D-MAVT D-MATL

Analysis III

Prof. A. Iozzi ETH Zürich Autumn 2018

Serie 5

<u>What's needed</u>: Fundamentals of Fourier analysis, periodic functions, trigonometric polynomials and trigonometric series, Fourier coefficients' formula.

- **1.** A function is periodic of period P > 0 if f(x + P) = f(x) for all $x \in \mathbb{R}$. A fundamental period is (if it exists) the smallest positive number P for which f is periodic of period P. Determine if the following functions are periodic or not. In the affirmative cases, determine their fundamental period.¹
 - **a)** f(x) = x
 - **b)** $f(x) = \cos(4x) + \sin(3x)$
 - c) $f(x) = \sinh(x)$
 - **d)** $f(x) = \cos^4(2x)$
 - e) (*) $f(x) = sin(x^2)$
- **2.** Prove that the Fourier series of $\sin^2(x)$, $\cos^2(x)$, viewed as 2π -periodic functions are, respectively,

$$\sin^2(x) \quad \rightsquigarrow \quad \frac{1}{2} - \frac{1}{2}\cos(2x), \qquad \cos^2(x) \quad \rightsquigarrow \quad \frac{1}{2} + \frac{1}{2}\cos(2x)$$

¹For example for a positive integer $m \ge 1$ the functions $\sin(mx), \cos(mx)$ are periodic with fundamental period $\frac{2\pi}{m}$.

3. Find the Fourier series of the 2L-periodic extension of

$$f(x) = x, \quad x \in [-L, L]$$

- 4. (Bonus exercise) This exercise relates the periodicity of a function with its derivative(s) and its properties of boundedness.
 Let f : R → R be any function.
 - a) Prove that if f is periodic and continuous, then it is bounded.
 - **b)** Prove that if f is differentiable, and periodic of period P, then also f' is periodic with the same period.
 - c) From a) and b) deduce that if f is periodic and smooth, then it is bounded and all its derivative are bounded as well.
 - **d)** Use **c)** to give a very simple proof that $sin(x^2)$ is not periodic.²

Due by: Thursday 25 / Friday 26 October 2018.

²This is much simpler than proving that the function can't be periodic by computing explicitely its values at each possible x and x + P. Not to mention that this gets almost impossible when the form is more complicated than just $sin(x^2)$ while this criteria is always easy to test. For example this proves immediately that all functions like sin(p(x)), cos(p(x)) with p(x) a polynomial of degree at least 2 are not periodic without doing any computation.