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Solutions Serie 12

1. (Old exercise)

a) Using the method of separation of variables, find a Fourier series solution for
the following problem:

ut = c
2uxx, 0 6 x 6 L, t > 0

u(0, t) = u(L, t) = 0, t > 0
ux(x, 0) = h(x), 0 6 x 6 L

where h(x) is any (differentiable) function such that

L∫
0

h(x)dx = 0.

Why do we need to require this condition?

Solution:
The general solution via separation of variables of the heat equation with zero
boundary conditions is

u(x, t) =
+∞∑
n=1

Bn sin
(nπ
L
x
)
e−λ

2
nt, λ2

n =
(cnπ
L

)2
.

The difference from the problem solved in the Lecture notes is that we need to
find the coefficients Bn by imposing this other initial condition.
1st method: deriving (in the variable x) term by term the previous expression we
obtain

ux(x, t) =
+∞∑
n=1

Bn
nπ

L
cos
(nπ
L
x
)
e−λ

2
nt,

and we have to impose at the time t = 0:

h(x) =

+∞∑
n=1

Bn
nπ

L
cos
(nπ
L
x
)

.

The right-hand side looks very much like the Fourier series of a 2L-periodic,
even function. The only possible difference is that there should also be a term
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for n = 0, while here there’s not. But the term corresponding to n = 0 is given
by the integral of the function, so it is zero if and only if this integral vanishes.
Our function h(x) has exactly this property by hypothesis, and therefore we can
conclude that

Bn
nπ

L
=

Fourier coefficients of the 2L-periodic,
even extension of h(x) from [0,L] =

2
L

L∫
0

h(x) cos
(nπ
L
x
)
dx,

or equivalently

Bn =
2
nπ

L∫
0

h(x) cos
(nπ
L
x
)
dx.

2nd method: imposing the initial condition ux(x, 0) = h(x) is equivalent to im-
pose

u(x, 0) = f(x), where f(x) :=

x∫
0

h(s)ds

(
 f ′(x) = h(x) N f(0) = f(L) = 0

)
For this we can use the usual formula and conclude that

Bn =
2
L

L∫
0

f(x) sin
(nπ
L
x
)
dx.

We must now reformulate this condition in terms of h(x), because this was the
initial datum of the problem. To do it, it’s enough to integrate by parts and
obtain again

Bn =
2
L

L∫
0

f(x) sin
(nπ
L
x
)
dx =

2
�L

L∫
0

f(x)

(
−
�L

nπ
cos
(nπ
L
x
)) ′

dx =

= −
2
nπ

L∫
0

f(x)

(
cos
(nπ
L
x
)) ′

dx =

= −
2
nπ

[
��

�
��

�
��
�

f(x) cos
(nπ
L
x
) ∣∣∣∣∣
L

0

−

L∫
0

h(x) cos
(nπ
L
x
)
dx

]
=

=
2
nπ

L∫
0

h(x) cos
(nπ
L
x
)
dx.

Why do we need to require that condition on h(x)?
It’s clear from the solution where we used the condition that the integral of
h(x) vanishes. There is, however, even before trying to solve the problem, a
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more conceptual reason why we need to impose this condition. Being h(x) the
derivative of u(x, 0) we must have

L∫
0

h(x)dx =

∫
ux(x, 0)dx = u(L, 0) − u(0, 0) = 0.

In other words the vanishing condition of the integral is necessary for h(x) to be
compatible with the other data of the problem. As will be explained at the end
of the course, this is a matter of well/ill-posed problem (if the conditions are not
compatible, there is no solution).

b) Find the general solution for the following problem:
ut = c

2uxx, 0 6 x 6 L, t > 0
u(0, t) = a, t > 0
u(L, t) = b, t > 0
u(x, 0) = f(x), 0 6 x 6 L

where a,b ∈ R are arbitrary constants, and f(x) is any (twice differentiable)
function such that f(0) = a, f(L) = b.
Compute, for each fixed 0 6 x 6 L, the asymptotic limit

lim
t→+∞u(x, t).

Solution:
We know how to solve the problem with zero boundary values. So we want to
modify u by an opportune function in such a way that we are brought to this
situation.
We would like to change only the boundary condition and not the equation, so
the easiest way to do it is using a function (independent from time) whose 2nd
derivative in the variable x vanishes.
We are therefore looking for the linear function l(x) which assumes, respectively,
the values a,b in the points 0,L. Which is

l(x) = a+
(b− a)

L
x.

Performing the substitution u = v+ l, uwill solve the initial problem if and only
if v will solve 

vt = c
2vxx, 0 6 x 6 L, t > 0

v(0, t) = 0, t > 0
v(L, t) = 0, t > 0
v(x, 0) = f̃(x), 0 6 x 6 L

f̃(x) = f(x) − l(x),
(
f̃(0) = f̃(L) = 0

)
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and we know that the solution to this problem is

v(x, t) =
+∞∑
n=1

Bn sin
(nπ
L
x
)
e−λ

2
nt,

with

Bn =
2
L

L∫
0

f̃(x) sin
(nπ
L
x
)
dx.

Performing the integration of the l(x) part we can be even more explicit, and
express Bn in terms of the initial datum of the problem f(x)

Bn = · · · = 2
L

L∫
0

f(x) sin
(nπ
L
x
)
dx+

2
πn

((−1)nb− a) .

With these coefficients, the final solution will be

u(x, t) =
+∞∑
n=1

Bn sin
(nπ
L
x
)
e−λ

2
nt

︸ ︷︷ ︸
v(x,t)

+a+
(b− a)

L
x︸ ︷︷ ︸

l(x)

.

To compute the asymptotic limit, let’s first observe that the asymptotic limit of
the solution of the heat equation with zero boundary conditions is zero. In fact,
one can exchange limit and infinit sum1 to obtain

lim
t→+∞ v(x, t) = lim

t→+∞
+∞∑
n=1

Bn sin
(nπ
L
x
)
e−λ

2
nt =

=

+∞∑
n=1

lim
t→+∞Bn sin

(nπ
L
x
)
e−λ

2
nt = 0.

But then the asymptotic limit of our solution will be just the linear function

lim
t→+∞u(x, t) =

���
���

�lim
t→+∞ v(x, t) + l(x)

(
= a+

(b− a)

L
x

)
.

Remark: The asymptotic limit of this problem (heat equation + boundary and
initial conditions given) is given by the linear function l(x), which is the solution
of the steady heat equation with same data:

lxx = 0, 0 6 x 6 L
l(0) = a,
l(L) = b.

1because of Lebesgue’s dominated convergence theorem
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2. Consider the following 1-dimensional heat equation, with initial temperature given
by a gaussian distribution{

ut = c
2uxx, x ∈ R, t > 0

u(x, 0) = e−x
2
, x ∈ R

a) Find an explicit formula for the solution u(x, t) (explicit = no unsolved integrals
or other implicit computations left).

Solution:
Let’s Fourier transform (with respect to the variable x) the problem. We are
going to denote by U = F(u), or more precisely, for each t > 0,

U(t) = F
(
u(·, t)

)
.

Using Exercise 6. in Serie 7 for the Fourier transform of the gaussian function
and the Exercise 5.a) in Serie 7 for the Fourier transform of a derivative, we getU̇(t)

5.a)
= −c2ω2U(t)

U(0) = F
(
e−x

2
)

6.
= 1√

2
e−

ω2
4

 U(t) =
1√
2
e−

ω2
4 e−c

2ω2t =
1√
2
e−

(1+4c2t)
4 ω2

which is still a gaussian function. We can find its inverse by trying to match the
coefficients and we will find

u(x, t) = F−1 (U(t)) =
1√

1 + 4c2t
e
− x2

1+4c2t .

b) Say if the following equalities are true or false.

(i) u
(

0,
1

4c2

)
=

√
2

2 �
�Z
Z(T) (F)

Solution:

u

(
0,

1
4c2

)
=

1√
1 + 4c2 · 1

4c2

=
1√
2
=

√
2

2
.

(ii) u (1, 1) =
1√

1 + 4c2
e

1
1+4c2 (T)��ZZ(F)

Solution:

u (1, 1) =
1√

1 + 4c2
e
− 1

1+4c2 .

(iii) u (0, 1) =
1√

1 + 4c2 �
�Z
Z(T) (F)

Solution:

u (0, 1) =
1√

1 + 4c2
e0 =

1√
1 + 4c2

.
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c) Write explicitely the function ϕ(t) := u(0, t) which describes, for t > 0, the evo-
lution of the temperature in the point x = 0, and sketch a graph of it.

Solution:

ϕ(t) = u(0, t) =
1√

1 + 4c2t
.

t

ϕ(t)

1

1
1√

1+4c2

d) Find, for each each temperature 0 < λ < 1, the only time t = t(λ) for which the
point at the origin x = 0 will have temperature equal to λ.

Solution:
We impose

λ = ϕ(t) =
1√

1 + 4c2t
⇔ λ2 =

1
1 + 4c2t

⇔ t =
1 − λ2

4c2λ2 .

3. (Bonus exercise - not treated in the lecture)
An elastic membrane of squared shape of side length 1 m is let vibrating from the
initial position described by the function f(x,y) below, with initial speed zero. The
material of which the membrane is composed is such that its vibrating waves will
propagate with speed c = 1 m/s.
In mathematical terms the profile of the membrane at the time t is described by the
function u(x,y, t) which is the solution of the following problem

R := {(x,y) ∈ R2 | 0 6 x,y 6 1}
utt = uxx + uyy, (x,y) ∈ R, t > 0
u(x, 0, t) = u(x, 1, t) = u(0,y, t) = u(1,y, t) = 0, 0 6 x,y 6 1, t > 0
u(x,y, 0) = f(x,y) = sin(πx) sin(2πy), (x,y) ∈ R
ut(x,y, 0) = 0. (x,y) ∈ R

a) Find the solution u(x,y, t).

Solution:
By separation of variables as explained in the Lecture notes, to solve the diffe-
rential equation with zero boundary condition we are lead to a general solution
of the form

u(x,y, t) =
+∞∑
m,n=1

[
Bmn cos(λmnt) +B∗mn sin(λmnt)

]
sin(mπx) sin(nπy),

λmn = π
√
m2 +n2.

6 Look at the next page!



We now have to impose the initial conditions on the position and velocity, which
will lead to determine the coefficients Bmn,B∗mn. In fact

u(x,y, 0) =
+∞∑
m,n=1

Bmn sin(mπx) sin(nπy) = f(x,y)

ut(x,y, 0) =
+∞∑
m,n=1

B∗mnλmn sin(mπx) sin(nπy) = 0

 

{
B12 = 1, N Bmn = 0 otherwise
B∗mn = 0.

The corresponding value to compute is λ12 = π
√

12 + 22 =
√

5π, and the solution
is

u(x,y, t) = cos
(√

5πt
)

sin(πx) sin(2πy).

Initial configuration

u(x,y, 0)

Evolution after around 0.22 sec

u
(
x,y, 1

2
√

5

)

Evolution after around 0.44 sec

u
(
x,y, 1√

5

) Evolution after around 0.66 sec

u
(
x,y, 3

2
√

5

)
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b) What is the height range in which the membrane vibrates? That is, find

heightmin := min
(x,y)∈R
t>0

u(x,y, t), heightmax := max
(x,y)∈R
t>0

u(x,y, t)

Solution:
The solution is product of functions which assume all possible values from −1
to 1. Therefore all these values will be assumed by u(x,y, t) itself and the height
range is

heightmin = −1 N heightmax = 1.

c) Find the instants in which the membrane is completely flat. That is, find the
t∗ > 0 such that

u(x,y, t∗) = 0, ∀(x,y) ∈ R.

Solution:

u(x,y, t∗) = 0, ∀(x,y) ∈ R ⇔ cos
(√

5πt∗
)
= 0 ⇔ t∗ =

2k+ 1
2
√

5
, k ∈ N.

d) Find the instants in which the membrane is momentaneously still. That is, find
the t∗ > 0 such that

ut(x,y, t∗) = 0, ∀(x,y) ∈ R.

Solution:
The speed is ut(x,y, t) = −

√
5π sin

(√
5πt
)

sin(πx) sin(2πy). Therefore

ut(x,y, t∗) = 0, ∀(x,y) ∈ R ⇔ sin
(√

5πt∗
)
= 0 ⇔ t∗ =

k√
5

, k ∈ N.

e) Is the vibration of the membrane periodic? If yes, what is the fundamental peri-
od?

Solution:
Again, this is a question regarding only the function cos

(√
5πt
)
, which is - as

explained in the Exercise 1.b) of Serie 5 - periodic of fundamental period P given
by

√
5πP = 2π  P =

2√
5

.
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