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Solutions Serie 11

1. Find, via Fourier series, the solution of the 1-dimensional heat equation with the
following initial condition:

ut = 4uxx,
u(0, t) = u(1, t) = 0, t > 0
u(x, 0) = f(x), 0 6 x 6 1

where
f(x) = sin(πx) + sin(5πx) + sin(10πx).

Solution:
The parameters are L = 1 and thermal diffusivity c2 = 4. So

λ2
n =

(cnπ
L

)2
=
c2n2π2

L2 = 4n2π2

and the solution of the heat equation via Fourier series will be

u(x, t) =
+∞∑
n=1

Bn sin(nπx)e−λ
2
nt

where the coefficients Bn are determined by the initial condition

f(x) = u(x, 0) =
+∞∑
n=1

Bn sin(nπx).

This case is particularly easy because f(x) is already expressed as a linear combina-
tion of these functions and there’s no need to compute any integral to get

Bn =

{
1, n = 1, 5, 10
0, otherwise.

Finally, the solution will be

u(x, t) = sin(πx)e−4π2t + sin(5πx)e−100π2t + sin(10πx)e−400π2t

1 Please turn!



2. An aluminium bar of length L = 1(m) has thermal diffusivity of (around)1

c2 = 0.0001
(

m2

sec

)
= 10−4

(
m2

sec

)
.

It has initial temperature given by u(x, 0) = f(x) = 100 sin(πx) (◦C), and its ends are
kept at a constant 0◦C temperature. Find the first time t∗ for which the whole bar
will have temperature 6 30◦C.
In mathematical terms, solve

ut = 10−4uxx,
u(0, t) = u(1, t) = 0, t > 0
u(x, 0) = 100 sin(πx), 0 6 x 6 1.

and find the smallest t∗ for which

max
x∈[0,1]

u(x, t∗) 6 30.

Solution:
The parameters are length L = 1, thermal diffusivity c2 = 10−4 and consequently

λ2
n =

c2n2π2

L2 = 10−4n2π2.

The solution is

u(x, t) =
+∞∑
n=1

Bn sin(nπx)e−λ
2
nt

and

f(x) = u(x, 0) =
+∞∑
n=1

Bn sin(nπx)

so that the only nontrivial coefficients will be B1 = 100. The solution is explicitely
given by

u(x, t) = 100 sin(πx)e−10−4π2t.

For each fixed time t > 0, it is a multiple of sin(πx), therefore its maximum will be
reached in x = 1/2 with value

Mt := max
x∈[0,1]

u(x, t) = u
(

1
2

, t
)

= 100 sin
(π

2

)
e−10−4π2t = 100e−10−4π2t.

This is a decreasing function of t, so that the required value t∗ for which the bar will
have temperature 6 30◦C is given by imposing

Mt∗ = 30 ⇔ 100e−10−4π2t∗ = 30 ⇔ t∗ =
104

π2 ln
(

10
3

)
(
≈ 1219.88 sec = 20 min 19.88 sec

)
1we are approximating the standard value which would be c2 ≈ 0.000097m2/sec to make computations

easier.
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3. Solve the following Laplace equation (steady heat equation) on the rectangle

R = {(x,y) ∈ R2 | 0 6 x 6 1, 0 6 y 6 2},
∆u = 0, (x,y) ∈ R
u(0,y) = u(1,y) = 0, 0 6 y 6 2
u(x, 0) = 0, 0 6 x 6 1
u(x, 2) = f(x), 0 6 x 6 1

where
f(x) = x(1 − x).

Solution:
The solution of the Dirichlet problem with this particular boundary conditions (u
nontrivial only on the upper orizontal segment of the rectangle) has been given in
the Lecture notes:

u(x,y) =
+∞∑
n=1

An sin
(nπ
a
x
)

sinh
(nπ
a
y
)

,

where

An =
2

a sinh
(
nπ
a b
) a∫

0

f(x) sin
(nπ
a
x
)
dx

and the measures of the rectangle are, in this case, a = 1 and b = 2. So we basically
just need to compute, with a few integration by parts,

1∫
0

f(x) sin(nπx)dx =

1∫
0

x(1 − x) sin(nπx)dx =

=−
����������

x(1 − x)
cos(nπx)
nπ

∣∣∣∣∣
1

0

+
1
nπ

1∫
0

(1 − 2x) cos(nπx)dx =

=
1
nπ


����������

(1 − 2x)
sin(nπx)
nπ

∣∣∣∣∣
1

0

+
2
nπ

1∫
0

sin(nπx)dx

 =

=
1
nπ

−
2

n2π2 cos(nπx)

∣∣∣∣∣
1

0

 = −
2

n3π3 (cos(nπ) − 1) =

=
2

n3π3 (1 − (−1)n) =

{
4

(2k+1)3π3 , n = 2k+ 1

0, otherwise.

We can now find the coefficients

An =
2

sinh (2nπ)

1∫
0

f(x) sin (nπx) dx =

{
8

sinh(2(2k+1)π)(2k+1)3π3 , n = 2k+ 1

0, otherwise.
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and the solution will be

u(x,y) = 8
+∞∑
k=0

sin ((2k+ 1)πx) sinh ((2k+ 1)πy)
sinh(2(2k+ 1)π)(2k+ 1)3π3 .

4. Adapt the method used to solve the previous Laplace equation in the case in which
the only nontrivial initial boundary condition is on the right vertical segment of the
rectangle

x

y

R =

{
(x,y) ∈ R2

∣∣∣∣ 0 6 x 6 a
0 6 y 6 b

}
u(0,y) = 0

u(x,b) = 0

u(a,y) = g(y)(
g(0) = g(b) = 0

)

u(x, 0) = 0 a

b


∆u = 0, (x,y) ∈ R
u(x, 0) = u(x,b) = 0, 0 6 x 6 a
u(0,y) = 0, 0 6 y 6 b
u(a,y) = g(y), 0 6 y 6 b

where g(y) is any function with prescribed boundary conditions

g(0) = g(b) = 0.

Solution:
We just have to make a few changes from the way the equation was solved in the
lecture notes. To solve the differential equation ∆u = 0 by separation of variables

u(x,y) = F(x)G(y)

we still have to impose for some k ∈ R:{
F ′′ = −kF

G ′′ = kG.

We first impose the boundary conditions u(x, 0) = u(x,b) = 0, which translate into
G(0) = G(b) = 0. To have nontrivial solutions, we must have k < 0. With this
condition we solve{

G ′′ = kG

G(0) = G(b) = 0
⇔

{
G(y) = A cos

(√
−ky

)
+B sin

(√
−ky

)
G(0) = G(b) = 0

⇔
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⇔

{
(G(0) = 0) A = 0
(G(b) = 0)

√
−kb = nπ (n ∈ Z>1)

 Gn(y) = Bn sin
(nπ
b
y
)

, n > 1

For these admissible values we found

√
−k =

nπ

b
 k = −

(nπ
b

)2

we have solutions of the other differential equation F ′′ = −kF

Fn(x) = A
∗
ne

nπ
b x +B∗ne

−nπ
b x

and imposing the boundary condition u(0,y) = 0 we have Fn(0) = 0, that is

Fn(x) = 2A∗n sinh
(nπ
b
x
)

.

Renaming the product of the constants An := Bn · 2A∗n we get

un(x,y) = Fn(x)Gn(y) = An sinh
(nπ
b
x
)

sin
(nπ
b
y
)

,

and by the superposition principle

u(x,y) =
+∞∑
n=1

un(x,y) =
+∞∑
n=1

An sinh
(nπ
b
x
)

sin
(nπ
b
y
)

is also a solution. We now only have to impose the last boundary condition u(a,y) =
g(y) which translates into

g(y) =

+∞∑
n=1

[
An sinh

(nπ
b
a
)]

sin
(nπ
b
y
)

so that the expressions in the square brackets must be the coefficients of the odd,
2b-periodic extension of g(y), or equivalently

An =
2

b sinh
(
nπ
b a
) b∫

0

g(y) sin
(nπ
b
y
)
dy.
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