqrt{4} = 2 \\ \phi &= \arctan\frac{-\sqrt{3}}{1} + 2\pi = -\frac{\pi}{3} + 2\pi = \frac{5\pi}{3} \\ w &= 2\left(\cos\left(\frac{5\pi}{3}\right) + j\sin\left(\frac{5\pi}{3}\right)\right) \end{aligned}$$

Die Gleichung $z^3 = w$ hat genau 3 Lösungen

$$z_k = \sqrt[3]{2} \left(\cos rac{rac{5\pi}{3} + 2k\pi}{3} + j \sin rac{rac{5\pi}{3} + 2k\pi}{3}
ight) \quad k = 0, 1, 2$$

Die n-te Wurzel aus a: Beispiel

Fortsetzung:

$$\begin{array}{l} \boxed{k=0} \quad z_0 = \sqrt[3]{2} \left(\cos \frac{5\pi}{3} + 0 \right. \\ = \sqrt[3]{2} \left(\cos \frac{5\pi}{9} + j \sin \frac{5\pi}{9} \right) \\ \\ \boxed{k=1} \quad z_1 = \sqrt[3]{2} \left(\cos \frac{5\pi}{3} + 2\pi \right. \\ = \sqrt[3]{2} \left(\cos \frac{5\pi}{3} + j \sin \frac{5\pi}{3} + 2\pi \right. \\ \\ = \sqrt[3]{2} \left(\cos \frac{11\pi}{9} + j \sin \frac{11\pi}{9} \right) \\ \boxed{k=2} \quad z_2 = \sqrt[3]{2} \left(\cos \frac{5\pi}{3} + 2 \cdot 2\pi \right. \\ \left. = \sqrt[3]{3} \left(\cos \frac{5\pi}{3} + j \sin \frac{5\pi}{3} + 2 \cdot 2\pi \right. \\ \\ = \sqrt[3]{2} \left(\cos \frac{17\pi}{9} + j \sin \frac{17\pi}{9} \right) \\ \end{array}$$

Die n-te Wurzel aus a: Beispiel

Beispiel:

Finden Sie alle komplexen Zahlen z mit der Eigenschaft $z^6 = \sqrt{3} + j$.

Lösung:

Betrachte $w = \sqrt{3} + j$ (Re(w) = $\sqrt{3}$, Im(w) = 1) Schreibe w zuerst in Polarform.

$$r = |w| = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$$

$$\phi = \arctan \frac{1}{\sqrt{3}} = \frac{\pi}{6}$$

$$w = 2\left(\cos \frac{\pi}{6} + j\sin \frac{\pi}{6}\right)$$

Die n-te Wurzel aus a: Beispiel

Fortsetzung:

$$\begin{split} z_k &= \sqrt[6]{2} \left(\cos \frac{\frac{\pi}{6} + 2k\pi}{6} + j \sin \frac{\frac{\pi}{6} + 2k\pi}{6} \right) \quad k = 0, 1, 2, \dots, 5 \\ z_0 &= \sqrt[6]{2} \left(\cos \frac{\pi}{36} + j \sin \frac{\pi}{36} \right) \\ z_1 &= \sqrt[6]{2} \left(\cos \frac{\frac{\pi}{6} + 2\pi}{6} + j \sin \frac{\frac{\pi}{6} + 2\pi}{6} \right) = \sqrt[6]{2} \left(\cos \frac{13\pi}{36} + j \sin \frac{13\pi}{36} \right) \\ z_2 &= \sqrt[6]{2} \left(\cos \frac{\frac{\pi}{6} + 2 \cdot 2\pi}{6} + j \sin \frac{\frac{\pi}{6} + 2 \cdot 2\pi}{6} \right) = \sqrt[6]{2} \left(\cos \frac{25\pi}{36} + j \sin \frac{25\pi}{36} \right) \\ z_3 &= \sqrt[6]{2} \left(\cos \frac{\frac{\pi}{6} + 2 \cdot 3\pi}{6} + j \sin \frac{\frac{\pi}{6} + 2 \cdot 3\pi}{6} \right) = \sqrt[6]{2} \left(\cos \frac{37\pi}{36} + j \sin \frac{37\pi}{36} \right) \\ z_4 &= \sqrt[6]{2} \left(\cos \frac{49\pi}{36} + j \sin \frac{49\pi}{36} \right) \\ z_5 &= \sqrt[6]{2} \left(\cos \frac{61\pi}{36} + j \sin \frac{61\pi}{36} \right) . \end{split}$$

Ende von Kapitel 7